A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory

Huu-Tai Thai a,*, Thuc P. Vo b,c

a Department of Civil and Environmental Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea

b School of Mechanical, Aeronautical and Electrical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW, UK.

c Advanced Composite Training and Development Centre, Glyndwr University, Unit 5, Hawarden Industrial Park, Deeside, Flintshire CH5 3US, UK.

Abstract

A size-dependent model for bending and free vibration of functionally graded plate is developed based on the modified couple stress theory and sinusoidal shear deformation theory. In the former theory, the small scale effect is taken into consideration, while the effect of shear deformation is accounted for in the latter theory. The equations of motion and boundary conditions are derived from Hamilton’s principle. Analytical solutions for the bending and vibration problems of simply supported plates are obtained. Numerical examples are presented to illustrate the influences of small scale on the responses of functionally graded microplates. The results indicate that the inclusion of small scale effects results in an increase in plate stiffness, and consequently, leads to a reduction of deflection and an increase in frequency. Such small scale effects are significant when the plate thickness is small, but become negligible with increasing plate thickness.

Keywords: Functionally graded plate; modified couple stress theory; sinusoidal shear deformation theory; bending; vibration

* Corresponding author. Tel.: + 82 2 2220 4154.
E-mail address: thaihuutai@hanyang.ac.kr (H.T. Thai), t.vo@glyndwr.ac.uk (T.P. Vo).
1. Introduction

Functionally graded materials (FGMs) are a class of composites that have continuous variation of material properties from one surface to another and thus eliminate the stress concentration found in laminated composites. Recently, the application of FGMs has broadly been spread in micro- and nano-scale devices and systems such as thin films [1], atomic force microscopes [2], micro- and nano-electro-mechanical systems (MEMS and NEMS) [3]. In such applications, size effects or small scale effects are experimentally observed [4-6]. Conventional plate models based on classical continuum theories do not account for such size effects due to the lack of a material length scale parameter. Thus, needs exist for the development of size-dependent plate models which account for these size effects.

In general, size-dependent plate models can be developed based on size-dependent continuum theories such as classical couple stress theory [7-9], nonlocal elasticity theory [10], and strain gradient theory [11]. In view of the difficulties in determining the material length scale parameters, the modified couple stress theory first proposed by Yang et al. [12] takes an advantage over the aforementioned size-dependent continuum theories due to involving only one material length scale parameter. The modified couple stress theory proposed by Yang et al. [12] results from the classical couple stress theory [7-9]. The two main advantages of the modified couple stress theory over the classical one are the inclusion of asymmetric couple stress tensor and the involvement of only one material length scale parameter. Based on the modified couple stress theory, several size-dependent plate models have been developed. For example, Park and Gao [13] developed Euler-Bernoulli beam model for bending analysis of microbeams. Akgoz and Civalek [14] developed Euler-Bernoulli beam models for buckling analysis of axially
loaded microbeams. Ke and Wang [15] developed Timoshenko beam model to study the size effect on dynamic stability of functionally graded (FG) microbeams. Tsiatas [16] developed a size-dependent model for static analysis of microplates using Kirchhoff plate theory (KPT). This model was employed by Yin et al. [17] and Akgoz and Civalek [18] to study the vibration of microplates and nanoplates, respectively. Due to ignoring the shear deformation effect, the KPT provides accurate results for thin homogeneous plates only. For moderately thick FG plates, it underestimates the deflection and overestimates the frequency. Ma et al. [19] and Ke at al. [20] overcome the deficiency of Tsiatas’s model by using the first-order shear deformation theory (FSDT) to account for the shear deformation effect. Although the FSDT gives sufficiently accurate result for moderately thick FG plates, it is not convenient to use due to requiring a shear correction factor which is hard to find since it depends on many parameters. To avoid the use of the shear correction factor, Reddy and Kim [21] adopted a higher-order shear deformation theory to develop a size-dependent model for FG microplates.

In general, higher-order shear deformation theories are can be developed based on the higher-order variations of in-plane displacements through the thickness, notable among them are the third-order shear deformation theory of Reddy [22], the sinusoidal shear deformation theory of Touratier [23], the trigonometric shear deformation theory of Ferreira et al. [24], the hyperbolic shear deformation theory of Soldatos [25], and the exponential shear deformation theory of Karama et al. [26]. Among them, the sinusoidal shear deformation theory [23] is widely used because of accuracy and efficiency. Thus, it is adopted herein to develop a size-dependent model for static and free vibration of FG microplates. The aim of this paper is to reformulate the sinusoidal shear deformation theory [23] to account for the small scale effect. The material properties of FG plates are
assumed to vary through the thickness according to the power law distribution of the volume fraction of the constituents. The equations of motion and boundary conditions are derived using the modified couple stress theory and Hamilton’s principle. Analytical solutions for the bending and vibration problems are obtained for a simply supported plate. Numerical examples are presented to illustrate the influences of small scale on the responses of FG microplates.

2. Theoretical formulation

2.1. Modified couple stress theory

Unlike classical couple stress theory, the modified couple stress theory includes a symmetric couple stress tensor and involves only one length scale parameter. According to the modified couple stress theory, the virtual strain energy can be written as [12]

\[\delta U = \int_V \sigma_{ij} \delta \varepsilon_{ij} dV + \int_V m_{ij} \delta \chi_{ij} dV \] \hspace{1cm} (1)

where summation on repeated indices is implied; \(\sigma_{ij} \) are the components of the stress tensor; \(\varepsilon_{ij} \) are the components of the strain tensor; \(m_{ij} \) are the components of the deviatoric part of the symmetric couple stress tensor; and \(\chi_{ij} \) are the components of the symmetric curvature tensor defined by

\[\chi_{ij} = \frac{1}{2} \left(\frac{\partial \theta_j}{\partial x_i} + \frac{\partial \theta_i}{\partial x_j} \right), \quad i, j = 1, 2, 3 \] \hspace{1cm} (2)

where \(\theta_i \) are the components of the rotation vector related to the displacement field \((u_1, u_2, u_3)\) as

\[\theta_i = \frac{1}{2} \left(\frac{\partial u_3}{\partial x_i} - \frac{\partial u_2}{\partial x_3} \right) \] \hspace{1cm} (3a)
\[\theta_y = \theta_2 = \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_1}{\partial x_1} \right) \]
(3b)

\[\theta_z = \theta_3 = \frac{1}{2} \left(\frac{\partial u_1}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right) \]
(3c)

2.2. Kinematics

The sinusoidal theory of Touratier [23] is based on the assumption that the transverse shear stress vanishes on the top and bottom surfaces of the plate and is nonzero elsewhere. Thus there is no need to use shear correction factors as in the case of FSDT. According to Touratier [23], the displacement field of sinusoidal theory is given as

\[
\begin{align*}
 u_1(x, y, z, t) &= u(x, y, t) - z \frac{\partial w}{\partial x} + h \frac{\pi z}{h} \sin \left(\frac{\pi z}{h} \right) \varphi_x \\
 u_2(x, y, z, t) &= v(x, y, t) - z \frac{\partial w}{\partial y} + h \frac{\pi z}{h} \sin \left(\frac{\pi z}{h} \right) \varphi_y \\
 u_3(x, y, z, t) &= w(x, y, t)
\end{align*}
\]
(4)

where \((u, v, w)\) are the displacements along the \((x, y, z)\) coordinate directions of a point on the midplane of the plate; \(\varphi_x\) and \(\varphi_y\) are the rotation of the middle surface in the \(x\) and \(y\) directions, respectively; and \(h\) is the plate thickness. The nonzero linear strains of the sinusoidal theory are

\[
\begin{align*}
 \varepsilon_{xx} &= \frac{\partial u}{\partial x} - z \frac{\partial^2 w}{\partial x^2} + f \frac{\partial \varphi_x}{\partial x} \quad (5a) \\
 \varepsilon_{yy} &= \frac{\partial u}{\partial y} - z \frac{\partial^2 w}{\partial y^2} + f \frac{\partial \varphi_y}{\partial y} \quad (5b) \\
 \gamma_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} - 2z \frac{\partial^2 w}{\partial x \partial y} + f \left(\frac{\partial \varphi_x}{\partial y} + \frac{\partial \varphi_y}{\partial x} \right) \quad (5c) \\
 \gamma_{xz} &= g \varphi_x \quad (5d) \\
 \gamma_{yz} &= g \varphi_y \quad (5e)
\end{align*}
\]
where \(f = (h/\pi) \sin(\pi z/h) \), \(g = f' = \cos(\pi z/h) \). It can be observed from Eqs. (5d) and (5e) that the transverse shear strains \((\gamma_{xz}, \gamma_{yz}) \) are zero at the top \((z = h/2)\) and bottom \((z = -h/2)\) surfaces of the plate. A shear correction factor is, therefore, not required. Substituting the displacement field \((u_1, u_2, u_3)\) from Eq. (4) into Eq (3), the components of the rotation vector are obtained as

\[
\theta_x = \frac{\partial w}{\partial y} - \frac{g}{2} \frac{\partial \phi_y}{\partial y} \quad \text{(6a)}
\]

\[
\theta_y = -\frac{\partial w}{\partial x} + \frac{g}{2} \frac{\partial \phi_x}{\partial x} \quad \text{(6b)}
\]

\[
\theta_z = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} \right) + \frac{f}{2} \left(\frac{\partial \phi_x}{\partial x} - \frac{\partial \phi_y}{\partial y} \right) \quad \text{(6c)}
\]

Substituting Eq. (6) into Eq (2), the components of the curvature tensor take the form

\[
\chi_{xx} = \frac{\partial^2 w}{\partial x \partial y} - \frac{g}{2} \frac{\partial \phi_y}{\partial x} \quad \text{(7a)}
\]

\[
\chi_{yy} = -\frac{\partial^2 w}{\partial x \partial y} + \frac{g}{2} \frac{\partial \phi_x}{\partial y} \quad \text{(7b)}
\]

\[
\chi_{zz} = \frac{g}{2} \left(\frac{\partial \phi_x}{\partial x} - \frac{\partial \phi_y}{\partial y} \right) \quad \text{(7c)}
\]

\[
\chi_{xy} = \frac{1}{2} \left(\frac{\partial^2 w}{\partial y^2} - \frac{\partial^2 w}{\partial x^2} \right) + \frac{g}{4} \left(\frac{\partial \phi_x}{\partial x} - \frac{\partial \phi_y}{\partial y} \right) \quad \text{(7d)}
\]

\[
\chi_{xz} = \frac{1}{4} \left(\frac{\partial^3 v}{\partial x^2 \partial y} - \frac{\partial^3 u}{\partial x \partial y^2} \right) + f \left(\frac{\partial^3 \phi_x}{\partial x^2 \partial y} - \frac{\partial^3 \phi_y}{\partial x \partial y^2} \right) + cf \phi_y \quad \text{(7e)}
\]

\[
\chi_{yz} = \frac{1}{4} \left(\frac{\partial^3 v}{\partial x \partial y^2} - \frac{\partial^3 u}{\partial x^2 \partial y} \right) + f \left(\frac{\partial^3 \phi_x}{\partial x \partial y^2} - \frac{\partial^3 \phi_y}{\partial x^2 \partial y} \right) - cf \phi_x \quad \text{(7f)}
\]

where \(c = (\pi/h)^2 \).
2.3. Equations of motion

Hamilton’s principle is used herein to derive the equations of motion. The principle can be stated in an analytical form as [27]

$$0 = \int_0^L (\delta U + \delta W - \delta K) \, dt$$

(8)

where δU is the virtual strain energy, δW is the virtual work done by external forces, and δK is the virtual kinetic energy. The virtual strain energy is given by (see Eq. (1))

$$\delta U = \int_A \left[\frac{1}{2} \left(\sigma_{xx} \delta e_{xx} + \sigma_{yy} \delta e_{yy} + \sigma_{xy} \delta e_{xy} + \sigma_{xz} \delta e_{xz} + \sigma_{yz} \delta e_{yz} \right) \right] dA dZ$$

$$+ \int_A \left[\frac{1}{2} \left(m_{xx} \delta \chi_{xx} + m_{yy} \delta \chi_{yy} + m_{xy} \delta \chi_{xy} + 2m_{xy} \delta \chi_{xy} + 2m_{xz} \delta \chi_{xz} + 2m_{yz} \delta \chi_{yz} \right) \right] dA dZ$$

$$= \int_A \left[N_{xx} \frac{\partial \delta u}{\partial x} - M_{xx} \frac{\partial^2 \delta w}{\partial x^2} + P_{xx} \frac{\partial \delta \phi_x}{\partial x} + N_{yy} \frac{\partial \delta v}{\partial y} - M_{yy} \frac{\partial^2 \delta w}{\partial y^2} + P_{yy} \frac{\partial \delta \phi_y}{\partial y} \right] dxdy$$

$$+ N_{xy} \left(\frac{\partial \delta u}{\partial y} + \frac{\partial \delta v}{\partial x} \right) - 2M_{xy} \frac{\partial^2 \delta w}{\partial x \partial y} + P_{xy} \left(\frac{\partial \delta \phi_x}{\partial y} + \frac{\partial \delta \phi_y}{\partial x} \right) + Q_{xz} \delta \phi_x + Q_{yz} \delta \phi_y \right] dxdy$$

$$+ \int_A \left[(R_{xx} - R_{yy}) \frac{\partial^2 \delta w}{\partial x \partial y} + S_{xx} - S_{yy} \frac{\partial \delta \phi_z}{\partial x} + S_{xy} - S_{yx} \frac{\partial \delta \phi_z}{\partial y} + c \left(T_x \delta \phi_x - T_y \delta \phi_y \right) \right] dxdy$$

$$+ R_{xy} \left(\frac{\partial^2 \delta w}{\partial y^2} - \frac{\partial^2 \delta w}{\partial x^2} \right) + S_{xz} \left(\frac{\partial \delta \phi_x}{\partial x} - \frac{\partial \delta \phi_z}{\partial y} \right) + R_{yz} \left(\frac{\partial^2 \delta v}{\partial x^2} - \frac{\partial^2 \delta u}{\partial x^2} \right) + T_{xz} \left(\frac{\partial^2 \delta \phi_x}{\partial x \partial y} \right) + T_{yz} \left(\frac{\partial^2 \delta \phi_y}{\partial x \partial y} \right) \right] dxdy$$

(9)

where N, M, P, Q, R, S, and T are the stress resultants defined by

$$\left(N_i, M_i, P, Q_i \right) = \int_{-h/2}^{h/2} (1, z, f, g) \sigma_i \, dz$$

(10a)

$$\left(R_i, S_i, T_i \right) = \int_{-h/2}^{h/2} (1, g, f) m_i \, dz$$

(10b)

The virtual work done by external forces consists of three parts: (1) virtual work done by the body forces in $V = \Omega \times (-h/2, h/2)$, (2) virtual work done by surface tractions acting on the top and bottom surfaces Ω, and (3) virtual work done by surface tractions.
acting on the lateral surface \(S = \Gamma \times (\pm h/2, h/2) \), where \(\Omega \) denotes the middle surface of the plate and \(\Gamma \) is the boundary of the middle surface. Let \((f_x, f_y, f_z)\) be the body forces, \((c_x, c_y, c_z)\) be the body couples, \((q_x, q_y, q_z)\) be the surface forces acting on \(\Omega \), and \((t_x, t_y, t_z)\) be the surface forces acting on \(S \). Then, the virtual work done by external forces is [21]

\[
\delta W = \left[\int_{\Omega} \left(f_x \delta u_x + f_y \delta u_y + f_z \delta u_z + c_x \delta \theta_x + c_y \delta \theta_y + c_z \delta \theta_z \right) dxdy + \int_{\Gamma} \left(q_x \delta u_x + q_y \delta u_y + q_z \delta u_z \right) dxdy + \int_{\Gamma} \left(t_x \delta u_x + t_y \delta u_y + t_z \delta u_z \right) d\Gamma \right]
\]

(11)

The virtual kinetic energy is expressed as

\[
\delta K = \left[\int_{\Omega} \left(u \frac{\partial \delta \phi_x}{\partial x} + v \frac{\partial \delta \phi_y}{\partial y} \right) \rho(z) dAdz \right.

- \left. \int_{\Gamma} \left(\phi_x \delta \phi_x + \phi_y \delta \phi_y \right) \right] dxdy
\]

(12)

where dot-superscript convention indicates the differentiation with respect to the time variable \(t \); \(\rho(z) \) is the mass density; and \((I_0, I_1, I_2, J_2, K_2)\) are mass inertias defined by

\[
(I_0, I_1, I_2, J_2, K_2) = \int_{-h/2}^{h/2} (1, z, f_z, z^2, f_z^2) \rho(z) dz
\]

(13)

Substituting the expressions for \(\delta U \), \(\delta V \), and \(\delta K \) from Eqs. (9), (11), and (12) into Eq. (8) and integrating by parts, and collecting the coefficients of \((\delta u, \delta v, \delta w, \delta \phi_x, \delta \phi_y)\), the following equations of motion are obtained

\[
\delta u : \frac{\partial^2 N_{xx}}{\partial x^2} + \frac{\partial^2 N_{xs}}{\partial x \partial s} + \frac{1}{2} \left(\frac{\partial^2 R_{xx}}{\partial x \partial y} + \frac{\partial^2 R_{xs}}{\partial x \partial s} \right) + f_x + q_x + \frac{1}{2} \frac{\partial c_x}{\partial y} = I_0 \ddot{u} - I_1 \frac{\partial \dot{w}}{\partial x} + J_2 \phi_x
\]

(14a)
\[\delta v: \frac{\partial N_{sv}}{\partial x} + \frac{\partial N_{sv}}{\partial y} - \frac{1}{2} \left(\frac{\partial^2 R_{sv}}{\partial x^2} + \frac{\partial^2 R_{sv}}{\partial x \partial y} \right) + f_y + q_y - \frac{1}{2} \frac{\partial c_z}{\partial x} = I_o \ddot{v} - I_i \frac{\partial \ddot{v}}{\partial y} + J_i \phi_y \quad (14b) \]

\[\delta w: \frac{\partial^2 M_{sv}}{\partial x^2} + 2 \frac{\partial^2 M_{sv}}{\partial x \partial y} + \frac{\partial^2 M_{sv}}{\partial y^2} + \frac{\partial^2 R_{sv}}{\partial x^2} - \frac{\partial^2 R_{sv}}{\partial x \partial y} + \frac{\partial^2 (R_{sv} - R_{sv})}{\partial x \partial y} + f_z + q_z + \frac{\partial c_i}{\partial x} = I_o \ddot{w} - I_i \frac{\partial \ddot{w}}{\partial y} + I_1 \left(\frac{\partial \ddot{u}}{\partial x} + \frac{\partial \ddot{v}}{\partial y} \right) + J_2 \left(\frac{\partial \phi_x}{\partial x} + \frac{\partial \phi_y}{\partial y} \right) \quad (14c) \]

\[\delta \phi_x: \frac{\partial P_{sx}}{\partial x} + \frac{\partial P_{sx}}{\partial y} - Q_{sx} - \frac{1}{2} \left(\frac{\partial S_{sx}}{\partial x} + \frac{\partial S_{sy}}{\partial y} - \frac{\partial S_{sx}}{\partial x} + \frac{\partial S_{sy}}{\partial y} + \frac{\partial^2 T_{sx}}{\partial x^2} + \frac{\partial^2 T_{sx}}{\partial x \partial y} + c_{sx} \right) \frac{h}{\pi} = J_1 \ddot{u} - J_2 \frac{\partial \ddot{w}}{\partial x} + K_x \phi_x \quad (14d) \]

\[\delta \phi_y: \frac{\partial P_{sy}}{\partial x} + \frac{\partial P_{sy}}{\partial y} - Q_{sy} - \frac{1}{2} \left(\frac{\partial S_{sx}}{\partial x} + \frac{\partial S_{sy}}{\partial y} + \frac{\partial S_{sx}}{\partial x} + \frac{\partial S_{sy}}{\partial y} + \frac{\partial^2 T_{sy}}{\partial x^2} + \frac{\partial^2 T_{sy}}{\partial x \partial y} + c_{sy} \right) \frac{h}{\pi} = J_1 \ddot{v} - J_2 \frac{\partial \ddot{w}}{\partial y} + K_y \phi_y \quad (14e) \]

where \(\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \) is the Laplacian operator in two-dimensional Cartesian coordinate system. The boundary conditions involve specifying one element of each of the following five pairs:

\[u \text{ or } N_u \equiv N_{sx} n_x + N_{sy} n_y + \frac{1}{2} \left(\frac{\partial R_{sx}}{\partial x} + \frac{\partial R_{sx}}{\partial y} + c_z \right) n_y \quad (15a) \]

\[v \text{ or } N_v \equiv N_{sx} n_x + N_{sy} n_y - \frac{1}{2} \left(\frac{\partial R_{sx}}{\partial x} + \frac{\partial R_{sx}}{\partial y} + c_z \right) n_x \quad (15b) \]

\[w \text{ or } V \equiv \left(\frac{\partial M_{sx}}{\partial x} + \frac{\partial M_{sy}}{\partial y} \right) n_x + \left(\frac{\partial M_{sx}}{\partial x} + \frac{\partial M_{sy}}{\partial y} \right) n_y + \left(\frac{\partial R_{sx}}{\partial x} + \frac{\partial R_{sx}}{\partial y} \right) n_x - \left(\frac{\partial R_{sx}}{\partial x} + \frac{\partial R_{sx}}{\partial y} \right) n_y + \left(I_1 \ddot{u} + J_2 \ddot{v} - I_2 \frac{\partial \ddot{w}}{\partial x} \right) n_x + \left(I_1 \ddot{v} + J_2 \ddot{u} - I_2 \frac{\partial \ddot{w}}{\partial y} \right) n_y \quad (15c) \]

\[\phi_x \text{ or } M_{s\phi_x} \equiv P_{sx} n_x + P_{sy} n_y + \frac{1}{2} \left(\frac{\partial T_{sx}}{\partial x} + \frac{\partial T_{sx}}{\partial y} \right) n_y + \frac{1}{2} \left(S_{sx} n_x + S_{sy} n_y - S_{sx} n_y \right) \quad (15d) \]
\[\varphi_y \text{ or } M_{qy} = P_{x}n_{x} + P_{y}n_{y} - \frac{1}{2} \left(\frac{\partial T_{xy}}{\partial x} + \frac{\partial T_{yx}}{\partial y} \right) n_{x} - \frac{1}{2} \left(S_{yy}n_{y} + S_{zz}n_{z} - S_{yz}n_{z} \right) \]

(15e)

where \(n_{x} \) and \(n_{y} \) denote the direction cosines of the unit normal to the boundary of the middle plane.

2.4. Constitutive relations

Consider a FG plate composed of ceramic and metal. The material properties of FG plates such as Young’s modulus \(E \) and mass density \(\rho \) are assumed to vary continuously through the thickness by a power law as [28]

\[
E(z) = E_m + (E_c - E_m) \left(\frac{1}{2} + \frac{z}{h} \right)^p
\]

\[
\rho(z) = \rho_m + (\rho_c - \rho_m) \left(\frac{1}{2} + \frac{z}{h} \right)^p
\]

(16)

where the subscripts \(m \) and \(c \) represent the metallic and ceramic constituents, respectively; and \(p \) is the power law index. The value of \(p \) equal to zero represents a fully ceramic plate, whereas infinite \(p \) indicates a fully metallic plate.

The linear elastic constitutive relations are

\[
\begin{bmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{xy} \\
\sigma_{yz} \\
\sigma_{xz}
\end{bmatrix} = \begin{bmatrix}
1 & \nu & 0 & 0 & 0 \\
\nu & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{1-\nu}{2} & 0 & 0 \\
0 & 0 & 0 & \frac{1-\nu}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{1-\nu}{2}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy} \\
\gamma_{yz} \\
\gamma_{xz}
\end{bmatrix}
\]

(17a)

\[
m_{ij} = \frac{E(z)}{1+\nu} \ell^2 \chi_{ij}
\]

(17b)

where \(\nu \) is the Poisson’s ratio assumed to be constant, \(\ell \) is the material length scale parameter which is regarded as a material property measuring the effect of couple stress [29]. This parameter can be determined from torsion tests of slim cylinders [4] or bending tests of thin beams [11]. Substituting Eq. (17) into Eq. (10), the stress resultants
can be expressed in terms of generalized displacements \((u, v, w, \phi_x, \phi_y)\) as

\[
N_{xx} = A \left(\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} \right) - B \left(\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2} \right) + C \left(\frac{\partial \phi_x}{\partial x} + v \frac{\partial \phi_y}{\partial y} \right) \quad (18a)
\]

\[
N_{xy} = A \left(v \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - B \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right) + C \left(v \frac{\partial \phi_x}{\partial x} + \frac{\partial \phi_y}{\partial y} \right) \quad (18b)
\]

\[
N_{yy} = A \frac{1-v}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - B \left(1-v \right) \frac{\partial^2 w}{\partial x \partial y} + C \frac{1-v}{2} \left(\frac{\partial \phi_x}{\partial y} + \frac{\partial \phi_y}{\partial x} \right) \quad (18c)
\]

\[
M_{xx} = B \left(\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} \right) - D \left(\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2} \right) + F \left(\frac{\partial \phi_x}{\partial x} + \frac{\partial \phi_y}{\partial y} \right) \quad (18d)
\]

\[
M_{xy} = B \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - D \left(1-v \right) \frac{\partial^2 w}{\partial x \partial y} + F \frac{1-v}{2} \left(\frac{\partial \phi_x}{\partial y} + \frac{\partial \phi_y}{\partial x} \right) \quad (18e)
\]

\[
P_{xx} = C \left(\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} \right) - F \left(\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2} \right) + H \left(\frac{\partial \phi_x}{\partial x} + v \frac{\partial \phi_y}{\partial y} \right) \quad (18g)
\]

\[
P_{xy} = C \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - F \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right) + H \left(\frac{\partial \phi_x}{\partial x} + \frac{\partial \phi_y}{\partial y} \right) \quad (18h)
\]

\[
P_{yy} = C \frac{1-v}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) - F \left(1-v \right) \frac{\partial^2 w}{\partial x \partial y} + H \frac{1-v}{2} \left(\frac{\partial \phi_x}{\partial y} + \frac{\partial \phi_y}{\partial x} \right) \quad (18i)
\]

\[
Q_{xx} = A^t \phi_x, \quad Q_{yx} = A^t \phi_y \quad (18j)
\]

\[
R_{xx} = 2A^t_n \frac{\partial^2 w}{\partial x \partial y} - B^t_n \frac{\partial \phi_x}{\partial x} \quad (18k)
\]

\[
R_{yx} = -2A^t_n \frac{\partial^2 w}{\partial x \partial y} + B^t_n \frac{\partial \phi_y}{\partial y} \quad (18l)
\]

\[
R_{xy} = A^t_n \left(\frac{\partial^2 w}{\partial y^2} - \frac{\partial^2 w}{\partial x^2} \right) + \frac{B^t_n}{2} \left(\frac{\partial \phi_x}{\partial x} - \frac{\partial \phi_y}{\partial y} \right) \quad (18m)
\]
\[
R_{xx} = \frac{A_n}{2} \left(\frac{\partial^2 v}{\partial x^2} - \frac{\partial^2 u}{\partial x^2} \right) + \frac{C_n}{2} \left(\frac{\partial^2 \varphi_x}{\partial x^2} - \frac{\partial^2 \varphi_x}{\partial x^2} + c\varphi_x \right)
\] (18n)

\[
R_{yy} = \frac{A_n}{2} \left(\frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} \right) + \frac{C_n}{2} \left(\frac{\partial^2 \varphi_y}{\partial y^2} - \frac{\partial^2 \varphi_y}{\partial y^2} - c\varphi_x \right)
\] (18o)

\[
S_{x x} = 2B_n \frac{\partial^2 w}{\partial x \partial y} - D_n \frac{\partial \varphi_x}{\partial x}
\] (18p)

\[
S_{y y} = -2B_n \frac{\partial^2 w}{\partial x \partial y} + D_n \frac{\partial \varphi_x}{\partial y}
\] (18q)

\[
S_{x y} = B_n \left(\frac{\partial^2 w}{\partial y^2} - \frac{\partial^2 w}{\partial x^2} \right) + \frac{D_n}{2} \left(\frac{\partial \varphi_y}{\partial x} - \frac{\partial \varphi_x}{\partial y} \right)
\] (18s)

\[
T_{x x} = \frac{C_n}{2} \left(\frac{\partial^2 v}{\partial x^2} - \frac{\partial^2 u}{\partial x^2} \right) + \frac{H_n}{2} \left(\frac{\partial^2 \varphi_x}{\partial x^2} - \frac{\partial^2 \varphi_x}{\partial x^2} + c\varphi_x \right)
\] (18t)

\[
T_{y y} = \frac{C_n}{2} \left(\frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial y^2} \right) + \frac{H_n}{2} \left(\frac{\partial^2 \varphi_y}{\partial y^2} - \frac{\partial^2 \varphi_y}{\partial y^2} - c\varphi_x \right)
\] (18u)

where

\[
(A, B, C, D, F, H) = \int_{-h/2}^{h/2} (1, z, f, z^2, zf, f^2) E(z) \frac{dz}{1-v^2}, \quad A' = \int_{-h/2}^{h/2} g^2 E(z) \frac{dz}{2(1+v)}
\] (19a)

\[
(A_n, B_n, C_n, D_n, H_n) = \int_{-h/2}^{h/2} (1, g, f, g^2, f^2) \frac{dz}{2(1+v)}
\] (19b)

2.5. Equations of motion in terms of displacements

Substituting Eq. (18) into Eq. (14), the equations of motion can be expressed in terms of generalized displacements \((u, v, w, \varphi_x, \varphi_y)\) as
Clearly, when size effect is neglected (\(\ell = 0 \)), the present model recovers the classical sinusoidal theory [30].
2.6. Analytical solutions

Consider a simply supported rectangular plate under a transverse load. Based on the Navier approach, the solutions are assumed as

\[u(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} U_{mn} \cos \alpha x \sin \beta y e^{i\omega t} \]

\[v(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} V_{mn} \sin \alpha x \cos \beta y e^{i\omega t} \]

\[w(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} W_{mn} \sin \alpha x \sin \beta y e^{i\omega t} \]

\[\varphi_i(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} X_{mn} \cos \alpha x \sin \beta y e^{i\omega t} \]

\[\varphi_j(x, y, t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Y_{mn} \sin \alpha x \cos \beta y e^{i\omega t} \]

where \(i = \sqrt{-1}, \ \alpha = m \pi / a, \ \beta = n \pi / b, \ (U_{mn}, V_{mn}, W_{mn}, W_{mn}) \) are coefficients, and \(\omega \) is the frequency of vibration. The transverse load \(q \) is also expanded in the double-Fourier sine series as

\[q(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} Q_{mn} \sin \alpha x \sin \beta y \]

where

\[Q_{mn} = \frac{4}{ab} \int_{0}^{b} \int_{0}^{a} q(x, y) \sin \alpha x \sin \beta y \, dx \, dy = \begin{cases} q_0 & \text{for sinusoidally distributed load} \\ \frac{16q_0}{m \pi^2} & \text{for uniformly distributed load} \end{cases} \]

Substituting Eqs. (21) and (22) into Eq. (20), the analytical solutions can be obtained from the following equations

\[
\begin{bmatrix}
 s_{11} & s_{12} & s_{13} & s_{14} & s_{15} \\
 s_{12} & s_{22} & s_{23} & s_{24} & s_{25} \\
 s_{13} & s_{23} & s_{33} & s_{34} & s_{35} \\
 s_{14} & s_{24} & s_{34} & s_{44} & s_{45} \\
 s_{15} & s_{25} & s_{35} & s_{45} & s_{55}
\end{bmatrix} - \omega^2 \begin{bmatrix}
 m_{11} & 0 & m_{13} & m_{14} & 0 \\
 0 & m_{22} & m_{23} & 0 & m_{25} \\
 m_{13} & m_{23} & m_{33} & m_{34} & m_{35} \\
 m_{14} & 0 & m_{34} & m_{44} & 0 \\
 0 & m_{25} & m_{35} & m_{45} & m_{55}
\end{bmatrix} \begin{bmatrix}
 U_{mn} \\
 V_{mn} \\
 W_{mn} \\
 X_{mn} \\
 Y_{mn}
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0 \\
 Q_{mn} \\
 0 \\
 0
\end{bmatrix}
\]
\[s_{11} = A\left(\alpha^2 + \frac{1}{\nu} \beta^2\right) + \frac{A_n}{4}\beta^2\left(\alpha^2 + \beta^2\right), \quad s_{12} = \frac{1}{\nu} A\alpha\beta - \frac{A_n}{4}\alpha\beta\left(\alpha^2 + \beta^2\right) \]
\[s_{13} = -B\alpha\left(\alpha^2 + \beta^2\right), \quad s_{14} = C\left(\alpha^2 + \frac{1}{\nu} \beta^2\right) + \frac{C_n}{4}\beta^2\left(\alpha^2 + \beta^2 - c\right) \]
\[s_{15} = \frac{1}{\nu} C\alpha\beta - \frac{C_n}{4}\alpha\beta\left(\alpha^2 + \beta^2 - c\right), \quad s_{22} = A\left(\beta^2 + \frac{1}{\nu} \alpha^2\right) + \frac{A_n}{4}\alpha^2\left(\alpha^2 + \beta^2\right) \]
\[s_{23} = -B\beta\left(\alpha^2 + \beta^2\right), \quad s_{24} = s_{15}, \quad s_{25} = C\left(\beta^2 + \frac{1}{\nu} \alpha^2\right) + \frac{C_n}{4}\alpha^2\left(\alpha^2 + \beta^2 - c\right) \]
\[s_{33} = (D + A_n)(\alpha^2 + \beta^2)^2, \quad s_{34} = -\left(\frac{F + B}{2}\right)(\alpha^2 + \beta^2)\alpha \]
\[s_{35} = -\left(\frac{F + B}{2}\right)(\alpha^2 + \beta^2)\beta, \quad s_{45} = \left[\frac{1}{\nu} H - \frac{H_n}{4}\left(\alpha^2 + \beta^2 - 2c\right) - \frac{3D_n}{4}\right]\alpha\beta \]
\[s_{44} = A' + H\left(\alpha^2 + \frac{1}{\nu} \beta^2\right) + \frac{H_n}{4}\left[\beta^2\left(\alpha^2 + \beta^2 - 2c\right) + c^2\right] + \frac{D_n}{4}\left(4\alpha^2 + 4\beta^2\right) \]
\[s_{55} = A' + H\left(\beta^2 + \frac{1}{\nu} \alpha^2\right) + \frac{H_n}{4}\left[\alpha^2\left(\alpha^2 + \beta^2 - 2c\right) + c^2\right] + \frac{D_n}{4}\left(4\alpha^2 + 4\beta^2\right) \]
\[m_{11} = m_{22} = I_0, \quad m_{13} = -\alpha I_1, \quad m_{14} = J_1, \quad m_{23} = -\beta I_1, \quad m_{25} = J_1 \]
\[m_{33} = I_0 + I_2\left(\alpha^2 + \beta^2\right), \quad m_{34} = -\alpha J_2, \quad m_{35} = -\beta J_2, \quad m_{44} = m_{55} = K_2 \]

\[\text{(25)} \]

3. Numerical results

3.1. Verification studies

Since the results of microplate made of FGM are not available in the open literature, only homogeneous microplates \((p = 0)\) is used herein for the verification. Table 1 shows the fundamental frequencies of simply supported square plates with various values of side-to-thickness ratio \(a/h\). The microplate is made of epoxy with the following material properties: \(E = 1.44\ \text{GPa}, \quad \nu = 0.38, \quad \rho = 1220\ \text{kg/m}^3, \quad \ell = 17.6 \times 10^{-6}\ \text{m}, \quad h = 2\ell\) [20]. The obtained frequencies are compared with those reported by Yin et al. [17] based on the KPT and Ke et al. [20] based on the FSDT. It can be seen that the obtained analytical results are in good agreement with the \(p\)-version Ritz solutions of Ke et al. [20] based on the FSDT. The difference between the KPT [17] and shear deformation theories (i.e., FSDT [20] and present model) is observed to be
quite small when side-to-thickness ratio $a/h \geq 20$ but relatively large when $a/h < 20$. This is due to the transverse shear deformation effects which are more pronounced in moderately thick and thick plates are included in the shear deformation theories, but neglected in the KPT [17].

3.2. Parameter studies

Parameter studies are presented to investigate the influences of material length scale parameter ℓ and power law index p on the bending and vibration responses of FG microplate. Unless mentioned otherwise, a simply supported square FG microplate with $a/h = 10$ is considered. This plate is composed of aluminum Al (as metal) and alumina Al$_2$O$_3$ (as ceramic). Young’s modulus and mass density of aluminum are $E_m = 70$ GPa and $\rho_m = 2702$ kg/m3, respectively, and that of alumina are $E_c = 380$ GPa and $\rho_c = 3800$ kg/m3, respectively. Poisson’s ratio is assumed to be constant through the thickness and equal to 0.3. The material length scale parameter $\ell = 17.6 \times 10^{-6}$ m is based on the experimental work reported by Lam et al. [11]. For convenience, the following dimensionless forms are used:

\[
\bar{w} = \frac{10E_h^3}{q_i a^4} w \left(\frac{a}{2}, \frac{b}{2} \right), \quad \bar{\omega} = \omega a^2 h \sqrt{\rho_c / E_c}, \quad \bar{\sigma}_x(z) = \frac{h}{q_i a} \sigma_x \left(\frac{a}{2}, \frac{b}{2}, z \right),
\]

\[
\bar{\sigma}_{xy}(z) = \frac{h}{q_i a} \sigma_{xy}(0, 0, z), \quad \bar{\sigma}_{xz}(z) = \frac{h}{q_i a} \sigma_{xz} \left(0, \frac{b}{2}, z \right).
\]

Numerical results of dimensionless stresses are presented in Table 2 for different values of dimensionless material length scale parameter ℓ/h and power law index p. The through thickness variation of stresses are plotted in Figs. 1-3 for a FG microplate ($p = 1$). In these figures, the results of both present model ($\ell \neq 0$) and classical model ($\ell = 0$) are presented. It can be observed that the classical model overestimates stresses.
of microplates (see Table 2 and Figs. 1-3). It is because the classical model ignores the small scale effects which are significant in microplates. **The effects of the length scale parameter on deflection \ddot{w} and frequency $\bar{\omega}$ are also presented in Figs. 4-6.** It can be seen that the effects of length scale parameter are significant when the plate thickness is small especially at the higher modes (see Fig. 6), but become negligible with increasing plate thickness. This means that the size effect is only significant when the thickness of the plate is at the micron scale, which agrees with the general trends observed in experiments.

The effects of the power law index p on the deflection and frequency are presented in Figs. 7 and 8. It can be seen that increasing value of the power law index leads to an increase in the magnitude of deflection (see Fig. 7) and a reduction of the amplitude of frequency (see Fig. 8). This is due to the fact that higher values of power law index correspond to high portion of metal in comparison with the ceramic part. In other words, an increase of the power-law index results in a reduction of elasticity modulus and bending stiffness, which also implies that the plate becomes flexible. Therefore, it leads to an increase in deflection and a reduction of frequency.

4. Conclusions

Based on the modified couple stress theory and sinusoidal shear deformation theory, a size-dependent model is developed for the bending and free vibration of functionally graded plates. The equations of motion and boundary conditions are derived using Hamilton’s principle. Analytical solutions for a simply supported plate are obtained. The present models contain one material length scale parameter and can capture the small scale effect, shear deformation effect, and two-constituent material variation through the plate thickness. The present models can also recover the classical sinusoidal plate model
by setting the material length scale parameter equal to zero. The numerical results show that the inclusion of the small scale effect will increase stiffness of the plates, and consequently, leads to a reduction of both deflection and stresses and an increase in frequency. The differences in bending and vibration responses predicted by the present model and the classical model are significant when the plate thickness is small, but they are negligible when the plate thickness becomes larger. These predicted trends agree with the size effect at the micron scale observed in experiments.

References

[18] Akgoz B, Civalek O. Free vibration analysis for single-layered graphene sheets in

Figure Captions

Fig. 1. Variation of in-plane normal stress σ_x across the thickness of a square plate $(p = 1)$

Fig. 2. Variation of in-plane shear stress σ_{xy} across the thickness of a square plate $(p = 1)$

Fig. 3. Variation of transverse shear stress σ_{xz} across the thickness of a square plate $(p = 1)$

Fig. 4. Effect of the material length scale parameter ℓ on the deflection \bar{w} of a square plate

Fig. 5. Effect of the material length scale parameter ℓ on the fundamental frequency $\bar{\omega}$ of a square plate

Fig. 6. Effect of the material length scale parameter ℓ on the higher-order frequencies $\bar{\omega}$ of a square plate $(p = 1)$

Fig. 7. Effect of the power law index p on the deflection \bar{w} of a square plate

Fig. 8. Effect of the power law index p on the fundamental frequency $\bar{\omega}$ of a square plate
Table Captions

Table 1. Fundamental frequency (MHz) of a homogeneous square plate ($p = 0, h = 2\ell$)

Table 2. Dimensionless stresses of a FG plate
Fig. 1. Variation of in-plane normal stress σ_x across the thickness of a square plate

(p = 1)

Fig. 2. Variation of in-plane shear stress σ_{xy} across the thickness of a square plate

(p = 1)
Fig. 3. Variation of transverse shear stress σ_{xz} across the thickness of a square plate $(p = 1)$

Fig. 4. Effect of the material length scale parameter ℓ on the deflection \bar{w} of a square plate
Fig. 5. Effect of the material length scale parameter ℓ on the fundamental frequency ω of a square plate

Fig. 6. Effect of the material length scale parameter ℓ on the higher-order frequencies ω of a square plate ($p = 1$)
Fig. 7. Effect of the power law index p on the deflection \bar{w} of a square plate.

Fig. 8. Effect of the power law index p on the fundamental frequency $\bar{\omega}$ of a square plate.
Table 1. Fundamental frequency (MHz) of a homogeneous square plate \((p = 0, \ h = 2\ell)\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.4204</td>
<td>0.4042</td>
<td>0.4132</td>
</tr>
<tr>
<td>20</td>
<td>0.1051</td>
<td>0.1040</td>
<td>0.1046</td>
</tr>
<tr>
<td>30</td>
<td>0.0467</td>
<td>0.0465</td>
<td>0.0466</td>
</tr>
</tbody>
</table>

Table 2. Dimensionless stresses of a FG plate

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\ell/h)</th>
<th>(\sigma_x(h/2))</th>
<th>(\sigma_y(-h/3))</th>
<th>(\sigma_z(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1.9955</td>
<td>0.7065</td>
<td>0.2462</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>1.6945</td>
<td>0.6007</td>
<td>0.1901</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.9528</td>
<td>0.3392</td>
<td>0.0725</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.3762</td>
<td>0.1345</td>
<td>0.0133</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3.0870</td>
<td>0.6110</td>
<td>0.2462</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>2.5541</td>
<td>0.5061</td>
<td>0.1881</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1.3467</td>
<td>0.2677</td>
<td>0.0725</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.5048</td>
<td>0.1007</td>
<td>0.0159</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>5.0890</td>
<td>0.5894</td>
<td>0.2198</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>4.4019</td>
<td>0.5111</td>
<td>0.1665</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>2.6050</td>
<td>0.3044</td>
<td>0.0612</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.0737</td>
<td>0.1262</td>
<td>0.0123</td>
</tr>
</tbody>
</table>