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Free vibration of axially loaded thin-walled composite box beams1

Thuc Phuong Vo∗ and Jaehong Lee†2

Department of Architectural Engineering, Sejong University3

98 Kunja Dong, Kwangjin Ku, Seoul 143-747, Korea4

(Dated: March 12, 2009)5

A general analytical model applicable to flexural-torsional coupled vibration of thin-walled com-

posite box beams with arbitrary lay-ups under a constant axial force has been presented. This

model is based on the classical lamination theory and accounts for all the structural coupling com-

ing from the material anisotropy. Equations of motion are derived from the Hamilton’s principle.

A displacement-based one-dimensional finite element model is developed to solve the problem. Nu-

merical results are obtained for thin-walled composite box beams to investigate the effects of axial

force, fiber orientation and modulus ratio on the natural frequencies, load-frequency interaction

curves and corresponding vibration mode shapes.

Keywords: Thin-walled composite beam; classical lamination theory; flexural-torsional coupled vibration; axial6

force7

I. INTRODUCTION8

Fiber-reinforced composite materials have been used over the past few decades in a variety of structures. Composites9

have many desirable characteristics, such as high ratio of stiffness and strength to weight, corrosion resistance and10

magnetic transparency. Thin-walled structural shapes made up of composite materials, which are usually produced by11

pultrusion, are being increasingly used in many engineering fields. However, the structural behavior is very complex12

due to coupling effects as well as warping-torsion and therefore, the accurate prediction of stability limit state and13

dynamic characteristics is of the fundamental importance in the design of composite structures.14

The theory of thin-walled members made of isotropic materials was first developed by Vlasov [1] and Gjelsvik [2].15

Up to the present, investigation into the stability and vibrational behavior of these members has received widespread16

attention and has been carried out extensively. Closed-form solution for flexural and torsional natural frequencies,17

critical buckling loads of isotropic thin-walled bars are found in the literature (Timoshenko [3,4] and Trahair [5]). For18

some practical applications, earlier studies have shown that the effect of axial force on the natural frequencies and19
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mode shapes is more pronounced than those of the shear deformation and rotary inertia. Although a large number of20

studies has been performed on the dynamic characteristics of axially loaded isotropic thin-walled beams, it should be21

noted that only a few deal with thin-walled composite structures with arbitrary lay-ups. A literature survey on the22

subject shows that there appears some works reported on the free vibration of axially loaded closed-section thin-walled23

composite beams. Many numerical techniques have been used to solve the dynamic analysis of these members. One of24

the most effective approach is to derive the exact stiffness matrices based on the solution of the differential equation25

of beam. Most of those studies adopted an analytical method that required explicit expressions of exact displacement26

functions for governing equations. Banerjee [6,7] applied the exact dynamic stiffness matrix to perform the free27

vibration analysis of axially loaded composite Timoshenko beams. The works of Li et al. [8-11] deserved special28

attention because they developed the analytical solution to determine the flexure-torsion coupled dynamic responses29

of axially loaded thin-walled composite beam under concentrated, distributed time-dependent loads and external30

stochastic excitations. The influences of axial force, Poisson effect, axial deformation, shear deformation and rotary31

inertia were discussed in their research. Kaya and Ozgumus [12] introduced the differential transform method (DTM)32

to analyse the free vibration response of an axially loaded, closed-section composite Timoshenko beam which featured33

material coupling between flapwise bending and torsional vibrations. The effects of the bending-torsion coupling, the34

axial force and the slenderness ratio on the natural frequencies were inspected. In the research of Banerjee and Li et al.35

and Kaya and Ozgumus [6-12], it was very effective in saving the computing time due to the closed-form solution36

which can be easily derived by the help of symbolic computation. However, the analytical operations were often too37

complex to yield exact displacement functions in the case of solving a system of simultaneous ordinary differential38

equations with many variables. Additionally, they considered only a cantilever glass-epoxy composite beam with39

rectangular cross section in the numerical examples. By using finite element method, Bank and Kao [13] analysed free40

and forced vibration of thin-walled fibre reinforced composite material beams by using the Timoshenko beam theory.41

Song et al. [14] carried out the vibration and stability of pretwisted spinning thin-walled composite beams featuring42

bending-bending elastic coupling. Recently, Cortinez, Machado and Piovan [15,16] presented a theoretical model43

for the dynamic analysis of thin-walled composite beams with initial stresses. Machado et al. [17] determined the44

regions of dynamic instability of simply supported thin-walled composite beam subjected to an axial excitation. The45

analysis was based on a small strain and moderate rotation theory, which was formulated through the adoption of a46

second-order displacement field. In their research [15-17], thin-walled composite beams for both open and closed cross-47

sections and the shear flexibility (bending, non-uniform warping) were incorporated. However, it was strictly valid48
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for symmetric balanced laminates and especially orthotropic laminates. By using using a boundary element method,49

Sapountzakis and Tsiatas [18] solved the general flexural-torsional buckling and vibration problems of composite50

Euler-Bernoulli beams of arbitrarily shaped cross section. This method overcame the shortcoming of possible thin51

tube theory solution, which its utilization had been proven to be prohibitive even in thin-walled homogeneous sections.52

In this paper, which is an extension of the authors’ previous works [19-21], flexural-torsional coupled vibration of53

thin-walled composite box beams with arbitrary lay-ups under a constant axial force is presented. This model is based54

on the classical lamination theory, and accounts for all the structural coupling coming from the material anisotropy.55

Equations of motion are derived from the Hamilton’s principle. A displacement-based one-dimensional finite element56

model is developed to solve the problem. Numerical results are obtained for thin-walled composite box beams to57

investigate the effects of axial force, fiber orientation and modulus ratio on the natural frequencies, load-frequency58

interaction curves and corresponding vibration mode shapes.59

II. KINEMATICS60

The theoretical developments presented in this paper require two sets of coordinate systems which are mutually61

interrelated. The first coordinate system is the orthogonal Cartesian coordinate system (x, y, z), for which the x and62

y axes lie in the plane of the cross section and the z axis parallel to the longitudinal axis of the beam. The second63

coordinate system is the local plate coordinate (n, s, z) as shown in Fig.1, wherein the n axis is normal to the middle64

surface of a plate element, the s axis is tangent to the middle surface and is directed along the contour line of the65

cross section. The (n, s, z) and (x, y, z) coordinate systems are related through an angle of orientation θ as defined in66

Fig.1. Point P is called the pole axis, through which the axis parallel to the z axis is called the pole axis.67

To derive the analytical model for a thin-walled composite beam, the following assumptions are made:68

1. The contour of the thin wall does not deform in its own plane.69

2. The linear shear strain γ̄sz of the middle surface is to have the same distribution in the contour direction as it70

does in the St. Venant torsion in each element.71

3. The Kirchhoff-Love assumption in classical plate theory remains valid for laminated composite thin-walled72

beams.73

4. Each laminate is thin and perfectly bonded.74

5. Local buckling is not considered.75
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According to assumption 1, the midsurface displacement components ū, v̄ at a point A in the contour coordinate76

system can be expressed in terms of a displacements U, V of the pole P in the x, y directions, respectively, and the77

rotation angle Φ about the pole axis,78

ū(s, z) = U(z) sin θ(s)− V (z) cos θ(s)− Φ(z)q(s) (1a)

v̄(s, z) = U(z) cos θ(s) + V (z) sin θ(s) + Φ(z)r(s) (1b)

These equations apply to the whole contour. The out-of-plane shell displacement w̄ can now be found from the79

assumption 2. For each element of middle surface, the shear strain become80

γ̄sz =
∂v̄

∂z
+

∂w̄

∂s
= Φ′(z)

F (s)
t(s)

(2)

where t(s) is thickness of contour box section, F (s) is the St. Venant circuit shear flow.81

After substituting for v̄ from Eq.(1) and considering the following geometric relations,82

dx = ds cos θ (3a)

dy = ds sin θ (3b)

Eq.(2) can be integrated with respect to s from the origin to an arbitrary point on the contour,83

w̄(s, z) = W (z)− U ′(z)x(s)− V ′(z)y(s)− Φ′(z)ω(s) (4)

where differentiation with respect to the axial coordinate z is denoted by primes (′); W represents the average axial84

displacement of the beam in the z direction; x and y are the coordinates of the contour in the (x, y, z) coordinate85

system; and ω is the so-called sectorial coordinate or warping function given by86

ω(s) =
∫ s

s◦

[
r(s)− F (s)

t(s)

]
ds (5a)

∮

i

F (s)
t(s)

ds = 2Ai i = 1, ..., n (5b)

where r(s) is height of a triangle with the base ds; Ai is the area circumscribed by the contour of the i circuit. The87

explicit forms of ω(s) and F (s) for box section are given in Ref.[19].88

The displacement components u, v, w representing the deformation of any generic point on the profile section are89

given with respect to the midsurface displacements ū, v̄, w̄ by the assumption 3.90

u(s, z, n) = ū(s, z) (6a)

v(s, z, n) = v̄(s, z)− n
∂ū(s, z)

∂s
(6b)

w(s, z, n) = w̄(s, z)− n
∂ū(s, z)

∂z
(6c)
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The strains associated with the small-displacement theory of elasticity are given by91

εs = ε̄s + nκ̄s (7a)

εz = ε̄z + nκ̄z (7b)

γsz = γ̄sz + nκ̄sz (7c)

where92

ε̄s =
∂v̄

∂s
; ε̄z =

∂w̄

∂z
(8a)

κ̄s = −∂2ū

∂z2
; κ̄z = −∂2ū

∂z2
; κ̄sz = −2

∂2ū

∂s∂z
(8b)

All the other strains are identically zero. In Eq.(8), ε̄s and κ̄s are assumed to be zero. ε̄z, κ̄z and κ̄sz are midsurface93

axial strain and biaxial curvature of the shell, respectively. The above shell strains can be converted to beam strain94

components by substituting Eqs.(1), (4) and (6) into Eq.(8) as95

ε̄z = ε◦z + xκy + yκx + ωκω (9a)

κ̄z = κy sin θ − κx cos θ − κωq (9b)

κ̄sz = 2χ̄sz = κsz (9c)

where ε◦z, κx, κy, κω and κsz are axial strain, biaxial curvatures in the x and y direction, warping curvature with96

respect to the shear center, and twisting curvature in the beam, respectively defined as97

ε◦z = W ′ (10a)

κx = −V ′′ (10b)

κy = −U ′′ (10c)

κω = −Φ′′ (10d)

κsz = 2Φ′ (10e)

The resulting strains can be obtained from Eqs.(7) and (9) as98

εz = ε◦z + (x + n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω (11a)

γsz = (n +
F

2t
)κsz (11b)
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III. VARIATIONAL FORMULATION99

The total potential energy of the system can be stated, in its buckled shape, as100

Π = U + V (12)

where U is the strain energy101

U =
1
2

∫

v

(σzεz + σszγsz)dv (13)

After substituting Eq.(11) into Eq.(13)102

U =
1
2

∫

v

{
σz

[
ε◦z + (x + n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω

]
+ σsz(n +

F

2t
)κsz

}
dv (14)

The variation of strain energy can be stated as103

δU =
∫ l

0

(Nzδεz + Myδκy + Mxδκx + Mωδκω + Mtδκsz)dz (15)

where Nz,Mx,My,Mω,Mt are axial force, bending moments in the x- and y-direction, warping moment (bimoment),104

and torsional moment with respect to the centroid, respectively, defined by integrating over the cross-sectional area A105

as106

Nz =
∫

A

σzdsdn (16a)

My =
∫

A

σz(x + n sin θ)dsdn (16b)

Mx =
∫

A

σz(y − n cos θ)dsdn (16c)

Mω =
∫

A

σz(ω − nq)dsdn (16d)

Mt =
∫

A

σsz(n +
F

2t
)dsdn (16e)

The potential of in-plane loads V due to transverse deflection107

V =
1
2

∫

v

σ0
z

[
(u′)2 + (v′)2

]
dv (17)

where σ0
z is the averaged constant in-plane edge axial stress, defined by σ0

z = P0/A. The variation of the potential of108

in-plane loads at the centroid is expressed by substituting the assumed displacement field into Eq.(17) as109

δV =
∫

v

P0

A

[
U ′δU ′ + V ′δV ′ + (q2 + r2 + 2rn + n2)Φ′δΦ′ + (Φ′δU ′ + U ′δΦ′)

[
n cos θ − (y − yp)

]

+ (Φ′δV ′ + V ′δΦ′)
[
n cos θ + (x− xp)

]
]
dv (18)
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The kinetic energy of the system is given by110

T =
1
2

∫

v

ρ(u̇2 + v̇2 + ẇ2)dv (19)

where ρ is a density.111

The variation of the kinetic energy is expressed by substituting the assumed displacement field into Eq.(19) as112

δT =
∫

v

ρ

{
U̇δU̇ + V̇ δV̇ + Ẇ δẆ + (q2 + r2 + 2rn + n2)Φ̇δΦ̇ + (Φ̇δU̇ + U̇δΦ̇)

[
n cos θ − (y − yp)

]

+ (Φ̇δV̇ + V̇ δΦ̇)
[
n cos θ + (x− xp)

]}
dv (20)

In order to derive the equations of motion, Hamilton’s principle is used113

δ

∫ t2

t1

(T −Π)dt = 0 (21)

Substituting Eqs.(15),(18) and (20) into Eq.(21), the following weak statement is obtained114

0 =
∫ t2

t1

∫ l

0

{
m0Ẇ δẆ +

[
m0U̇ + (mc −my + m0yp)Φ̇

]
δU̇ +

[
m0V̇ + (ms + mx −m0xp)Φ̇

]
δV̇

+
[
(mc −my + m0yp)U̇ + (ms + mx −m0xp)V̇ + (mp + m2 + 2mω)Φ̇

]
δΦ̇

−
[
P0

[
δU ′(U ′ + Φ′yp) + δV ′(V ′ − Φ′xp) + δΦ′(Φ′

Ip

A
+ U ′yp − V ′xp)

]

− NzδW
′ + MyδU ′′ + MxδV ′′ + MωδΦ′′ − 2MtδΦ

]}
dzdt (22)

The explicit expressions of inertia coefficients for composite box section are given in Ref.[21].115

IV. CONSTITUTIVE EQUATIONS116

The constitutive equations of a kth orthotropic lamina in the laminate co-ordinate system of section are given by117





σz

σsz





k

=




Q̄∗
11 Q̄∗

16

Q̄∗
16 Q̄∗

66




k 



εz

γsz





(23)

where Q̄∗
ij are transformed reduced stiffnesses. The transformed reduced stiffnesses can be calculated from the118

transformed stiffnesses based on the plane stress assumption and plane strain assumption. More detailed explanation119

can be found in Ref.[22]120
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The constitutive equations for bar forces and bar strains are obtained by using Eqs.(11), (16) and (23)121





Nz

My

Mx

Mω

Mt





=




E11 E12 E13 E14 E15

E22 E23 E24 E25

E33 E34 E35

E44 E45

sym. E55








ε◦z

κy

κx

κω

κsz





(24)

where Eij are stiffnesses of thin-walled composite beams and given in Ref.[19].122

V. GOVERNING EQUATIONS OF MOTION123

The governing equations of motion of the present study can be derived by integrating the derivatives of the varied124

quantities by parts and collecting the coefficients of of δW, δU, δV and δΦ125

N ′
z = m0Ẅ (25a)

M ′′
y + P0

(
U ′′ + Φ′′yp

)
= m0Ü + (mc −my + m0yp)Φ̈ (25b)

M ′′
x + P0

(
V ′′ − Φ′′xp

)
= m0V̈ + (ms + mx −m0xp)Φ̈ (25c)

M ′′
ω + 2M ′

t + P0

(
Φ′′

Ip

A
+ U ′′yp − V ′′xp

)
= (mc −my + m0yp)Ü

+ (ms + mx −m0xp)V̈ + (mp + m2 + 2mω)Φ̈ (25d)

The natural boundary conditions are of the form126

δW : Nz = P0 (26a)

δU : My = M0
y (26b)

δU ′ : M ′
y = M ′0

y (26c)

δV : Mx = M0
x (26d)

δV ′ : M ′
x = M ′0

x (26e)

δΦ : M ′
ω + 2Mt = M

′0
ω (26f)

δΦ′ : Mω = M0
ω (26g)

where P0,M
′0
y ,M0

y ,M
′0
x ,M0

x ,M
′0
ω and M0

ω are prescribed values.127

Eq.(25) is most general form for flexural-torsional vibration of thin-walled composite beams under a constant axial128

force, and the dependent variables, W , U , V and Φ are fully coupled. By substituting Eqs.(10) and (24) into Eq.(25),129
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the explicit form of governing equations of motion can be obtained. If all the coupling effects are neglected and130

the cross section is symmetrical with respect to both x- and the y-axes, Eq.(25) can be simplified to the uncoupled131

differential equations as132

(EA)comW ′′ = ρAẄ (27a)

−(EIy)comU iv + P0U
′′ = ρAÜ (27b)

−(EIx)comV iv + P0V
′′ = ρAV̈ (27c)

−(EIω)comΦiv +
[
(GJ)com + P0

Ip

A

]
Φ′′ = ρIpΦ̈ (27d)

From above equations, (EA)com represents axial rigidity, (EIx)com and (EIy)com represent flexural rigidities with133

respect to x- and y-axis, (EIω)com represents warping rigidity, and (GJ)com, represents torsional rigidity of thin-134

walled composite beams, respectively, written as135

(EA)com = E11 (28a)

(EIy)com = E22 (28b)

(EIx)com = E33 (28c)

(EIω)com = E44 (28d)

(GJ)com = 4E55 (28e)

It is well known that the three distinct load-frequency interaction curves corresponding to flexural buckling and136

natural frequencies in the x- and y- direction, and torsional buckling and natural frequency, respectively. They are137

given by the orthotropy solution for simply supported boundary conditions [23]138

ωxxn = ωxn

√
1− P0

Px
(29a)

ωyyn = ωyn

√
1− P0

Py
(29b)

ωθθn = ωθn

√
1− P0

Pθ
(29c)

where ωxn , ωyn and ωθn are corresponding flexural natural frequencies in the x- and y-direction and torsional natural139
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frequency [4].140

ωxn =
n2π2

l2

√
(EIy)com

ρA
(30a)

ωyn =
n2π2

l2

√
(EIx)com

ρA
(30b)

ωθn
=

nπ

l

√
1

ρIp

[n2π2

l2
(EIω)com + (GJ)com

]
(30c)

and Px, Py and Pθ are also corresponding flexural buckling loads in the x- and y-direction and torsional buckling141

load [5], respectively.142

Px =
π2(EIy)com

l2
(31a)

Py =
π2(EIx)com

l2
(31b)

Pθ =
A

Ip

[π2(EIω)com

l2
+ (GJ)com

]
(31c)

VI. FINITE ELEMENT FORMULATION143

The present theory for thin-walled composite beams described in the previous section was implemented via a144

displacement based finite element method. The generalized displacements are expressed over each element as a linear145

combination of the one-dimensional Lagrange interpolation function Ψj and Hermite-cubic interpolation function ψj146

associated with node j and the nodal values147

W =
n∑

j=1

wjΨj (32a)

U =
n∑

j=1

ujψj (32b)

V =
n∑

j=1

vjψj (32c)

Φ =
n∑

j=1

φjψj (32d)

Substituting these expressions into the weak statement in Eq.(18), the finite element model of a typical element148

can be expressed as the standard eigenvalue problem149

([K]− P0[G]− ω2[M ]){∆} = {0} (33)

where [K], [G] and [M ] are the element stiffness matrix, the element geometric stiffness matrix and the element150

mass matrix, respectively. The explicit forms of [K], [G] and [M ] are given in Refs.[19-21].151
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In Eq.(33), {∆} is the eigenvector of nodal displacements corresponding to an eigenvalue152

{∆} = {W U V Φ}T (34)

VII. NUMERICAL EXAMPLES153

A thin-walled composite box beam with length l = 8m is considered to investigate the effects of axial force, fiber154

orientation and modulus ratio on the natural frequencies, load-frequency interaction curves and the corresponding155

mode shapes. The geometry and stacking sequences of the box section are shown in Fig.2, and the following engineering156

constants are used157

E1/E2 = 25, G12/E2 = 0.6, ν12 = 0.25 (35)

For convenience, the following nondimensional axial force and natural frequency are used158

P =
Pl2

b3
1tE2

(36a)

ω =
ωl2

b1

√
ρ

E2
(36b)

The left and right webs are angle-ply laminates [θ/−θ] and [−θ/θ] and the flanges laminates are assumed to be159

unidirectional, (Fig.2a). All the coupling stiffnesses are zero, but E25 does not vanish due to unsymmetric stacking160

sequence of the webs. The lowest three natural frequencies with and without the effect of axial force are given in161

Table I. The critical buckling loads and the natural frequencies without axial force agree completely with those of162

previous papers [20,21], as expected. It can be shown from Table I that the change in the natural frequencies due163

to axial force is significant for all fiber angles. It is noticed that the natural frequencies increase as the axial force164

changes from compression (P = 0.5× Pcr) to tension (P = −0.5× Pcr) which reveals that the compressive force has165

a softening effect on the natural frequencies while the tension force has a stiffening effect. The typical normal mode166

shapes corresponding to the lowest three natural frequencies with fiber angle θ = 30◦ for the case of a compressive167

axial force (P = 0.5 × Pcr) are illustrated in Figs.3-5. The mode shapes for other cases of axial force (P = 0 and168

P = −0.5 × Pcr) are similar to the corresponding ones for the case of axial force (P = 0.5 × Pcr) and are not169

plotted, although there is a little difference between them. The lowest three interaction diagrams with the fiber170

angle θ = 0◦ and 30◦ obtained by finite element analysis and the orthotropy solution, which neglects the coupling171

effects of E25 from Eqs.(29a)-(29c) are plotted in Figs.6 and 7. For unidirectional fiber direction (Fig.6), the smallest172
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curve exactly corresponds to the first flexural in x-direction and the larger ones correspond to the first flexural in173

y-direction and the second flexural in x-direction of the orthotropy solution, respectively. However, as the fiber angle174

and axial compressive force increase, this order is changing. It can be explained partly by the interaction diagram175

between flexural buckling and natural frequency with the fiber angle θ = 30◦ in Fig.7. When the beam is subjected176

to small axial compressive force, the vibration mode 1 and 2 are the first flexural x- and y-direction (Figs.3 and 4).177

Thus, the othotropy solution and the finite element analysis are identical. It is from Fig.5 that the vibration mode 3178

exhibits double coupling (the second flexural mode in x-direction and torsional mode). Due to the small coupling179

stiffnesses E25, this mode becomes predominantly the second flexural x-direction mode, with a little contribution from180

torsion. Therefore, the results by the finite element analysis (w3−P3) and orthotropy solution (wx2 −Px2) are nearly181

identical in Fig.7. It is indicated that the simple orthotropy solution is sufficiently accurate for this stacking sequence.182

Characteristic of load-frequency interaction curves is that the value of the axial force for which the natural frequency183

vanishes constitutes the critical buckling load. Thus, for θ = 30◦, the first flexural buckling in minor axis occurs at184

P = 13.88. Therefore, the lowest branch vanishes when P is slightly over this value. As axial force increases, two185

interaction curves wy1 − Py1 and wx2 − Px2 intersect at P = 48.10, thus, after this value, vibration mode 2 and 3186

change each other. Finally, the second and third branch will also disappear when P is slightly over 54.53 and 73.16,187

respectively. Figs.6 and 7 explain the duality between flexural buckling and natural frequency. A comprehensive three188

dimensional interaction diagram of natural frequency, axial compression and fiber angle is plotted in Fig.8. Three189

groups of curves are observed. The smallest group is for the first flexural mode in x-direction and the larger ones are190

for the first flexural mode in y-direction and flexural-torsional coupled mode, respectively.191

The next example is the same as before except that in this case, the top flange and the left web laminates are [θ2],192

while the bottom flange and right web laminates are unidirectional, (Fig.2b). For this lay-up, the coupling stiffnesses193

E14, E15, E23, E25 and E35 become no more negligibly small. Major effects of compressive axial force on the natural194

frequencies are again seen in Table II. Three dimensional interaction diagram between flexural-torsional buckling and195

natural frequency with respect to the fiber angle change is shown in Fig.9. Similar phenomena as the previous example196

can be observed except that in this case all three groups are flexural-torsional coupled mode. The interaction diagram197

between flexural-torsional buckling and natural frequency by the finite element analysis and orthotropy solution with198

the fiber angle θ = 30◦ and 60◦ are displayed in in Figs.10 and 11. It can be remarked again that the natural199

frequencies decrease with the increase of compressive axial forces, and the decrease becomes more quickly when axial200

forces are close to flexural-torsional buckling loads. For θ = 60◦, at about P= 7.92, 31.28 and 47.11, respectively, the201
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natural frequencies become zero which implies that at these loads, flexural-torsional bucklings occur as a degenerate202

case of natural vibration at zero frequency. As the fiber angle and compressive axial force increases, the orthotropy203

solution and the finite element analysis solution show significantly discrepancy (Figs.10 and 11). The typical normal204

mode shapes corresponding to the lowest three natural frequencies with fiber angle θ = 60◦ for the case of compressive205

axial force (P = 0.5 × Pcr) are illustrated in Figs.12-14. Relative measures of flexural displacements and torsional206

rotation show that all the modes are triply coupled mode (flexural mode in the x- and y-directions and torsional207

mode). That is, the orthotropy solution is no longer valid for unsymmetrically laminated beams, and triply coupled208

flexural-torsional vibration should be considered even for a doubly symmetric cross-section.209

Finally, the effects of modulus ratio (E1/E2) on the first five natural frequencies of a cantilever thin-walled composite210

beam under a compressive axial force (P = 0.5×Pcr) are investigated. The stacking sequence of the flanges and webs211

are [0/90]s, (Fig.2c). For this lay-up, all the coupling stiffnesses vanish and thus, the three distinct vibration mode,212

flexural vibration in the x- and y-direction and torsional vibration are identified. It is observed from Fig.15 that the213

natural frequencies ωxx1 , ωyy1 , ωxx2 and ωyy2 increase with increasing orthotropy (E1/E2). However, torsional natural214

frequency is almost invariant and well above the other three types of natural frequencies, i.e. ωxx1 , ωyy1 and ωxx2 .215

It can be explained from Eqs.(29c) and (30c) that torsional frequency is dominated by torsional rigidity rather than216

warping rigidity. Moreover, effects of warping is negligibly small for box section. As ratio of (E1/E2) increases, the217

order of the second flexural mode in the y-direction, the torsional mode change each other.218

VIII. CONCLUDING REMARKS219

An analytical model is developed to study the flexural-torsional coupled vibration of thin-walled composite beams220

with arbitrary lay-ups under a constant axial force. This model is capable of predicting accurately the natural221

frequencies and load-frequency interaction curves as well as corresponding vibration mode shapes for various. To222

formulate the problem, a one-dimensional displacement-based finite element method is employed. All of the possible223

vibration modes including the flexural mode in the x- and y-direction and the torsional mode, and fully coupled224

flexural-torsional mode are included in the analysis. The present model is found to be appropriate and efficient in225

analyzing free vibration problem of thin-walled composite beams under a constant axial force.226
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CAPTIONS OF TABLES271

Table I: Effect of axial force on the first three natural frequencies with respect to the fiber angle change in the webs272

of a simply supported composite beam.273

Table II: Effect of axial force on the first three natural frequencies with respect to the fiber angle change in the left274

web and top flange of a simply supported composite beam.275
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CAPTIONS OF FIGURES276

Figure 1: Definition of coordinates in thin-walled closed sections.277

Figure 2: Geometry and stacking sequences of thin-walled composite box beam.278

Figure 3: Mode shapes of the flexural and torsional components for the first mode ω1 = 4.721 with the fiber angle279

30◦ in the webs of a simply supported composite beam under a compressive axial force P = 0.5Pcr.280

Figure 4: Mode shapes of the flexural and torsional components for the second mode ω2 = 14.750 with the fiber281

angle 30◦ in the webs of a simply supported composite beam under a compressive axial force P = 0.5Pcr.282

Figure 5: Mode shapes of the flexural and torsional components for the third mode ω3 = 24.965 with the fiber283

angle 30◦ in the webs of a simply supported composite beam under a compressive axial force P = 0.5Pcr.284

Figure 6: Effect of axial force on the first three natural frequencies with the fiber angle 0◦ in the webs of a simply285

supported composite beam.286

Figure 7: Effect of axial force on the first three natural frequencies with the fiber angle 30◦ in the webs of a simply287

supported composite beam.288

Figure 8: Three dimensional interaction diagram between between axial force and the first three natural frequencies289

with respect to the fiber angle change in the webs of a simply supported composite beam.290

Figure 9: Three dimensional interaction diagram between axial force and the first three natural frequencies with291

respect to the fiber angle change in the left web and top flange of a simply supported composite beam.292

Figure 10: Effect of axial force on the first three natural frequencies with the fiber angle 30◦ in the left web and293

top flange of a simply supported composite beam.294

Figure 11: Effect of axial force on the first three natural frequencies with the fiber angle 60◦ in the left web and295

top flange of a simply supported composite beam.296

Figure 12: Mode shapes of the flexural and torsional components for the first mode ω1 = 3.609 of a simply supported297

composite beam under a compressive axial force P = 0.5Pcr with the fiber angle 60◦ in the top flange and the left298

web.299

Figure 13: Mode shapes of the flexural and torsional components for the second mode ω2 = 11.892 with the fiber300

angle 60◦ in the top flange and the left web of a simply supported composite beam under a compressive axial force301

P = 0.5Pcr.302

Figure 14: Mode shapes of the flexural and torsional components for the third mode ω3 = 18.955 with the fiber303

angle 60◦ in the top flange and the left web of a simply supported composite beam under a compressive axial force304
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P = 0.5Pcr.305

Figure 15: Variation of the first five natural frequencies with respect to modulus ratio change of a cantilever306

composite beam under a compressive axial force P = 0.5Pcr.307
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TABLE I Effect of axial force on the first three natural frequencies with respect to the fiber angle change in the webs of a

simply supported composite beam.

Fiber Buckling P = 0.5× Pcr (compression) P=0 (no axial force) P = −0.5× Pcr (tension)

angle loads (Pcr) w1 w2 w3 w1 w2 w3 w1 w2 w3

0 36.009 7.696 16.704 40.725 10.884 18.392 43.536 13.330 19.937 46.177

15 29.245 6.936 16.142 36.668 9.809 17.569 39.204 12.013 18.889 41.586

30 13.549 4.721 14.750 24.965 6.677 15.487 26.691 8.177 16.191 28.312

45 7.858 3.595 14.211 19.021 5.084 14.659 20.334 6.227 15.094 21.568

60 6.670 3.312 14.097 17.527 4.685 14.481 18.738 5.737 14.855 19.874

75 6.419 3.249 14.072 17.194 4.595 14.442 18.381 5.628 14.803 19.496

90 6.375 3.238 14.068 17.136 4.580 14.436 18.319 5.609 14.795 19.430
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TABLE II Effect of axial force on the first three natural frequencies with respect to the fiber angle change in the left web and

top flange of a simply supported composite beam.

Fiber Buckling P = 0.5× Pcr (compression) P=0 (no axial force) P = −0.5× Pcr (tension)

angle loads (Pcr) w1 w2 w3 w1 w2 w3 w1 w2 w3

0 36.009 7.696 16.704 40.725 10.884 18.392 43.536 13.330 19.937 46.177

15 30.211 7.054 15.678 32.717 9.976 17.191 35.542 12.218 18.582 38.154

30 17.016 5.295 13.099 24.088 7.488 14.129 26.285 9.170 15.089 28.311

45 9.899 4.036 12.093 20.324 5.707 12.749 21.864 6.990 13.373 23.302

60 7.918 3.609 11.892 18.955 5.104 12.427 20.282 6.251 12.941 21.528

75 7.454 3.502 11.846 18.517 4.952 12.353 19.797 6.065 12.839 20.999

90 7.370 3.482 11.837 18.424 4.924 12.338 19.696 6.031 12.820 20.891
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FIG. 1 Definition of coordinates in thin-walled closed sections
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FIG. 2 Geometry and stacking sequences of thin-walled composite box beam.
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FIG. 3 Mode shapes of the flexural and torsional components for the first mode ω1 = 4.721 with the fiber angle 30◦ in the

webs of a simply supported composite beam under a compressive axial force P = 0.5Pcr.
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FIG. 4 Mode shapes of the flexural and torsional components for the second mode ω2 = 14.750 with the fiber angle 30◦ in the

webs of a simply supported composite beam under a compressive axial force P = 0.5Pcr.
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FIG. 5 Mode shapes of the flexural and torsional components for the third mode ω3 = 24.965 with the fiber angle 30◦ in the

webs of a simply supported composite beam under a compressive axial force P = 0.5Pcr.
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FIG. 6 Effect of axial force on the first three natural frequencies with the fiber angle 0◦ in the webs of a simply supported

composite beam.
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FIG. 7 Effect of axial force on the first three natural frequencies with the fiber angle 30◦ in the webs of a simply supported

composite beam.
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FIG. 8 Three dimensional interaction diagram between between axial force and the first three natural frequencies with respect

to the fiber angle change in the webs of a simply supported composite beam.
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FIG. 9 Three dimensional interaction diagram between axial force and the first three natural frequencies with respect to the

fiber angle change in the left web and top flange of a simply supported composite beam.
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FIG. 10 Effect of axial force on the first three natural frequencies with the fiber angle 30◦ in the left web and top flange of a

simply supported composite beam.
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FIG. 11 Effect of axial force on the first three natural frequencies with the fiber angle 60◦ in the left web and top flange of a

simply supported composite beam.
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FIG. 12 Mode shapes of the flexural and torsional components for the first mode ω1 = 3.609 with the fiber angle 60◦ in the

top flange and the left web of a simply supported composite beam under a compressive axial force P = 0.5Pcr.
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FIG. 13 Mode shapes of the flexural and torsional components for the second mode ω2 = 11.892 with the fiber angle 60◦ in

the top flange and the left web of a simply supported composite beam under a compressive axial force P = 0.5Pcr.
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FIG. 14 Mode shapes of the flexural and torsional components for the third mode ω3 = 18.955 with the fiber angle 60◦ in the

top flange and the left web of a simply supported composite beam under a compressive axial force P = 0.5Pcr.
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FIG. 15 Variation of the first five natural frequencies natural frequencies with respect to modulus ratio change of a cantilever

composite beam under a compressive axial force P = 0.5Pcr.


