BTBPs versus BTPhens: some reasons for their differences in properties concerning the partitioning of minor actinides and the advantages of BTPhens

Lewis, Frank, Harwood, Laurence, Hudson, Michael, Drew, Michael, Hubscher-Bruder, Veronique, Videva, Vladimira, Arnaud-Neu, Francoise, Stamberg, Karel and Vyas, Shyam (2013) BTBPs versus BTPhens: some reasons for their differences in properties concerning the partitioning of minor actinides and the advantages of BTPhens. Inorganic Chemistry, 52 (9). pp. 4993-5005. ISSN 0020-1669

[img] PDF (Article)
CyMe4-BTPhen_Paper_2.doc - Accepted Version

Download (6MB)
Official URL:


Two members of the tetradentate N-donor ligand families 6,6’-bis(1,2,4-triazin-3-yl)-2,2’-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) currently being developed for separating actinides from lanthanides, have been studied. It has been confirmed that CyMe4-BTPhen 2 has faster complexation kinetics than CyMe4-BTBP 1. The values for the HOMO–LUMO gap of 2 are comparable with those of CyMe4-BTBP 1 for which the HOMO–LUMO gap was previously calculated to be 2.13 eV. The displacement of BTBP from its bis-lanthanum(III) complex by BTPhen was observed by NMR, and constitutes the only direct evidence for the greater thermodynamic stability of the complexes of BTPhen. NMR competition experiments suggest the following order of bis-complex stability: 1:2 bis-BTPhen complex ≥ heteroleptic BTBP/BTPhen 1:2 bis-complex > 1:2 bis-BTBP complex. Kinetics studies on some bis-triazine N-donor ligands using the stopped-flow technique showed a clear relationship between the rates of metal ion complexation and the degree to which the ligand is pre-organized for metal binding. The BTBPs must overcome a significant (ca. 12 kcal mol−1) energy barrier to rotation about the central biaryl C–C axis in order to achieve the cis-cis conformation that is required to form a complex, whereas the cis-cis conformation is fixed in the BTPhens. Complexation thermodynamics and kinetics studies in acetonitrile show subtle differences between the thermodynamic stabilities of the complexes formed, with similar stability constants being found for both ligands. The first crystal structure of a 1:1 complex of CyMe4-BTPhen 2 with Y(NO3)3 is also reported. The metal ion is 10 co-ordinate being bonded to the tetradentate ligand 2 and three bidentate nitrate ions. The tetradentate ligand is nearly planar with angles between consecutive rings of 16.4(2), 6.4(2), 9.7(2)o respectively.

Item Type: Article
Subjects: F100 Chemistry
Department: Faculties > Health and Life Sciences > Applied Sciences
Depositing User: Frank Lewis
Date Deposited: 18 Jun 2013 12:34
Last Modified: 24 Oct 2017 11:25

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics

Policies: NRL Policies | NRL University Deposit Policy | NRL Deposit Licence