Northumbria Research Link


Published by: IARIA


This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/11304/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.)

www.northumbria.ac.uk/nrl
Secure Communication Based on Indirect Coupled Synchronization

Rupak Kharel
School of Engineering
Manchester Metropolitan University
Manchester, UK
r.kharel@mmu.ac.uk

Krishna Busawon, Zabih Ghassemlooy
School of Computing, Engineering and Information Sciences
Northumbria Universtiy
Newcastle Upon Tyne, UK
krishna.busawon@northumbria.ac.uk,
z.ghassemlooy@northumbria.ac.uk

Abstract—In this paper, a secure communication system composed of four chaotic oscillators is proposed. Two of these oscillators are unidirectionally coupled and employed as transmitter and receiver. The other two oscillators are indirectly coupled and are employed as keystream generators. The novelty lies in the generation of the same chaotic keystream both in the transmitter and receiver side for encryption and decryption purposes. We show, in particular, that it is possible to synchronize the two keystream generators even though they are not directly coupled. So doing, an estimation of the keystream is obtained allowing decrypting the message. The main feature of the proposed communication scheme is that the keystream cannot be generated with the sole knowledge of the transmitted chaotic signal, hence making it very secure. The performance of the proposed communication scheme is shown via simulation using the Chua and Lorenz oscillators.

Keywords- Chaotic communication systems; chaotic synchronization; Lorenz System; Chua System

I. INTRODUCTION

The importance of chaotic synchronization for the development of secure communication systems is well-understood by now [1-6]. In recent years, various chaotic synchronization methods have been proposed [3-5, 7, 8] together with a number of modulation methods for chaotic communication systems such as chaotic masking [1, 5], parameter modulation techniques [5], chaotic shift keying [2, 5], just to mention a few. Each of these methods requires chaotic synchronization for message extraction at the receiver side. On the other hand, different attacks methods have been derived in order to test the security of the modulation methods; namely the non-linear dynamics forecasting [9, 10], return maps analysis [11], artificial neural network analysis [12] and so on. As a result, methods like chaotic masking, parameter modulation techniques and chaotic shift keying were found not to be secure. Other proposed methods based on the projective synchronization [13], phase synchronization [14], generalized synchronized [15] were broken as well [16, 17]. Methods based on the time delay or the hyperchaos were also looked upon for increasing the security but they too were found not to be entirely convincing [18, 19]. Therefore, there is a need of developing a method which will resist all the attack methods.

In [6], a method based on encryption technique was proposed, where a different output from chaotic transmitter which was transmitted in the channel was used as a keystream to encrypt the message signal. The encrypted message signal masked with another output of the chaotic oscillator was employed as the transmitted signal. It was claimed that since the intruder could not get hold of the keystream, it was impossible for the attackers to extract the message. Unfortunately a later work done by Parker and Short [20] showed that it was still possible to extract the keystream from the transmitted chaotic signal since the keystream carried the information of the dynamics of the transmitter. In fact, since, both the carrier and keystream were the outputs of same oscillator; the carrier held the dynamics of the keystream as well. Therefore, it was impossible to hide the dynamics of the keystream from intruders, as a signal has to be transmitted from the transmitter to the receiver for synchronization and message transmission purpose. However, since the principle of the method proposed in [6] is nevertheless interesting, there is a real incentive for finding ways for improving the method by eliminating its shortcomings.

In effect, in this paper, based on the spirit of the work in [6], we propose a new chaotic communication scheme composed of four chaotic oscillators. Two of those oscillators are uni-directionally coupled and employed as transmitter and receiver. The other two oscillators are indirectly coupled and are employed as keystream generators. The key idea therefore is to generate a chaotic carrier signal from one oscillator while a chaotic keystream is generated from another chaotic oscillator. A suitable encryption rule is employed in order to encrypt the message using the generated keystream. The encrypted message is then modulated with the chaotic carrier in order to generate the transmitted signal. As a result, the transmitted signal does not contain the dynamics of the keystream oscillator, hence making it difficult for intruders to generate the keystream with the sole knowledge of the transmitted chaotic signal. At the receiver, the same keystream is generated and a decryption rule is applied to the recovered
encrypted message signal that has been obtained from chaotic synchronization. However, this scheme gives rise to an interesting question: Is it possible to synchronize two independent chaotic oscillators such that they generate same required keystream? It will be shown in the next section that, under some assumptions, it is still possible to synchronize two chaotic oscillators even though they are not uni-directionally coupled.

An outline of the paper is as follow: In Section II, the main methodology of the proposed technique is explained. In addition, indirect coupled synchronization is proven for a class of chaotic systems. In Section III, the proposed synchronization and secure chaotic communication scheme are implemented using the Lorenz system and Chua’s system. In Section IV, simulation is carried out and results are outlined to show the performance of the proposed communication scheme. Finally, in Section V, concluding remarks are made.

II. THE PROPOSED COMMUNICATION SYSTEM

The proposed chaotic communication scheme, based on cryptography, is shown in Fig. 1. The novelty here lies in the generation of the keystream. The chaotic transmitter (T) is first used to generate two output signals, $y_1(t)$ and $y_2(t)$. The signal $y_1(t)$ is used for modulation purpose while output $y_2(t)$ is used to drive chaotic oscillator (A) whose structure is different from the transmitter (T). The output $k(t)$ of key generator (A) is used as a keystream to encrypt the message $m(t)$ using an encryption rule $\phi(\cdot)$. The resulting encrypted signal $\hat{\phi}(m(t))$ is masked using $y_1(t)$ yielding the transmitted signal $y(t)$. The output $y(t)$ is fed back into the transmitter in the form of an output injection with the aim of cancelling the effect of non-linearity while performing synchronization at the receiver side. The modulated transmitted signal $y(t)$ is sent through the channel to the receiver.

At the receiver end, upon receiving the signal $y'_2(t)$, the chaotic receiver (R) - which is similar in structure to the transmitter (T) - permits to obtain an estimate $\hat{y}_1(t)$ and $\hat{y}_2(t)$ of the signals $y_1(t)$ and $y_2(t)$ respectively by synchronization. This can be done by using any techniques existing in the literature such as observers, etc [3, 4, 7, 8]. The signals $\hat{y}_1(t)$ and $\hat{y}_2(t)$ are used to generate an estimate $\hat{\phi}(m(t))$ of the encrypted signal $\phi(m(t))$. The estimate $\hat{y}_2(t)$ is used to drive the chaotic key generator (B) - which is similar in structure to generator (A) – and which yields the keystream estimate $\hat{k}(t)$. Consequently, the message $m(t)$ can be recovered by using the decryption rule $\phi^{-1}(\cdot)$.

Note that since, the chaotic key generators (A) and (B) are driven by $y_1(t)$ and $\hat{y}_2(t)$ respectively, an indirect coupled synchronization is required between these two chaotic oscillators. Also, $y_1(t)$ and $\hat{y}_2(t)$ are outputs of chaotic transmitter (T) and receiver (R) respectively and will be equal once synchronization is achieved. Intuitively, one would expect this synchronization to take place. However, in what follows this will be proven mathematically for a class of chaotic systems.

The important part of this method is the generation of the keystream. No information regarding the keystream is transmitted in the channel. In [6], it was possible to estimate the particular state which was used as keystream (as shown in [20]) since the state that was transmitted in the channel had some information of the dynamics of the keystream as they were the state variables of same chaotic oscillator.

In contrast, in this method, the keystream is generated from a chaotic oscillator with a totally different structure. It will not be possible to estimate the dynamics of the chaotic key generator from the signal being transmitted in the channel by using the method mentioned in [20]. Even if the intruder manages to get hold of the encrypted signal from the transmitted signal, without the knowledge of keystream, the message signal can’t be decrypted back. Therefore, a secure communication link can be realized by implementing the proposed method.

Based on the communication scheme illustrated by Fig. 1, we assume that the transmitter oscillator (T) described by a dynamical system of the following form:

\[
\begin{align*}
\dot{x} &= F(y_1)x + g(t,y_1) \\
\hat{y}_1 &= h_1(x) \\
\hat{y}_2 &= h_2(x) \\
y &= y_1 + e(m,k),
\end{align*}
\]

where the state $x \in \mathbb{R}^n$ with initial condition $x(0) = x_0$. The outputs of the oscillator $y_1 \in \mathbb{R}$ and $y_2 \in \mathbb{R}$. The matrix $F$ is of appropriate dimension while $h_1$ and $h_2$ are analytical vector functions. The signal $y_1 \in \mathbb{R}$ is the transmitted signal where $e(\cdot)$ is the encryption function using key $k(t)$ and the function $g$ is a smooth bounded function of time.

The keystream $k(t)$ is generated using another chaotic oscillator of similar form:

\[
\begin{align*}
\dot{z} &= A z + b_1(t,y_2) \\
k &= h(z),
\end{align*}
\]

which is driven by the output $y_2(t)$. Here, $z \in \mathbb{R}^q$ ($q$ is not necessarily equal to $n$), $k \in \mathbb{R}$ is the keystream, $h$ is an analytical vector function and $b_1$ is a smooth bounded function of time. It is assumed that the channel is perfect and that no distortion of the transmitted signal has taken place; that is $y_1 = y'_1$.

The receiving chaotic oscillator (R) is given by:

\[
\begin{align*}
\dot{x} &= F(y_1)x + g(t,y_1) \\
\hat{y}_1 &= h_1(x) \\
\hat{y}_2 &= h_2(x),
\end{align*}
\]
Finally, the key generator (B) is given by:

\[
(B): \begin{cases} 
\dot{\hat{z}} = A\hat{z} + b_2(t, \hat{y}_2) \\
\hat{\kappa} = h(\hat{z}).
\end{cases}
\]

We shall make the following assumptions:

A1) There exist symmetric positive definite (SPD) matrices \(P_1, P_2, Q_1\) and \(Q_2\) such that

\[
F^T P_1 + P_1 F = -Q_1, \quad A^T P_2 + P_2 A = -Q_2.
\]

A2) The output function \(h_2(x)\) is globally Lipschitzian with respect to \(x\).

The objective is to show that the transmitter (T) and the receiver (R) synchronize as well as generators (A) and (B) are synchronized with each other even though there is no direct link between them. In effect, based on the above assumptions, we state the following:

**Theorem 1.** Under the assumption A1), there exist two constants \(\lambda, \eta > 0\) such that

\[
\|x(t) - \hat{x}(t)\| \leq \eta e^{-\lambda t} \|x(0) - \hat{x}(0)\|
\]

for all \(t \geq 0\). In other words, the receiver (R) synchronizes exponentially with the transmitter (T).

**Proof:** Let \(e(t) = x(t) - \hat{x}(t)\), then the error dynamics between transmitter (T) and receiver (R) is given by:

\[
\dot{e} = F(y_j) e.
\]

Owing to assumption A1), a candidate Lyapunov function of the above error dynamics can be chosen as:

\[
V(e) = e^T P_1 e.
\]

Differentiating \(V(e)\) with respect to time, yields:

\[
\dot{V}(e) = e^T P_1 \dot{e} + \dot{e}^T P_1 e
\]

\[
= e^T [A^T(y_j) P_1 + P_1 A(y_j)] e - \varepsilon^T Q_2 e < 0.
\]

Since \(Q_1\) is SPD, there exist, \(c_1, c_2 > 0\) such that

\[
c_1 e^T P_1 e \leq e^T Q_2 e \leq c_2 e^T P_1 e.
\]

Consequently, \(\dot{V}(e) = -c_1 V(e)\). Integrating the last equation results in:

\[
V(e(t)) = e^{-c_1 t} V(e(0)).
\]

Again, since \(P_1\) is SPD, there exist \(\lambda_1, \lambda_2 > 0\) such that

\[
\lambda_1 e^T P_1 e \leq e^T P_1 e \leq \lambda_2 e^T e.
\]

Consequently:

\[
\lambda_1 \|e(t)\|^2 \leq \lambda_2 e^{-c_1 t} \|e(0)\|^2.
\]

In other words:

\[
\|e(t)\| \leq \sqrt{\frac{\lambda_2}{\lambda_1}} e^{-c_1 t} \|e(0)\|.
\]

That is:

\[
\|x(t) - \hat{x}(t)\| \leq \sqrt{\frac{\lambda_2}{\lambda_1}} e^{-c_1 t} \|x(0) - \hat{x}(0)\|.
\]

This means that \(\hat{x}(t)\) converges to \(x(t)\) exponentially. In other words, the receiver (R) synchronizes exponentially with the transmitter (T). This completes the proof of Theorem 1.

**Theorem 2.** Assume that system (A) and (B) satisfies assumption A1), then \(\lim_{t \to \infty} \|e(t)\| = 0\). That is, the keystream generator (A) synchronizes asymptotically with the keystream generator (B).

**Proof:** Set \(\zeta(t) = x(t) - \hat{x}(t)\), then the error dynamics between the keystream generator (A) and generator (B) is given by:

\[
\dot{\zeta} = A \zeta + b_2(t, y_2) - b_2(t, \hat{y}_2).
\]

Now consider the following candidate Lyapunov function

\[
W = \zeta^T P_3 \zeta.
\]

Differentiating \(W\) with respect to time yields

\[
\dot{W} = \zeta^T P_3 \dot{\zeta} + \dot{\zeta}^T P_3 \zeta = 2 \zeta^T P_3 \dot{\zeta}
\]

\[
= 2 \zeta^T P_3 [A \zeta + b_2(t, y_2) - b_2(t, \hat{y}_2)]
\]

\[
= 2 \zeta^T P_3 A \zeta + 2 \zeta^T P_3 [b_2(t, y_2) - b_2(t, \hat{y}_2)]
\]

\[
\leq -\beta W + \beta \|e(t)\|.
\]

Now,

\[
\sqrt{W} \leq -\beta W + \beta \|e(t)\|.
\]
Therefore, \[
\sqrt{W(\xi(t))} \leq e^{-\beta t} \sqrt{W(\xi(0))} + \beta \int_{0}^{t} e^{-\beta(t-s)} \|\xi(s)\|ds.
\]
From the above inequality, we can see that when \( t \to +\infty \), \( \|\xi(t)\| \to 0 \).

This completes the proof of Theorem 2 and therefore (A) converges with (B) asymptotically. Once the synchronization is obtained between (A) and (B), the message can be decrypted by applying the keystream.

III. APPLICATION OF THE PROPOSED TECHNIQUE USING THE CHUA AND THE LORENZ OSCILLATOR

In this section, the performance of the proposed communication system is demonstrated using the Lorenz system as the transmitter (T) and the receiver (R). More specifically, (T) and (R) are chosen as:

\[
\begin{align*}
(T): & \quad \dot{u} = -\sigma u + \sigma v \\
& \quad \dot{v} = -20y,w + ry, -v \\
& \quad \dot{w} = 5y,v - bw \\
& \quad y_1 = u \\
& \quad y_2 = v \\
& \quad y = y_1 + e(m,k).
\end{align*}
\]

\[
(R): \quad \begin{align*}
\dot{\hat{u}} &= -a\hat{u} + \sigma \hat{v} \\
\dot{\hat{v}} &= -20y,\hat{w} + ry, -\hat{v} \\
\dot{\hat{w}} &= 5y,\hat{v} - b\hat{w} \\
\hat{y}_1 &= \hat{u} \\
\hat{y}_2 &= \hat{v}.
\end{align*}
\]  

Again it can easily be seen that (6) are in the form (1) and (3) with \( F(y_i) \) given as:

\[
F(y_i) = \begin{pmatrix} -\sigma & \sigma & 0 \\
0 & -1 & -20y_i \\
0 & 5y_i & -b \end{pmatrix}.
\]

For these systems Assumption A1 hold true for the following choice of matrices \( P_1 \) and \( Q_1 \):

where \( l_1,l_2,l_3,\alpha,\beta,r > 0, l_2 = -\frac{1}{\alpha}l_1 \) and \( 0 < l_i < \frac{1}{\alpha}l_2 \).  

Remark 1. Note that, at first sight one would expect the matrices \( P_1 \) and \( Q_1 \) to be time dependent since \( F(y_i) \) is time dependent. However, interestingly, due to the particular form of \( F(y_i) \) the matrices turn out to be constants.

For the key generating oscillators A and B, the Chua’s system is adopted as below:

\[
\begin{align*}
\dot{p} &= \alpha(q - p - f(y_2)) \\
\dot{q} &= y_2 - q - s \\
\dot{s} &= -\beta q - js \\
\end{align*}
\]

(A):

\[
\begin{align*}
\dot{\hat{p}} &= \alpha(\hat{q} - \hat{p} - f(\hat{y}_2)) \\
\dot{\hat{q}} &= \hat{y}_2 - \hat{q} - \hat{s} \\
\dot{\hat{s}} &= -\beta \hat{q} - j\hat{s} \\
\end{align*}
\]  

(B):

\[
\begin{align*}
\dot{\hat{p}} &= \alpha(\hat{q} - \hat{p} - f(\hat{y}_2)) \\
\dot{\hat{q}} &= \hat{y}_2 - \hat{q} - \hat{s} \\
\dot{\hat{s}} &= -\beta \hat{q} - j\hat{s} \\
\end{align*}
\]  

The non-linear function \( f(\cdot) \) is a piecewise linear function given as:

\[
f(y) = G_b(y) + 0.5(G_a - G_b)(|y| + 1 - |y|).
\]

Note that 7 are in the form (2) and (4) respectively with \( A \) and \( B(t,y_2) \) given as:

\[
A = \begin{pmatrix} -\alpha & \alpha & 0 \\
0 & -1 & -1 \\
0 & -\beta & -\gamma \end{pmatrix}, \quad B(t,y_2) = \begin{pmatrix} y_2 \\
0 \\
0 \end{pmatrix}.
\]

It can also be shown that Assumption A1) is satisfied for the following matrices \( P_2 \) and \( Q_2 \):

\[
P_2 = \begin{pmatrix} l_1 & 0 & 0 \\
0 & l_2 & 0 \\
0 & 0 & l_3 \end{pmatrix} \quad \text{and} \quad Q_2 = \begin{pmatrix} 2ad_1 & -ad_1 & 0 \\
0 & -ad_1 & l_2 \\
0 & 0 & 2\beta l_2 \end{pmatrix},
\]

where \( l_1,l_2,l_3,\alpha > 0, \beta < 0, \gamma \geq 0, l_2 = -\beta l_3 \) and \( 0 < l_i < \frac{1}{\alpha}l_2 \). Finally, it is obvious that A2) is satisfied. For the key generating oscillators A and B, the Lorenz system defined as is adopted:

The encryption function \( e(\cdot) \) used is a \( n \)-shift cipher algorithm given as: (as used in [6]):

\[
e(m,k) = \underbrace{f_1(...f_1}_{\alpha}(m(t),k(t)),k(t),...,k(t)), \quad \text{where} \quad f_1(\cdot,\cdot)
\]

is a non-linear function given by:

\[
f(m,k) = \begin{cases} m + k + 2h, & \text{for } -2h < m + k < -h \\
m + k, & \text{for } -h < m + k < h \\
m + k + 2h, & \text{for } h < m + k < 2h \\
\end{cases}
\]

with \( h \) being an encryption parameter which is chosen such that \( m \) and \( k \) lie within the interval \([-h,h]\).

Once the keystream generator (A) synchronizes asymptotically with generator (B), the message \( m(t) \) can be recovered using a decryption rule corresponding to the encryption rule and which is given by:

\[
m_t(t) = e^{-1}(\hat{e}(m(t))) = \underbrace{f_{\alpha}(...f_{\alpha}}_{\alpha}(\hat{e}(m(t)),\hat{k}(t)),\hat{k}(t),...,\hat{k}(t)), \quad \text{where} \quad \hat{k}(t)
\]

estimated key stream and \( \hat{e}(m(t)) = y_1 - \hat{y}_1 \).

In the next section, simulations are carried out using Matlab/Simulink and it will be shown that the proposed method is able to synchronize satisfactorily and extract the message successfully.
IV. SIMULATION RESULTS

The parameters employed in equation (15,16,18 and 19) are as follows:

\[ \sigma = 16, r = 45.6, b = 4.2, \alpha = 10, \beta = -14.87 \]

\[ \gamma = 0, G_a = -1.27, G_b = -0.68, d_0 = 0.05. \]

The encryption parameter \( h \) is chosen to be 0.3 and the message \( m(t) = 0.1\sin(2\pi t) \). Also in encryption rule, a 30-shift cipher is used. The initial conditions for each oscillator are chosen to arbitrarily different.

Fig. 2 shows the autocorrelation function of the keystream signal \( k(t) \). It is clear that the keystream is not similar to itself with any amount of time shift so its autocorrelation function has only a single spike at point of zero time shift. This means the keystream generated is chaotic in nature and therefore has limited predictability. Fig. 3 shows the encrypted message signal using (21) and signal \( k(t) \) as keystream. Fig. 4 depicts the transmitted chaotic carrier and it can be seen that message signal is totally buried inside it.

Fig. 5 illustrates the error in estimating the keystream and it can be seen that although two oscillators are starting from different initial conditions, the error converges rapidly to zero after some initial period taken for synchronization.

Fig. 6 shows the performance of the proposed method in decrypting the message signal back and it is readily seen that the transmitted message signal has been estimated convincingly. Next, the performance of the proposed secure communication method is tested in the presence of channel noise. For this purpose, the simulation is performed using the AWGN channel having SNR of 40 dB. The output is shown in Fig. 7, where it can be seen that message is extracted successfully. Apart from the jitter in amplitude, which can be removed from standard filtering operation, the necessary information about the message (form, frequency and amplitude) is obtained.

It is seen that the proposed method is used to transmit simple sinusoidal message signals. But the method is equally true for other message signals such as voice signals, square wave, etc. Also, the idea can be easily extended from analogue systems here to digital communication systems with proper modulation schemes. The modulation schemes can be PAM, FSK, PSK, etc. With digital communication systems, the SNR up to which the method works with noisy channel can easily be reduced from 40 dB. For example, when PAM is used for transmitting digital bits then, after recovering the modulated square wave that has been corrupted with noise, it can easily be passed to matched filter and then threshold detected to recover the digital bits accurately.
The main advantage of the proposed method is that, unlike previous work on the topic, the keystream is generated from oscillators that are not directly coupled together in a master-slave configuration and applied to generate the keystream at transmitter and receiver. Synchronization is proven mathematically and simulation results are presented. The main advantage of the proposed method is that, unlike previous work on the topic, the keystream is generated from different oscillators to that of the transmitter and hence improving the security of the system; since the transmitted signal does not include the information of the dynamics of the key generator. Consequently, even if the encrypted signal is known to the intruders, without the knowledge of the keystream extraction of the message signal will not be possible providing secure communication link. As future works, the communication scheme can be extended by employing more general chaotic systems and incorporating observers for the receiver and the key generator. Also, the scheme need to be implemented and tested practically.

REFERENCES