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A nonlocal sinusoidal shear deformation beam theory with

application to bending, buckling, and vibration of nanobeams

Abstract

This paper presents a nonlocal sinusoidal shear deformation beam theory for the

bending, buckling, and vibration of nanobeams. The present model is capable of

capturing both small scale effect and transverse shear deformation effects of nanobeams,

and does not require shear correction factors. Based on the nonlocal differential

constitutive relations of Eringen, the equations of motion as well as the boundary

conditions of the beam are derived using Hamilton’s principle. Analytical solutions for

the deflection, buckling load, and natural frequency are presented for a simply

supported beam, and the obtained results are compared with those predicted by the

nonlocal Timoshenko beam theory. The comparison firmly establishes that the present

beam theory can accurately predict the bending, buckling, and vibration responses of

short nanobeams where the small scale and transverse shear deformation effects are

significant.

Keywords: Nonlocal theory; Sinusoidal theory; Bending; Buckling; Vibration;

Nanobeam

1. Introduction

Nanostructures are widely used in micro- and nano-scale devices and systems such as

biosensors, atomic force microscopes, micro-electro-mechanical systems (MEMS) and

nano-electro-mechanical systems (NEMS) due to their superior mechanical, chemical,

and electronic properties [1]. In such applications, small scale effects are often observed.

These effects can be captured using size-dependent continuum mechanics such as strain
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gradient theory [2], modified couple stress theory [3], and nonlocal elasticity theory [4].

Among these theories, the nonlocal elasticity theory initiated by Eringen is the most

commonly used theory. Unlike the local theories which assume that the stress at a point

is a function of strain at that point, the nonlocal elasticity theory assumes that the stress

at a point is a function of strains at all points in the continuum.

Based on the nonlocal constitutive relation of Eringen, a number of papers have been

published attempting to develop nonlocal beam models for predicting the responses of

carbon nanotubes. The nonlocal Euler-Bernoulli beam theory (EBT) and Timoshenko

beam theory (TBT) first proposed by Peddieson et al. [5] and Wang [6], respectively,

were adopted by many researchers to investigate bending [7-9], buckling [10-12], and

vibration [13-15] responses of carbon nanotubes. A complete development of EBT and

TBT was presented by Reddy and Pang [16] who provided the analytical solutions for

the deflection, buckling load, and natural frequency of nanobeams with various

boundary conditions. It should be noted that the EBT is only applicable for slender

beams where the shear deformation effect is negligible and leads to underestimate

deflection and overestimate buckling load as well as natural frequency for short beams.

The TBT accounts for the shear deformation effect for short beams by assuming a

constant shear strain through the height of the beam. Therefore, a shear correction factor

is required to compensate for the difference between the actual stress state and the

constant stress state. To avoid the use of shear correction factor, higher-order shear

deformation theories were developed based on the assumption of the higher-order

variation of axial displacement through the height of the beam, notable among them are

the third-order theory of Reddy [17], generalized theory of Aydogdu [18], refined theory

of Thai [19], and sinusoidal shear deformation theory of Touratier [20].
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The sinusoidal shear deformation theory of Touratier [20] is based on the assumption

that the transverse shear stress vanishes on the top and bottom surfaces of the beam and

is nonzero elsewhere. Thus there is no need to use shear correction factors as in the case

of TBT. This theory is also employed to predict the response of laminate plate [21] and

functionally graded sandwich plates [22-24]. The aim of this paper is to propose a

nonlocal sinusoidal theory which accounts for both small scale and shear deformation

effects of nanobeams. The small scale effect is taken into account by using the nonlocal

constitutive relations of Eringen, while the shear deformation effect is captured using

the sinusoidal shear deformation theory [20]. The nonlocal equations of motion and

boundary conditions are derived using Hamilton’s principle. Analytical solutions for the

deflection, buckling load, and natural frequency are presented for simply supported

nanobeams, and the obtained results are compared with those predicted by the TBT to

verify the accuracy of the present solution.

2. Equations of motion of the sinusoidal beam theory

Consider a beam length L and rectangular cross section b h , with b being the

width and h being the height. The x-, y-, and z-coordinates are taken along the length,

width, and height of the beam, respectively. Equations of motion are derived using

Hamilton’s principle. The principle can be stated in analytical form as [25]

 
0

0
T

U V K dt     (1)

where U is the variation of the strain energy; V is the variation of the potential

energy; and K is the variation of the kinetic energy.

According to the sinusoidal theory, the displacement field is chosen based on the

assumption that the transverse shear stress vanishes on the top and bottom surfaces of
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the beam and is nonzero elsewhere. The displacement field is given as [20]

   

 
   

1

2

3

, , ,

, , 0

, , ,

dw
u x z t u x t z f

dx
u x z t

u x z t w x t

  





(2)

where    / sin /f h z h  , u and w are the axial and transverse displacements,

respectively, of a point on the midplane of the beam and  is the rotation of the cross

section about the y-axis. The only nonzero strains are

2

2x

du d w d
z f

dx dx dx


    (3a)

cos( )xz

z

h


  (3b)

It can be observed from Eq. (3b) that the transverse shear strain xz is zero at the top

( / 2z h ) and bottom ( / 2z h  ) surfaces of the beam thus satisfying the traction free

conditions for xz .

The variation of the strain energy of the beam can be stated as

 
2

20 0

L L

x x xz xzA

d u d w d
U dAdx N M P Q dx

dx dx dx

  
     

 
      

 
   (4)

where N , M , P , and Q are the stress resultants defined as

   , , 1, , xA
N M P z f dA  and cos( / ) xzA

Q z h dA   (5)

The variation of the potential energy of the applied loads can be expressed as

00 0

L L dw d w
V q wdx N dx

dx dx


     (6)

where q and 0N are the transverse and axial loads, respectively.

The variation of the kinetic energy is obtained as
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 

 
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m u u w w m dx

dx dx dx dx

   

 
    

 

 

           

 



   

   
      

(7)

where dot-superscript convention indicates the differentiation with respect to the time

variable t ;  is the mass density; and  0 2,m m are mass inertias defined as

   2
0 2, 1,

A
m m z dA  (8)

Substituting the expressions for U , V , and K from Eqs. (4), (6), and (7) into Eq.

(1) and integrating by parts, and collecting the coefficients of u , w , and  , the

following equations of motion of the beam are obtained

0:
dN

u m u
dx

   (9a)

2 2
2 3

6 24
:

m mdP dw
Q

dx dx
 

 
  


 (9b)

2 2 2
2

0 0 22 2 3 2

24
:

md M d w d d w
w q N m w m

dx dx dx dx





    

 
 ( 9c)

The boundary conditions of the present theory are of the form

2
0 2 3

specify or

specify or

24
specify or

specify or

u N

P

mdM dw dw
w N m

dx dx dx
dw

M
dx






  


 (10)

3. Nonlocal theory

3.1. Constitutive relations

Unlike the local theory, the nonlocal theory assumes that the stress at a point depends

not only on the strain at that point but also on strains at all other points of the body.
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According to Eringen [26], the nonlocal stress tensor  at point x is expressed as

2      (11)

where  is classical stress tensor at a point x related to the strain by the Hooke’s law;

2
0( )e a  is the nonlocal parameter which incorporates the small scale effect, a is

the internal characteristic length and 0e is a constant appropriate to each material. The

nonlocal parameter depends on the boundary conditions, chirality, mode shapes, number

of walls, and type of motion [27]. So far, there is no rigorous study made on estimating

the value of the nonlocal parameter. It is suggested that the value of nonlocal parameter

can be determined by experiment or by conducting a comparison of dispersion curves

from the nonlocal continuum mechanics and molecular dynamics simulation [6, 28]. In

general, a conservative estimate of the nonlocal parameter is 0 2.0e a  nm for a single

wall carbon nanotube [29].

3.2. Stress resultants

For an isotropic material in a one-dimensional case, the nonlocal constitutive relation

in Eq. (11) takes the following forms

2

2

2

2

x
x x

xz
xz xz

d
E

dx

d
G

dx


  


  

 

 
(12)

where E and G are the elastic and shear modulus of the beam, respectively. By

substituting Eq. (3) into Eq. (12) and the subsequent results into Eq. (5), the stress

resultants are obtained as

2

2

d N du
N EA

dx dx
  (13a)
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2 2

2 2 3

24d M d w EI d
M EI

dx dx dx





    (13b)

2 2

2 3 2 2

24 6d P EI d w EI d
P

dx dx dx




 
    (13c)

2

2 2

d Q GA
Q

dx
   (13d)

where

   2, 1,
A

A I z dA  (14)

4. Equations of motion in terms of displacements

The nonlocal equations of motion of the proposed beam theory can be expressed in

terms of displacements ( , ,u w  ) by substituting stress resultants in Eq. (13) into Eq. (9)

as

2 2

02 2

d u d u
EA m u

dx dx


 
  
 


 (15a)

3 2 2 3
2 2

3 3 2 2 2 2 3 3

6 2424 6

2

m mEI d w EI d GA d dw d w

dx dx dx dx dx

 
   

   
   

         
   

  
 (15b)

4 3 2 2 4

04 3 3 2 2 4

3 2 2 4
2

0 23 3 2 2 4

24

24

d w EI d d q d w d w
EI q N

dx dx dx dx dx

m d d d w d w d w
m w m

dx dx dx dx dx


 



 
  



 
      

 
     

          
     

    


(15c)

The equations of motion of local beam theory can be recovered from Eq. (15) by setting

the nonlocal parameter  equal to zero. Also, the equations of motion of the nonlocal

EBT can be obtained from Eq. (15) by setting the rotation  equal to zero. It can be

seen from Eq. (15) that the axial deformation u is uncoupled from transverse

deformations ( , w ). Thus, the equations of motion for the transverse response of the
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beam are reduced to Eqs. (15b) and (15c).

5. Analytical solution of simply supported beams

Consider a simply supported beam with length L subjected to transverse load q

and axial load 0N . The simply supported boundary conditions of the beam are

0w M  at 0,x L (16)

The following expansions of the generalized displacements ( , w ) satisfy the boundary

conditions in Eq. (16)

 

 

1

1

, cos

, sin

i t
n

n

i t
n

n

x t e x

w x t W e x





  


















(17)

where 1i   , /n L  ,  ,n nW are coefficients, and  is the natural frequency.

The transverse load q is also expanded in the Fourier sine series as

 
1

sinn
n

q x Q x




 (18)

where

0 0

0
0

0

0 0

( 1) for sinusoidal load

42 ( 1,3,5,...) for uniform load( )sin

2
sin ( 1,2,3,...) for point load at thecenter

L 2

L

n

q n q

q
n qQ q x xdx nL

n
Q n Q

 




   

 


 (19)

Substituting the expansions of  , w , and q from Eqs. (17) and (18) into the

equations of motion Eq. (15), the closed-form solutions can be obtained from the

following equations

11 12 11 122

12 22 12 22

0n

n n

s s m m

W Qs s k m m





        

                
(20)
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where

2 3 4
11 12 222 3

2 2 22 2
11 12 22 0 2 02 3

6 24
, ,

2
6 24

, , , 1 ,

GA EI EI
s s s EI

m m
m m m m m k N

  
 

    
 

    

       
(21)

The static deflection is obtained from Eq. (20) by setting 0N and  equal to zero

  2
1 22 12 11

sin
/

n

n

Q
w x x

s s s









 (22)

The buckling load is obtained from Eq. (20) by setting q and  equal to zero

2
22 12 11

0 2

/s s s
N




 (23)

By setting q and 0N in Eq. (20) equal to zero, the natural frequency can be obtained

from the following equation

     2 2 4 2 2
11 22 12 11 22 22 11 12 12 11 22 122 0m m m m s m s s m s s s         (24)

The closed-form solutions of the EBT can be obtained from Eq. (20) by setting n

equal to zero. Thus, the deflection w , buckling load 0N , and frequency  of the

EBT are expressed as

  4
1 122

sin sinn n

n n

Q Q
w x x x

s EI

 
 



 

 

   (25)

2
22

0 2

s EI
N


 
  (26)

 
4

22
2

22 0 2

s EI

m m m




  
 


(27)

6. Results and discussions

Table 1 shows the nondimensional deflection, critical buckling load, and fundamental
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frequency of a simply supported beam subjected to uniform load. The obtained results

are compared with those reported by Thai [19] based on nonlocal TBT for a wide range

of small scale coefficient and length-to-depth ratio /L h . Shear correction factor and

Poisson’s ratio are taken as 5/6 and 0.3, respectively. The side of nanobeam L is

assumed to be 10 nm. Nondimensional deflection, buckling load, and natural frequency

are defined as

4
0

100EI
w

q L
 ,

2
crN L

N
EI

 , 2 0m
L

EI
  (28)

It can be seen that the results of present theory are in excellent agreement with those

predicted by TBT for all values of small scale coefficient and length-to-depth ratio even

for short beams at the higher vibration modes where the effects of transverse shear

deformation and rotary inertia are significant (see Table 2). It is worth noting that the

TBT requires a shear correction factor to satisfy the free transverse shear stress

conditions on the top and bottom surfaces of the beam, whereas the present theory

satisfies the free transverse shear stress conditions on the top and bottom surfaces of the

beam without using any shear correction factors.

The effect of shear deformation on the bending, buckling, and vibration responses of

nanobeams is shown in Fig. 1 for a simply supported beam with 0 1e a  nm. In this

figure, the deflection, buckling load, and frequency ratios are defined as the ratios of

those by present theory to the correspondences by EBT where the shear deformation

effect is omitted. It is observed that, the effect of shear deformation is to increase the

deflections and decrease the buckling loads and natural frequencies, and this effect is

significant for short beams at higher vibration modes (see Fig. 2). This indicates that the

shear deformation effect results in a reduction of the beam stiffness. Another illustration
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of the shear deformation effect is also shown in Table 3 for a simply supported single-

walled carbon nanotube (SWCNT) with diameter 0.678d  nm and effective tube

thickness 0.066t  nm [30]. The material properties of SWCNT are [13]: 5.5E  TPa,

0.19  , and 2.3  g/cm3. The results of present theory obtained from Eq. (24) are

compared with those of EBT from Eq. (27) for various values of length-to-diameter

ratio /L d . It can be seen from Table 3 that the frequencies obtained by present theory

are smaller than those given by EBT. The difference between present theory and EBT is

significant for higher modes and small /L d . For example, for the fundamental mode

1n  , the differences are only 5.23% and 0.45% for short tube ( / 5L d  ) and long tube

( / 20L d  ), respectively. However, for the higher mode, say 5n  , the differences are

43.20% and 7.77% for short tube ( / 5L d  ) and long tube ( / 20L d  ), respectively. So

the present beam should be used to predict the responses of short beams at higher modes

where the shear deformation effect is significant.

To illustrate the small scale effect on the responses of nanobeams, Fig. 3 plots the

deflection, buckling load, and frequency ratios with respect to the small scale coefficient

0e a for a simply supported beam with / 10L h  . It is noted that the values of 0e a

should be smaller than 2.0 nm for a SWCNT as pointed out by Wang and Wang [29].

The deflection, buckling load, and frequency ratios are defined as the ratios of those by

the nonlocal theory to the correspondences by the local theory (i.e., 0e a =0). It can be

seen that the deflection ratio is greater than unity, whereas the buckling load and

frequency ratios are smaller than unity. It means that the local theory underestimates the

deflections and overestimates the buckling loads as well as natural frequencies of the

nanobeams compared to the nonlocal one. This is due to the fact that the local theory is

unable to capture the small scale effect of the nanobeams. The difference between the
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local and nonlocal theories is especially significant for the higher modes (see Fig. 4). In

general, the effects of small scale and shear deformation are similar, and the inclusion of

the small scale and shear deformation effects will reduce the stiffness of the beam, and

consequently, leads to an increase in the deflections and a reduction of the buckling

loads and natural frequencies.

7. Conclusions

A nonlocal sinusoidal beam theory is developed for the bending, buckling, and

vibration of nanobeams. The present model is capable of capturing both small scale and

shear deformation effects of nanobeams, and does not require shear correction factors.

Based on the nonlocal differential constitutive relations of Eringen, the equations of

motion as well as the boundary conditions of the beam are derived using Hamilton’s

principle. Analytical solutions for deflection, buckling load, and natural frequency are

presented for a simply supported beam, and the obtained results are compared well with

those predicted by the TBT. It is observed that the inclusion of the small scale and shear

deformation effects lead to an increase in the deflections and a reduction of the buckling

loads and natural frequencies of nanobeams.
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Fig. 1. Effect of transverse shear deformation on the deflection, critical buckling load,
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Table 1. Nondimensional deflection w , critical buckling load N , and fundamental

frequency  of simply supported beams

L/h 2( )nm
Deflection w Buckling load N Frequency 
TBT [19] Present TBT [19] Present TBT [19] Present

5 0 1.4321 1.4317 8.9509 8.9533 9.2740 9.2752
1 1.5674 1.5671 8.1468 8.1490 8.8477 8.8488
2 1.7028 1.7025 7.4753 7.4773 8.4752 8.4763
3 1.8381 1.8379 6.9061 6.9079 8.1461 8.1472
4 1.9734 1.9733 6.4174 6.4191 7.8526 7.8536

10 0 1.3346 1.3345 9.6227 9.6231 9.7075 9.7077
1 1.4622 1.4621 8.7583 8.7587 9.2612 9.2614
2 1.5898 1.5897 8.0364 8.0367 8.8713 8.8715
3 1.7173 1.7173 7.4244 7.4247 8.5269 8.5271
4 1.8449 1.8449 6.8990 6.8994 8.2196 8.2198

20 0 1.3102 1.3102 9.8067 9.8068 9.8281 9.8282
1 1.4359 1.4358 8.9258 8.9258 9.3763 9.3764
2 1.5615 1.5615 8.1900 8.1901 8.9816 8.9816
3 1.6871 1.6871 7.5664 7.5665 8.6328 8.6329
4 1.8128 1.8128 7.0310 7.0310 8.3218 8.3218

100 0 1.3024 1.3024 9.8671 9.8671 9.8679 9.8679
1 1.4274 1.4274 8.9807 8.9807 9.4143 9.4143
2 1.5525 1.5525 8.2405 8.2405 9.0180 9.0180
3 1.6775 1.6775 7.6130 7.6130 8.6678 8.6678
4 1.8025 1.8025 7.0743 7.0743 8.3555 8.3555
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Table 2. First three nondimensional frequencies  of simply supported beams

L/h 2( )nm 1 2 3

TBT [19] Present TBT [19] Present TBT [19] Present

5 0 9.2740 9.2752 32.1665 32.1948 61.4581 61.6192
1 8.8477 8.8488 27.2364 27.2604 44.7247 44.8420
2 8.4752 8.4763 24.0453 24.0664 36.8831 36.9798
3 8.1461 8.1472 21.7642 21.7833 32.1036 32.1878
4 7.8526 7.8536 20.0293 20.0470 28.8023 28.8778

10 0 9.7075 9.7077 37.0962 37.1009 78.1547 78.1855
1 9.2612 9.2614 31.4105 31.4146 56.8753 56.8977
2 8.8713 8.8715 27.7303 27.7339 46.9034 46.9219
3 8.5269 8.5271 25.0996 25.1029 40.8254 40.8415
4 8.2196 8.2198 23.0989 23.1019 36.6272 36.6416

20 0 9.8281 9.8282 38.8299 38.8308 85.6619 85.6671
1 9.3763 9.3764 32.8786 32.8793 62.3385 62.3422
2 8.9816 8.9816 29.0263 29.0270 51.4087 51.4118
3 8.6328 8.6329 26.2727 26.2733 44.7469 44.7496
4 8.3218 8.3218 24.1785 24.1790 40.1454 40.1478

100 0 9.8679 9.8679 39.4517 39.4517 88.6914 88.6915
1 9.4143 9.4143 33.4051 33.4051 64.5431 64.5432
2 9.0180 9.0180 29.4911 29.4912 53.2268 53.2269
3 8.6678 8.6678 26.6934 26.6934 46.3294 46.3295
4 8.3555 8.3555 24.5657 24.5657 41.5652 41.5653

Table 3. First five frequencies (THz) of a simply supported single-walled carbon

nanotube with 0 1.0e a  nm

Modes
/ 5L d  / 10L d  / 20L d  / 100L d 

EBT Present EBT Present EBT Present EBT Present

1 1.0459 0.9939 0.3283 0.3237 0.0885 0.0881 0.0036 0.0036
2 2.5622 2.2006 1.0459 0.9939 0.3283 0.3237 0.0145 0.0145
3 3.7911 2.9689 1.8294 1.6550 0.6643 0.6445 0.0324 0.0324
4 4.7180 3.4516 2.5622 2.2006 1.0459 0.9939 0.0572 0.0570
5 5.4019 3.7723 3.2171 2.6310 1.4402 1.3364 0.0885 0.0881


