Flexural-torsional coupled vibration and buckling of thin-walled open section composite beams using shear-deformable beam theory

Thuc Phuong Vo* and Jaehong Lee†

Department of Architectural Engineering, Sejong University
98 Kunja Dong, Kwangjin Ku, Seoul 143-747, Korea

(Dated: November 7, 2008)

A general analytical model based on shear-deformable beam theory has been developed to study the flexural-torsional coupled vibration and buckling of thin-walled open section composite beams with arbitrary lay-ups. This model accounts for all the structural coupling coming from the material anisotropy. The seven governing differential equations for coupled flexural-torsional-shearing vibration are derived from the Hamilton’s principle. The resulting coupling is referred to as sixfold coupled vibration. Numerical results are obtained to investigate effects of shear deformation, fiber orientation and axial force on the natural frequencies, corresponding mode shapes as well as load-frequency interaction curves.

Keywords: Thin-walled composite beams; shear deformation; flexural-torsional-shearing vibration; load-frequency interaction curves.

I. INTRODUCTION

Fiber-reinforced composite materials have been used over the past few decades in a variety of structures. Composites have many desirable characteristics, such as high ratio of stiffness and strength to weight, corrosion resistance and magnetic transparency. Thin-walled structural shapes made up of composite materials, which are usually produced by pultrusion, are being increasingly used in many engineering fields. However, the structural behavior is very complex due to coupling effects as well as warping-torsion and thus, the accurate prediction of stability limit state and dynamic

*Manuscript Click here to view linked References

*Graduate student

†Professor, corresponding author. Tel.:+82-2-3408-3287; fax:+82-2-3408-3331

; Electronic address: jhlee@sejong.ac.kr
characteristics is of the fundamental importance in the design of thin-walled composite structures. Moreover, it is well known that the classical laminated beam theory, based on Euler-Bernoulli hypothesis, is inaccurate for moderate length to thickness ratio and/or for highly anisotropic composite beams. Therefore, incorporation of shear deformation effects is a major issue in the analysis of thin-walled composite beams due to their lower transverse modulus compared to in-plane modulus.

The theory of thin-walled open section members made of isotropic materials was first developed by Vlasov [1] and Gjelsvik [2]. Up to the present, investigation into the stability and vibrational behavior of these members has received widespread attention and has been carried out extensively since the early works of Timoshenko [3,4] and Truhair [5]. Closed-form solution for the flexural, torsional natural frequencies and critical buckling loads of isotropic thin-walled beams are found in the literature. For thin-walled composite material, Chandra et al. [6] presented a free vibration analysis of coupled composite I-beams with couplings under rotation. In order to validate the theory, graphite-epoxy and kevlar-epoxy I-beams with bending-torsion coupling were fabricated using an autoclave molding technique and tested in an in vacuo rotor test facility for their vibration characteristics. Song and Librescu [7] focused on the formulation of the general dynamic problem of arbitrary thin-walled open section composite beams. Besides, the monograph of Librescu and Song [8] was concerned not only with the foundation and formulation of linear and nonlinear theories but also provided powerful mathematical tools to address issues of statics and dynamics of thin-walled composite beams. Kollar [9-11] presented the analysis of flexural-torsional buckling and vibration of thin-walled open section composite beams. Vlasov’s classical theory of thin-walled beams was modified to include both the transverse shear and the restrained warping induced shear deformations. Qiao et al. [12] introduced analytical study for free vibration analysis of fiber-reinforced plastic composite cantilever I-beams. Della and Shu [13,14] provided not only a relevant survey on the available analytical models and numerical analyses for the free vibration of delaminated composite laminates but also presented an analytical solution to the free vibrations of beams with two overlapping delaminations under axial compressive loads. In their model, the delaminated beam was analyzed as seven interconnected Euler-Bernoulli beams.

For some practical applications, earlier studies have shown that the effect of axial force on the natural frequencies and mode shapes is significant. Although a large number of studies have been performed on the dynamic characteristics of axially loaded isotropic thin-walled beams, it should be noted that only a few deal with thin-walled composite structures with arbitrary lay-ups. A literature survey on the subject shows that there appear some works reported on the free vibration of axially loaded closed-section thin-walled composite beams. Many numerical techniques have been
used to solve the dynamic analysis of thin-walled composite beams. One of the most effective approach is to derive the
exact stiffness matrices based on the solution of the differential equation of beam. Most of those studies adopted an
analytical method that required explicit expressions of exact displacement functions for governing equations. Banerjee
[15,16] applied the exact dynamic stiffness matrix to perform the free vibration analysis of axially loaded composite
Timoshenko beams. Li et al. [17-19] developed the analytical solution to determine the flexure-torsion coupled dynamic
responses of axially loaded thin-walled composite beam under concentrated, distributed time-dependent loads and
external stochastic excitations. The influences of axial force, Poisson effect, axial deformation, shear deformation and
rotary inertia were also discussed in their research. By using finite element method, Bank and Kao [20] analysed free
and forced vibration of thin-walled fibre reinforced composite material beams by using the Timoshenko beam theory.
The works of Cortinez, Piovan, Machado and coworkers [21-23] deserved special attention because they introduced a
new theoretical model for the generalized linear analysis of thin-walled composite beams. This model allowed studying
many problems of static’s, free vibrations with or without arbitrary initial stresses and linear stability of composite
thin-walled beams. Machado et al. [23] also investigated the dynamic stability of thin-walled composite beams under
axial external force. The analysis was based on a small strain and moderate rotation theory, which was formulated
through the adoption of a second-order displacement field. In their research [21-23], thin-walled composite beams
for both open and closed cross-sections and the shear flexibility (bending, non-uniform warping) were incorporated.
However, it was strictly valid for symmetric balanced laminates and especially orthotropic laminates. Recently, Kim
et al.[24-26] evaluated not only the exact element stiffness matrix to perform the spatially coupled stability analysis
of thin-walled composite beams under a compressive force but also dynamic stiffness matrix of thin-walled composite
I-beam with arbitrary lamination.
In this paper, which is an extension of the author’s previous works [27-30], flexural-torsional coupled vibration and
buckling of thin-walled open section composite beams with arbitrary lay-ups is presented. This model is based on
the first-order shear-deformable beam theory, and accounts for all the structural coupling coming from the material
anisotropy. The seven governing differential equations for coupled flexural-torsional-shearing vibration are derived
from the Hamilton’s principle. The resulting coupling is referred to as sixfold coupled vibration. A displacement-based
one-dimensional finite element model is developed to solve the problem. Numerical results are obtained to investigate
the effects of shear deformation, fiber orientation and axial force on the natural frequencies, corresponding mode
shapes as well as load-frequency interaction curves.
II. KINEMATICS

The theoretical developments presented in this paper require two sets of coordinate systems which are mutually interrelated. The first coordinate system is the orthogonal Cartesian coordinate system \((x, y, z)\), for which the \(x\)- and \(y\)-axes lie in the plane of the cross section and the \(z\) axis parallel to the longitudinal axis of the beam. The second coordinate system is the local plate coordinate \((n, s, z)\) as shown in Fig.1, wherein the \(n\) axis is normal to the middle surface of a plate element, the \(s\) axis is tangent to the middle surface and is directed along the contour line of the cross section. The \((n, s, z)\) and \((x, y, z)\) coordinate systems are related through an angle of orientation \(\theta\) as defined in Fig.1. Point \(P\) is called the pole axis, through which the axis parallel to the \(z\) axis is called the pole axis.

To derive the analytical model for a thin-walled composite beam, the following assumptions are made:

1. The contour of the thin wall does not deform in its own plane.
2. Transverse shear strains \(\gamma_{xz}^o, \gamma_{yz}^o\) and warping shear \(\gamma_{\omega}^o\) are incorporated. It is assumed that they are uniform over the cross-sections.
3. Each laminate is thin and perfectly bonded.
4. Local buckling is not considered.

According to assumption 1, the midsurface displacement components \(\bar{u}, \bar{v}\) at a point \(A\) in the contour coordinate system can be expressed in terms of a displacements \(U, V\) of the pole \(P\) in the \(x, y\) directions, respectively, and the rotation angle \(\Phi\) about the pole axis,

\[
\bar{u}(s, z) = U(z) \sin \theta(s) - V(z) \cos \theta(s) - \Phi(z) q(s) \quad \text{(1a)}
\]

\[
\bar{v}(s, z) = U(z) \cos \theta(s) + V(z) \sin \theta(s) + \Phi(z) r(s) \quad \text{(1b)}
\]

These equations apply to the whole contour. The out-of-plane shell displacement \(\bar{w}\) can now be found from the assumption 2. For each element of middle surface, the midsurface shear strains in the contour can be expressed with respect to the transverse shear and warping shear strains.

\[
\bar{\gamma}_{nz}(s, z) = \gamma_{nz}(z) \sin \theta(s) - \gamma_{yz}(z) \cos \theta(s) - \gamma_{\omega}(z) q(s) \quad \text{(2a)}
\]

\[
\bar{\gamma}_{sz}(s, z) = \gamma_{nz}(z) \cos \theta(s) + \gamma_{yz}(z) \sin \theta(s) + \gamma_{\omega}(z) r(s) \quad \text{(2b)}
\]

Further, it is assumed that midsurface shear strain in \(s - n\) direction is zero \((\bar{\gamma}_{sn} = 0)\). From the definition of the
shear strain, $\bar{\gamma}_{sz} = 0$ can also be given for each element of middle surface as:

$$\bar{\gamma}_{sz}(s, z) = \frac{\partial \bar{v}}{\partial z} + \frac{\partial \bar{w}}{\partial s}$$ \hfill (3)

After substituting for \bar{v} from Eq.(1) into Eq.(3) and considering the following geometric relations,

$$dx = ds \cos \theta$$
$$dy = ds \sin \theta$$ \hfill (4a)

Displacement \bar{w} can be integrated with respect to s from the origin to an arbitrary point on the contour,

$$\bar{w}(s, z) = W(z) + \Psi_y(z)x(s) + \Psi_x(z)y(s) + \Psi_\omega(z)\omega(s)$$ \hfill (5)

where Ψ_x, Ψ_y and Ψ_ω represent rotations of the cross section with respect to x, y and ω, respectively, given by:

$$\Psi_y = \gamma^{\circ}_{yz}(z) - U'$$ \hfill (6a)
$$\Psi_x = \gamma^{\circ}_{yz}(z) - V'$$ \hfill (6b)
$$\Psi_\omega = \gamma^{\circ}_\omega(z) - \Phi'$$ \hfill (6c)

When the transverse shear effect is ignored, Eq.(6) degenerates to $\Psi_y = -U', \Psi_x = -V'$ and $\Psi_\omega = -\Phi'$. As a result, the number of unknown variables reduces to four leading to the Euler-Bernoulli beam model. The prime (') is used to indicate differentiation with respect to z; and ω is the so-called sectorial coordinate or warping function given by

$$\omega(s) = \int_{s_0}^s r(s) ds$$ \hfill (7a)

The displacement components u, v, w representing the deformation of any generic point on the profile section are given with respect to the midsurface displacements $\bar{u}, \bar{v}, \bar{w}$ by assuming the first order variation of inplane displacements v, w through the thickness of the contour as:

$$u(s, z, n) = \bar{u}(s, z)$$ \hfill (8a)
$$v(s, z, n) = \bar{v}(s, z) + n\bar{\psi}_s(s, z)$$ \hfill (8b)
$$w(s, z, n) = \bar{w}(s, z) + n\bar{\psi}_z(s, z)$$ \hfill (8c)

where, $\bar{\psi}_s$ and $\bar{\psi}_z$ denote the rotations of a transverse normal about the z and s axis, respectively. These functions can be determined by considering that the midsurface shear strains γ_{nz} is given by definition:

$$\bar{\gamma}_{nz}(s, z) = \frac{\partial \bar{w}}{\partial n} + \frac{\partial \bar{u}}{\partial z}$$ \hfill (9)
By comparing Eq.(2) and (9), the function can \(\bar{\psi}_z \) can be written as

\[
\bar{\psi}_z = \Psi_y \sin \theta - \Psi_x \cos \theta - \Psi_\omega q \tag{10}
\]

Similarly, using the assumption that the shear strain \(\gamma_{sn} \) should vanish at midsurface, the function \(\bar{\psi}_s \) can be obtained

\[
\bar{\psi}_s = -\frac{\partial \bar{u}}{\partial s} \tag{11}
\]

The strains associated with the small-displacement theory of elasticity are given by

\[
\begin{align*}
\epsilon_s(s, z, n) &= \bar{\epsilon}_s(s, z) + n\bar{\kappa}_s(s, z) \quad (12a) \\
\epsilon_z(s, z, n) &= \bar{\epsilon}_z(s, z) + n\bar{\kappa}_z(s, z) \quad (12b) \\
\gamma_{sz}(s, z, n) &= \bar{\gamma}_{sz}(s, z) + n\bar{\kappa}_{sz}(s, z) \quad (12c) \\
\gamma_{nz}(s, z, n) &= \bar{\gamma}_{nz}(s, z) + n\bar{\kappa}_{nz}(s, z) \quad (12d)
\end{align*}
\]

where

\[
\begin{align*}
\bar{\epsilon}_s &= \frac{\partial \bar{v}}{\partial n}; \quad \bar{\epsilon}_z = \frac{\partial \bar{w}}{\partial z} \quad (13a) \\
\bar{\kappa}_s &= \frac{\partial \bar{\psi}_s}{\partial s}; \quad \bar{\kappa}_z = \frac{\partial \bar{\psi}_z}{\partial z} \quad (13b) \\
\bar{\kappa}_{sz} &= \frac{\partial \bar{\psi}_z}{\partial s} + \frac{\partial \bar{\psi}_s}{\partial z}; \quad \bar{\kappa}_{nz} = 0 \quad (13c)
\end{align*}
\]

All the other strains are identically zero. In Eq.\((13)\), \(\bar{\epsilon}_s \) and \(\bar{\kappa}_s \) are assumed to be zero, and \(\bar{\epsilon}_z \), \(\bar{\kappa}_z \) and \(\bar{\kappa}_{sz} \) are midsurface axial strain and biaxial curvature of the shell, respectively. The above shell strains can be converted to beam strain components by substituting Eqs.\((1)\), \((5)\) and \((8)\) into Eq.\((13)\) as

\[
\begin{align*}
\bar{\epsilon}_z &= \bar{\epsilon}_z^b + x\kappa_y + y\kappa_x + \omega\kappa_\omega \quad (14a) \\
\bar{\kappa}_z &= \kappa_y \sin \theta - \kappa_x \cos \theta - \kappa_\omega q \quad (14b) \\
\bar{\kappa}_{sz} &= \kappa_{sz} \quad (14c)
\end{align*}
\]

where \(\bar{\epsilon}_z^b, \kappa_x, \kappa_y, \kappa_\omega \) and \(\kappa_{sz} \) are axial strain, biaxial curvatures in the \(x- \) and \(y- \)direction, warping curvature with
respect to the shear center, and twisting curvature in the beam, respectively defined as

\begin{align*}
\epsilon_x^o &= W' \\ \kappa_x &= \Psi'_x \\ \kappa_y &= \Psi'_y \\ \kappa_\omega &= \Psi'_\omega \\ \kappa_{sz} &= \Phi' - \Psi'_\omega
\end{align*}

The resulting strains can be obtained from Eqs.(12) and (14) as

\begin{align*}
\epsilon_z &= \epsilon_z^o + (x + n \sin \theta)\kappa_y + (y - n \cos \theta)\kappa_x + (\omega - nq)\kappa_\omega \\
\gamma_{sz} &= \gamma_{xz}^o \cos \theta + \gamma_{yz}^o \sin \theta + \gamma_{r}^o r + n\kappa_{sz} \\
\gamma_{nz} &= \gamma_{xz}^o \sin \theta - \gamma_{yz}^o \cos \theta - \gamma_{q}^o q
\end{align*}

III. VARIATIONAL FORMULATION

The total potential energy of the system can be stated, in its buckled shape, as

\[\Pi = U + V \]

where \(U \) is the strain energy

\[U = \frac{1}{2} \int_0^l \left(\sigma_z \epsilon_z + \sigma_{sz} \gamma_{sz} + \sigma_{nz} \gamma_{sz} \right) dv \]

After substituting Eq.(16) into Eq.(18)

\[U = \frac{1}{2} \int_0^l \left(\sigma_z \left(\epsilon_z^o + (x + n \sin \theta)\kappa_y + (y - n \cos \theta)\kappa_x + (\omega - nq)\kappa_\omega \right) \\
+ \sigma_{sz} \left[\gamma_{xz}^o \cos \theta + \gamma_{yz}^o \sin \theta + \gamma_{r}^o r + n\kappa_{sz} \right] + \sigma_{nz} \left[\gamma_{xz}^o \sin \theta - \gamma_{yz}^o \cos \theta - \gamma_{q}^o q \right] \right) dv \]

The variation of strain energy, Eq.(19), can be stated as

\[\delta U = \int_0^l \left(N_x \delta \epsilon_z + M_y \delta \kappa_y + M_x \delta \kappa_x + M_\omega \delta \kappa_\omega + V_x \delta \gamma_{xz}^o + V_y \delta \gamma_{yz}^o + T \delta \gamma_{r}^o + M_t \delta \kappa_{sz} \right) ds \]

where \(N_x, M_x, M_y, M_\omega, V_x, V_y, T, M_t \) are axial force, bending moments in the \(x \)- and \(y \)-directions, warping moment (bimoment), and torsional moment with respect to the centroid, respectively, defined by integrating over the
cross-sectional area A as

\[N_z = \int_A \sigma_z dsdn \]
(21a)

\[M_y = \int_A \sigma_z (x + n \sin \theta) dsdn \]
(21b)

\[M_x = \int_A \sigma_z (y - n \cos \theta) dsdn \]
(21c)

\[M_\omega = \int_A \sigma_z (\omega - nq) dsdn \]
(21d)

\[V_x = \int_A (\sigma_{sz} \cos \theta + \sigma_{nz} \sin \theta) dsdn \]
(21e)

\[V_y = \int_A (\sigma_{sz} \sin \theta - \sigma_{nz} \cos \theta) dsdn \]
(21f)

\[T = \int_A (\sigma_{sz} r + \sigma_{nz} q) dsdn \]
(21g)

\[M_t = \int_A \sigma_{sz} n dsdn \]
(21h)

The potential of in-plane loads V due to transverse deflection

\[V = \frac{1}{2} \int_v \sigma_z^0 \left[(u')^2 + (v')^2 \right] dv \]
(22)

where σ_z^0 is the averaged constant in-plane edge axial stress, defined by $\sigma_z^0 = P_0/A$. The variation of the potential of in-plane loads at the centroid is expressed by substituting the assumed displacement field into Eq.(22) as

\[\delta V = \int_v \frac{P_0}{A} \left[U' \delta U' + V' \delta V' + (q^2 + r^2 + 2rn + n^2) \Phi' \delta \Phi' + (\Phi' \delta U' + U' \delta \Phi') [n \cos \theta - (y - y_p)]
+ (\Phi' \delta V' + V' \delta \Phi') [n \cos \theta + (x - x_p)] \right] dv \]
(23)

The kinetic energy of the system is given by

\[T = \frac{1}{2} \int_v \rho (u^2 + v^2 + w^2) dv \]
(24)

where ρ is a density.
The variation of the kinetic energy is expressed by substituting the assumed displacement field into Eq.(24) as

\[
\delta T = \int_{t_i}^{t_f} \rho \left\{ \delta W + \dot{\Psi}_x(y - n \cos \theta) + \dot{\Psi}_y(x + n \sin \theta) + \dot{\Psi}_\omega(\omega - nq) \right\} dt + \delta U + \dot{\Phi} \left[n \cos \theta - (y - y_p) \right] + \delta V \left[m_0 \dot{V} + \dot{\Phi} \left[n \sin \theta + (x - x_p) \right] \right] + \delta \dot{\Phi} \left[U \left[n \cos \theta - (y - y_p) \right] + \dot{V} \left[n \sin \theta + (x - x_p) \right] + \dot{\Phi} (q^2 + r^2 + 2rn + n^2) \right] + \delta \dot{\Psi}_x \dot{\Psi}_x \left[W(y - n \cos \theta) + \dot{\Psi}_x(y - n \cos \theta)^2 + \dot{\Psi}_y(x + n \sin \theta)(y - n \cos \theta) + \dot{\Psi}_\omega(y - n \cos \theta)(\omega - nq) \right] + \delta \dot{\Psi}_y \dot{\Psi}_y \left[W(x + n \sin \theta) + \dot{\Psi}_x(x + n \sin \theta)(y - n \cos \theta) + \dot{\Psi}_y(x + n \sin \theta)^2 + \dot{\Psi}_\omega(x + n \sin \theta)(\omega - nq) \right] + \delta \dot{\Psi}_\omega \dot{\Psi}_\omega \left[W(\omega - nq) + \dot{\Psi}_x(y - n \cos \theta)(\omega - nq) + \dot{\Psi}_y(x + n \sin \theta)(\omega - nq) + \dot{\Psi}_\omega(\omega - nq)^2 \right] \right\} dv \tag{25}
\]

In Eqs.(23) and (25), the following geometric relations are used (Fig.1)

\[
x - x_p = q \cos \theta + r \sin \theta \tag{26a}
\]
\[
y - y_p = q \sin \theta - r \cos \theta \tag{26b}
\]

In order to derive the equations of motion, Hamilton’s principle is used

\[
\delta \int_{t_i}^{t_f} (T - \Pi) dt = 0 \tag{27}
\]

Substituting Eqs.(20), (23) and (25) into Eq.(27), the following weak statement is obtained

\[
0 = \int_{t_i}^{t_f} \int_0^t \left\{ \delta W \left[m_0 \dot{W} - m_c \dot{\Psi}_x + m_s \dot{\Psi}_y + (m_\omega - m_q) \dot{\Psi}_\omega \right] + \delta U \left[m_0 \dot{U} + (m_c + y_p m_0) \dot{\Phi} \right] + \delta \dot{V} \left[m_0 \dot{V} + (m_s - x_p m_0) \dot{\Phi} \right] + \delta \dot{\Phi} \left[m_c + y_p m_0 \dot{U} + (m_s - x_p m_0) \dot{V} + (m_p + m_2 + 2m_r) \dot{\Phi} \right] + \delta \dot{\Psi}_x \left[-m_c \dot{W} + (m_y - 2m_q + m_c) \dot{\Psi}_x + (m_x y - m_x n + m_x n q) \dot{\Psi}_y + (m_\omega - m_y n + m_y n q + m_q) \dot{\Psi}_\omega \right] + \delta \dot{\Psi}_y \left[m_s \dot{W} + (m_x y c - m_c) \dot{\Psi}_x + (m_x 2 + m_x n + m_x n q) \dot{\Psi}_y + (m_x m + m_x n q - m_q) \dot{\Psi}_\omega \right] + \delta \dot{\Psi}_\omega \left[(m_\omega - m_q) \dot{W} + (m_\omega - m_y n + m_q) \dot{\Psi}_x + (m_\omega m + m_x n q - m_q) \dot{\Psi}_y + (m_\omega 2 - 2m_q + m_2) \dot{\Psi}_\omega \right] - P \delta \dot{U}'(U' + \Phi' y_p) + \delta \dot{V}'(V' - \Phi' x_p) + \delta \dot{\Phi}' \left(\frac{f}{A} + U' y_p - V' x_p \right) - N_c \delta W' - M_o \delta \dot{\Psi}_y - M_x \delta \dot{\Psi}_x - M_\omega \delta \dot{\Psi}_\omega - V_c \delta (U' + \Psi_y) - V_y \delta (V' + \Psi_x) - T \delta (\Phi' - \Psi_\omega) - M_t \delta (\Phi' - \Psi_\omega) \right\} dz dt \tag{28}
\]

All the inertia coefficients in Eq.(28) are given in Appendix.
IV. CONSTITUTIVE EQUATIONS

The constitutive equations of a k^{th} orthotropic lamina in the laminate co-ordinate system of section are given by

$$
\begin{align*}
\left\{ \begin{array}{c}
\sigma_z \\
\sigma_{sz}
\end{array} \right\}^k =
\left[\begin{array}{cc}
\bar{Q}_{11}^* & \bar{Q}_{16}^* \\
\bar{Q}_{16}^* & \bar{Q}_{66}^*
\end{array} \right]^k
\left\{ \begin{array}{c}
\epsilon_z \\
\gamma_{sz}
\end{array} \right\}
\end{align*}
$$

(29)

where \bar{Q}_{ij}^* are transformed reduced stiffnesses. The transformed reduced stiffnesses can be calculated from the transformed stiffnesses based on the plane stress assumption and plane strain assumption. More detailed explanation can be found in Ref.[31]

The constitutive relation for out-of-plane stress and strain is given by

$$
\sigma_{nz} = Q_{55} \gamma_{nz}
$$

(30)

The constitutive equations for bar forces and bar strains are obtained by using Eqs.(16), (21) and (29)

$$
\begin{align*}
\left[\begin{array}{c}
N_z \\
M_y \\
M_z \\
M_\omega \\
M_t \\
V_x \\
V_y \\
T
\end{array} \right] &=
\left[\begin{array}{cccccccc}
E_{11} & E_{12} & E_{14} & E_{15} & E_{16} & E_{17} & E_{18} \\
E_{22} & E_{23} & E_{24} & E_{25} & E_{26} & E_{27} & E_{28} \\
E_{33} & E_{34} & E_{35} & E_{36} & E_{37} & E_{38} \\
E_{44} & E_{45} & E_{46} & E_{47} & E_{48} \\
E_{55} & E_{56} & E_{57} & E_{58} \\
E_{66} & E_{67} & E_{68} \\
E_{77} & E_{78} \\
\text{sym.}
\end{array} \right]
\left[\begin{array}{c}
\epsilon_z^c \\
\kappa_y \\
\kappa_x \\
\kappa_\omega \\
\kappa_s \\
\gamma_{zx} \\
\gamma_{yz} \\
\gamma_{\omega}
\end{array} \right]
\end{align*}
$$

(31)

where E_{ij} are stiffnesses of thin-walled composite beams and given in Ref.[30].
V. EQUATIONS OF MOTION

The equations of motion of the present study can be obtained by integrating the derivatives of the varied quantities by parts and collecting the coefficients of $\delta W, \delta U, \delta V, \delta \Phi, \delta \Psi_y, \delta \Psi_x$ and $\delta \Psi_\omega$

\[N_z' = m_0 \ddot{W} - m_c \ddot{\Psi}_x + m_s \ddot{\Psi}_y + (m_\omega - m_q) \ddot{\Psi}_\omega \]

\[V'_x + P^0 (U'' + \Phi'' y_p) = m_0 \ddot{U} + (m_c + y_p m_0) \ddot{\Phi} \]

\[V'_y + P^0 (V'' - \Phi'' x_p) = m_0 \ddot{V} + (m_s - x_p m_0) \ddot{\Phi} \]

\[M'_t + T' + P^0 \left(\frac{\Phi'' I_p}{A} + U'' y_p - V'' x_p \right) = \left(m_c - m_y + y_p m_0 \right) \ddot{U} + \left(m_s - x_p m_0 \right) \ddot{V} + \left(m_\omega + m_2 + 2 m_r \right) \ddot{\Phi} \]

\[M'_y - V_x = m_s \ddot{W} + (m_{yycs} - m_{cs}) \ddot{\Psi}_x + \left(m_{x2} + 2 m_{xs} + m_{x2} \right) \ddot{\Psi}_y \]

\[+ \left(m_{xw} + m_{xsq} \right) \ddot{\Psi}_\omega \]

\[M'_x - V_y = -m_c \ddot{W} + (m_{y2} - 2 m_{yc} + m_{c2}) \ddot{\Psi}_x + (m_{xycs} - m_{cs}) \ddot{\Psi}_y \]

\[+ \left(m_{yw} + m_{yq} \right) \ddot{\Psi}_\omega \]

\[M'_\omega + M_t - T = \left(m_\omega - m_q \right) \ddot{W} + \left(m_{w} - m_{ywd} + m_{qc} \right) \ddot{\Psi}_x \]

\[+ \left(m_{xw} + m_{xq} - m_{qs} \right) \ddot{\Psi}_y \]

\[+ \left(m_{s2} - 2 m_{q} + m_{q} \right) \ddot{\Psi}_\omega \]

The natural boundary conditions are of the form

\[\delta W : N_z \]

\[\delta U : V_x \]

\[\delta V : V_y \]

\[\delta \Phi : T + M_t \]

\[\delta \Psi_y : M_y \]

\[\delta \Psi_x : M_x \]

\[\delta \Psi_\omega : M_\omega \]

The 7th denotes the warping restraint boundary condition. When the warping of the cross section is restrained, $\Psi_\omega = 0$ and when the warping is not restrained, $M_\omega = 0$.

Eq.(32) is most general form for axial-flexural-torsional-shearing vibration of thin-walled composite beams. For general anisotropic materials, the dependent variables, U, V, W, Φ, Ψ_x, Ψ_y and Ψ_ω are fully-coupled implying that
the beam undergoes a coupled behavior involving bending, twising, extension, transverse shearing, and warping. The resulting coupling is referred to as sixfold coupled vibrations. If all the coupling effects and axial force are neglected as well as cross section is symmetrical with respect to both \(x\)- and the \(y\)-axes, Eq. (32) can be simplified to the uncoupled differential equations as

\[
(\text{EA})_{\text{com}} W'' = \rho A \ddot{W} \tag{34a}
\]

\[
(GA_y)_{\text{com}} (U'' + \Psi_y') = \rho A \ddot{U} \tag{34b}
\]

\[
(GA_x)_{\text{com}} (V'' + \Psi_x') = \rho A \ddot{V} \tag{34c}
\]

\[
(GJ_1)_{\text{com}} \Phi'' - (GJ_2)_{\text{com}} \Psi'\omega = \rho I_p \ddot{\Phi} \tag{34d}
\]

\[
(EI_y)_{\text{com}} \Psi''_y - (GA_y)_{\text{com}} (U' + \Psi_y) = \rho I_y \ddot{\Psi}_y \tag{34e}
\]

\[
(EI_x)_{\text{com}} \Psi''_x - (GA_x)_{\text{com}} (V' + \Psi_x) = \rho I_x \ddot{\Psi}_x \tag{34f}
\]

\[
(EI_\omega)_{\text{com}} \Psi''_\omega + (GJ_2)_{\text{com}} \Psi' - (GJ_1)_{\text{com}} \Psi_\omega = \rho I_\omega \ddot{\Psi}_\omega \tag{34g}
\]

From above equations, \((\text{EA})_{\text{com}}\) represents axial rigidity, \((GA_x)_{\text{com}}\), \((GA_y)_{\text{com}}\) represent shear rigidities with respect to \(x\)- and \(y\)-axis, \((EI_x)_{\text{com}}\), and \((EI_y)_{\text{com}}\) represent flexural rigidities with respect to \(x\)- and \(y\)-axis, \((EI_\omega)_{\text{com}}\) represents warping rigidity, and \((GJ)_{\text{com}}, (GJ_1)_{\text{com}}, (GJ_2)_{\text{com}}\) represent torsional rigidities of the thin-walled composite beams, respectively, written as

\[
(\text{EA})_{\text{com}} = E_{11} \tag{35a}
\]

\[
(EI_y)_{\text{com}} = E_{22} \tag{35b}
\]

\[
(EI_x)_{\text{com}} = E_{33} \tag{35c}
\]

\[
(EI_\omega)_{\text{com}} = E_{44} \tag{35d}
\]

\[
(GJ)_{\text{com}} = 4E_{55} \tag{35e}
\]

\[
(GA_y)_{\text{com}} = E_{66} \tag{35f}
\]

\[
(GA_x)_{\text{com}} = E_{77} \tag{35g}
\]

\[
(GA_\omega)_{\text{com}} = E_{88} \tag{35h}
\]

\[
(GJ_1)_{\text{com}} = E_{55} + E_{88} \tag{35i}
\]

\[
(GJ_2)_{\text{com}} = E_{55} - E_{88} \tag{35j}
\]

In Eq.(34), \(I_p\) denotes the polar moment of inertia. It is well known that the three distinct vibration modes flexural
vibration in the x- and y-direction and torsional vibration, are identified in this case and the corresponding natural frequencies are given by the approximate solution or orthotropy solution for a clamped beam boundary conditions [11]

\[
\omega_x^n = \sqrt{\frac{\rho A}{(EI_y)_{com}} \left(n + 0.5 \right)^4 \pi^4 + \frac{\rho A}{(GA_y)_{com}} \frac{L^2}{n^2 \pi^2}}^{-1}
\]

(36a)

\[
\omega_y^n = \sqrt{\frac{\rho A}{(EI_x)_{com}} \left(n + 0.5 \right)^4 \pi^4 + \frac{\rho A}{(GA_x)_{com}} \frac{L^2}{n^2 \pi^2}}^{-1}
\]

(36b)

\[
\omega_\theta^n = \sqrt{\frac{\rho I_p}{(EI_\omega)_{com}} \left(n + 0.5 \right)^4 \pi^4 + \frac{\rho I_p}{(GJ)_{com}} \frac{L^2}{n^2 \pi^2}}^{-1} + \frac{(GJ)_{com}}{\rho I_p} \frac{n^2 \pi^2}{L^2}
\]

(36c)

where $\omega_x^n, \omega_y^n, \omega_\theta^n$ are the flexural natural frequencies in the x- and y-direction, and torsional natural frequency, respectively.

VI. FINITE ELEMENT FORMULATION

The present theory for thin-walled composite beams described in the previous section was implemented via a displacement based one-dimensional finite element method. The generalized displacements are expressed over each element as a combination of the one-dimensional Lagrange interpolation function ψ_j associated with node j and the nodal values

\[
W = \sum_{j=1}^{n} w_j \psi_j
\]

(37a)

\[
U = \sum_{j=1}^{n} u_j \psi_j
\]

(37b)

\[
V = \sum_{j=1}^{n} v_j \psi_j
\]

(37c)

\[
\Phi = \sum_{j=1}^{n} \phi_j \psi_j
\]

(37d)

\[
\Psi_y = \sum_{j=1}^{n} \psi_{yj} \psi_j
\]

(37e)

\[
\Psi_x = \sum_{j=1}^{n} \psi_{xj} \psi_j
\]

(37f)

\[
\Psi_\omega = \sum_{j=1}^{n} \psi_{\omega j} \psi_j
\]

(37g)

Substituting these expressions into the weak statement in Eq.(28), the finite element model of a typical element can be expressed as
\[(K) - P^0[G] - \omega^2[M]\}\{\Delta\} = \{0\} \tag{38}\]

where \([K],[G]\) and \([M]\) are the element stiffness matrix, the element geometric stiffness matrix and the element mass matrix, respectively. More detailed explanation explicit forms of \([K]\) can be found in Ref.[30] and those of \([G]\) and \([M]\) are given in Appendix.

In Eq.(38), \(\{\Delta\}\) is the eigenvector of nodal displacements corresponding to an eigenvalue

\[\{\Delta\} = \{W \ U \ V \ \Psi_y \ \Psi_z \ \Psi_\omega\}^T \tag{39}\]

VII. NUMERICAL EXAMPLES

For verification purpose, the buckling behavior and free vibration of a cantilever isotropic mono-symmetric channel section beam, as shown in Fig.2, with length \(l=200\text{cm}\) under axial force at the centroid is performed. The material properties are assumed to be: \(E = 3 \times 10^4\text{N/cm}^2\), \(G = 1.15 \times 10^4\text{N/cm}^2\), \(\rho = 7.85 \times 10^{-3}\text{N/cm}^3\). The buckling loads and natural frequencies are evaluated and compared with numerical results of Kim et al.[32] which is based on dynamic stiffness formulation and ABAQUS solutions in Table I. The present results are in a good agreement with those by Kim et al.[32].

The next example demonstrates the accuracy and validity of this study for thin-walled composite beams. Ten quadratic elements with three nodes are used in the numerical computation. The symmetric angle-ply I-beams with various fiber angles and boundary conditions are considered. Following dimensions for I-beam are used: both of flanges width and web height are 5cm. The flanges and web are assumed to be symmetrically laminated with respect to its midplane and made of sixteen layers with each layer 0.013cm in thickness. All computations are carried out for the glass-epoxy materials with the following material properties: \(E_1 = 53.78\text{GPa}\), \(E_2 = 17.93\text{GPa}\), \(G_{12} = G_{13} = 8.96\text{GPa}\), \(G_{23} = 3.45\text{GPa}\), \(\nu_{12} = 0.25\). The critical buckling loads for a cantilever composite beam with length \(l=100\text{cm}\) and the natural frequencies for a simply supported one with length \(l=200\text{cm}\) under compressive force at the centroid are presented. The comparison of the results obtained from the proposed finite element solution, the analytical approach by Kim et al.[25,26] are given in Tables II and III for different stacking sequences. The present solution again indicates good agreement with the analytical solution and ABAQUS results for all lamination schemes considered. The effect of compressive axial force on the fundamental natural frequencies of the cantilever and simply supported beam with various fiber angles is exhibited in Figs.3 and 4. It can be seen that the change in the natural
frequency due to axial force is noticeable. The natural frequency diminishes when the axial force changes from tensile to compressive, as expected. It is obvious that the natural frequency decreases with the increase of axial force, and the decrease becomes more quickly when the fiber angle increases and the axial force is close to critical buckling load. With $\theta = 0^\circ$, 30° and 60°, at about $P=5.74 \times 10^3 N$, $3.85 \times 10^3 N$ and $2.11 \times 10^3 N$, respectively, for simply supported beam, the natural frequencies become zero which implies that at these loads, flexural-torsional bucklings occur as a degenerate case of natural vibration at zero frequency. Moreover, Figs.3 and 4 also explain the duality between flexural-torsional buckling and natural frequency.

In order to investigate the coupling and shear effects on the natural frequencies and mode shapes, a clamped thin-walled composite I-beam is considered. The geometry of the I-section is shown in Fig.5, and the following engineering constants are used

$$E_1/E_2 = 25, G_{12}/E_2 = 0.6, G_{13} = G_{12} = G_{23}, \nu_{12} = 0.25$$ (40)

For convenience, the following nondimensional natural frequency is used

$$\bar{\omega} = \frac{\omega l^2}{b_3 \sqrt{\rho/E_2}}$$ (41)

The top and bottom flanges are considered as angle-ply laminates $[\theta/\theta]$ and the web laminates are assumed to be unidirectional, (Fig.5a). For this lay-up, the coupling stiffnesses E_{35}, E_{38} do not vanish due to unsymmetric stacking sequence of the flanges. The lowest three natural frequencies by model of no shear effects based on previous research [28] and the present model with $l/b_3 = 20$ are given in Table.IV. It is interesting to note that as fiber angle increases, the shear effects decrease and become negligibly small especially in the interval $\theta \in [30^\circ, 90^\circ]$ even for the lower span-to-height ratio and higher natural frequencies. This trend can be explained that flexural stiffnesses decrease significantly with increasing fiber angle, and thus, the relative shear effects become smaller for higher fiber angles.

The lowest three natural frequencies by the finite element analysis and the orthotropy solutions, which neglects the coupling effects of E_{35}, E_{38}, from Eqs.(36a)-(36c) for each mode are illustrated in Fig.6. Due to coupling stiffnesses, the orthotropy solution might not be accurate. However, as fiber angle increases, the coupling effects coming from the material anisotropy become negligible. Therefore, it can be seen in Fig.6, for all cases of fiber angle, the lowest two natural frequencies by the finite element analysis always correspond to the first flexural mode in x-direction and the torsional mode. Vice versa, the third mode exhibits the first flexural mode in y-direction in the range of $\theta \in [0^\circ, 25^\circ]$, and after this range, this mode becomes predominantly the second flexural mode in x-direction. It can be explained partly by the mode shapes corresponding to ω_1, ω_2 and ω_3 with fiber angle $\theta = 30^\circ$ in Figs.7-9.
mode the amplitude along the beam length is normalized with respect to the maximum amplitude for that mode. Since the vibration mode 1, 2 and 3 are purely first flexural x-direction, torsional mode and the second flexural mode in x-direction, the orthotropy solution and the finite element analysis are identical. It is indicated that the simple orthotropy solution is sufficiently accurate for this lay-up.

To investigate the coupling and shear effects further, the same configuration with the previous example except the laminate stacking sequence is considered. Stacking sequence of the top flange and web are considered as $[0/45^\circ]$, while the bottom flange is $[\theta_2]$, (Fig.5b). All the coupling stiffnesses, especially, $E_{16}, E_{17}, E_{18}, E_{36}, E_{38}$ and E_{78} become no more negligibly small. Table.V shows that the solutions excluding shear effects remarkably underestimate the natural frequencies for all the range of fiber angle even for higher span-to-height ratio. It is indicated that the coupling effects become significant because the transverse shear little affects the behavior of this beam ($l/b_3 = 50$). This implies that discarding shear effects leads to an overprediction of the natural frequencies especially for higher modes. Thus, the orthotropy solution and the finite element solution show discrepancy in Fig.10. The mode shapes corresponding to the lowest three natural frequencies with fiber angle $\theta = 30^\circ$ are illustrated in Figs.11-13. Relative measures of flexural displacements, torsional and shearing rotation show that when the beam is vibrating at the natural frequency belonging to the first and second mode exhibits fourfold coupled mode (flexural vibration in the x-direction, torsional and corresponding shearing vibration), whereas, third mode displays sixfold coupled mode (flexural mode in the x-, y-direction, torsional mode and corresponding shearing vibration). This fact explains as the fiber angle changes, for lower span-to-height ratio (Fig.10), the orthotropy solutions disagree with the finite element solutions as anisotropy of the beam gets higher. That is, the orthotropy solution is no longer valid for unsymmetrically laminated beams, and sixfold coupled flexural-torsional-shearing vibration should be considered even for a doubly symmetric cross-section.

VIII. CONCLUDING REMARKS

An analytical model based on shear-deformable beam theory is developed to study the flexural-torsional coupled vibration and buckling of thin-walled composite beams. This model is capable of predicting accurate natural frequencies, buckling loads as well as corresponding mode shapes for various configuration including boundary conditions, laminate orientation and span-to-height ratio. To formulate the problem, a one-dimensional displacement-based finite element method is employed. All of the possible vibration modes including the flexural mode in the x- and y-direction, the torsional mode, and fully coupled flexural-torsional-shearing mode are included in the analysis. The shear effects become significant for lower span-to-height ratio and higher degrees of orthotropy of the beam. The orthotropy solu-
tion is accurate for lower degrees of material anisotropy, but, becomes inappropriate as the anisotropy of the beam gets higher, and fully coupled equations should be considered for accurate analysis of thin-walled composite beams. The present model is found to be appropriate and efficient in analyzing flexural-torsional coupled vibration and buckling of thin-walled composite beams.

Acknowledgments

The support of the research reported here by Seoul R&BD Program through Grant GR070033 is gratefully acknowledged. The authors also would like to thank the anonymous reviewers for their suggestions in improving the standard of the manuscript.

APPENDIX

Inertia coefficients in Eq.(28) are defined by

\[m_0 = I_0 \int ds \] \hspace{1cm} (42a)
\[m_c = I_1 \int \cos \theta ds \] \hspace{1cm} (42b)
\[m_r = I_1 \int r ds \] \hspace{1cm} (42c)
\[m_p = I_0 \int (q^2 + r^2) ds \] \hspace{1cm} (42d)
\[m_q = I_1 \int q ds \] \hspace{1cm} (42e)
\[m_s = I_1 \int \sin \theta ds \] \hspace{1cm} (42f)
\[m_\omega = I_0 \int \omega ds \] \hspace{1cm} (42g)
\[m_2 = I_2 \int ds \] \hspace{1cm} (42h)
\[m_{c2} = I_2 \int \cos^2 \theta ds \] \hspace{1cm} (42i)
\[m_{s2} = I_2 \int \sin^2 \theta ds \] \hspace{1cm} (42j)
\[m_{q2} = I_2 \int q^2 ds \] \hspace{1cm} (42k)
\[m_{x2} = I_0 \int x^2 ds \] \hspace{1cm} (42l)
\[m_{y2} = I_0 \int y^2 ds \] \hspace{1cm} (42m)
\[m_{\omega2} = I_0 \int \omega^2 ds \] \hspace{1cm} (42n)
\[m_{cs} = I_2 \int \sin \theta \cos \theta ds \] \hspace{1cm} (42o)
\[m_{qc} = I_2 \int_q q \cos \theta ds \] (42p)

\[m_{qs} = I_2 \int_q q \sin \theta ds \] (42q)

\[m_{xs} = I_1 \int_x x \sin \theta ds \] (42r)

\[m_{yc} = I_1 \int_y y \cos \theta ds \] (42s)

\[m_{q\omega} = I_1 \int_q q \omega ds \] (42t)

\[m_{x\omega} = I_0 \int_x x \omega ds \] (42u)

\[m_{y\omega} = I_0 \int_y y \omega ds \] (42v)

\[m_{\omega c} = I_1 \int_\omega \omega \cos \theta ds \] (42w)

\[m_{\omega s} = I_1 \int_\omega \omega \sin \theta ds \] (42x)

\[m_{xycs} = I_1 \int_{xycs} (-x \cos \theta + y \sin \theta) ds \] (42y)

\[m_{x\omega q} = I_1 \int_{x\omega q} (-qx + \omega \sin \theta) ds \] (42z)

\[m_{y\omega q} = I_1 \int_{y\omega q} (qy + \omega \cos \theta) ds \] (42aa)

Where

\[(I_0, I_1, I_2) = \int_\rho(1, n, n^2)dn \] (43)

\[[M] \] is the 7×7 element mass matrix with coefficients given by

\[M_{ij}^{11} = M_{ij}^{22} = M_{ij}^{33} = \int_0^l m_0 \psi_i \psi_j dz \] (44a)

\[M_{ij}^{15} = \int_0^l m_s \psi_i \psi_j dz \] (44b)

\[M_{ij}^{16} = -\int_0^l m_c \psi_i \psi_j dz \] (44c)

\[M_{ij}^{17} = \int_0^l (m_\omega - m_q) \psi_i \psi_j dz \] (44d)

\[M_{ij}^{24} = \int_0^l (m_c + m_0 y_p) \psi_i \psi_j dz \] (44e)

\[M_{ij}^{34} = \int_0^l (m_s - m_0 x_p) \psi_i \psi_j dz \] (44f)

\[M_{ij}^{44} = \int_0^l (m_p + m_2 + 2m_r) \psi_i \psi_j dz \] (44g)

\[M_{ij}^{55} = \int_0^l (m_{x2} + 2m_{xs} + m_{s2}) \psi_i \psi_j dz \] (44h)
\[M_{ij}^{56} = \int_0^l (m_{xycs} - m_{cs}) \psi_i \psi_j dz \] (44i)
\[M_{ij}^{57} = \int_0^l (m_{xws} + m_{xwqs} - m_{qs}) \psi_i \psi_j dz \] (44j)
\[M_{ij}^{66} = \int_0^l (m_{ys} - 2m_{yc} + m_{es}) \psi_i \psi_j dz \] (44k)
\[M_{ij}^{67} = \int_0^l (m_{ys} - m_{yqs} + m_{qs}) \psi_i \psi_j dz \] (44l)
\[M_{ij}^{77} = \int_0^l (m_{ws} - 2m_{ws} + m_{es}) \psi_i \psi_j dz \] (44m)

and \([G]\) is the 7×7 element geometric stiffness matrix with coefficients given by

\[G_{ij}^{22} = G_{ij}^{33} = \int_0^l \psi_i' \psi_j' dz \] (45a)
\[G_{ij}^{24} = \int_0^l y_p \psi_i' \psi_j' dz \] (45b)
\[G_{ij}^{34} = -\int_0^l x_p \psi_i' \psi_j' dz \] (45c)
\[G_{ij}^{44} = \int_0^l \frac{I_p}{A} \psi_i' \psi_j' dz \] (45d)

All other components are zero.

References

CAPTIONS OF TABLES

Table I: The buckling loads and natural frequencies a cantilever isotropic mono-symmetric channel section beam.

Table II: Critical buckling loads of a cantilever composite I-beam (N).

Table III: Natural frequencies of a simply supported composite I-beam (Hz).

Table IV: Nondimensional natural frequencies respect to the fiber angle change in top and bottom flanges of a clamped composite beam with span-to-height ratio $l/b_3 = 20$.

Table V: Nondimensional natural frequencies respect to the fiber angle change in the bottom flange of a clamped composite beam with two span-to-height ratios $l/b_3 = 10$ and 50.
CAPTIONS OF FIGURES

Figure 1: Definition of coordinates in thin-walled open sections.

Figure 2: Isotropic mono-symmetric channel section for verification.

Figure 3: The interaction diagram between critical buckling load and fundamental natural frequency of a simply supported composite beam with the fiber angle 0°, 30° and 60° in the flanges and web.

Figure 4: The interaction diagram between critical buckling load and fundamental natural frequency of a cantilever composite beam with the fiber angle 0°, 30° and 60° in the flanges and web.

Figure 5: Geometry and stacking sequences of thin-walled composite I-beam.

Figure 6: Variation of the lowest three nondimensional natural frequencies with respect to fiber angle change in the flanges of a clamped composite beam with $l/b_3 = 20$.

Figure 7: Mode shapes of the flexural and corresponding shearing components for the first mode $\omega_1 = 8.471$ of a clamped composite beam with the fiber angle 30° in the flanges with $l/b_3 = 20$.

Figure 8: Mode shapes of the torsional and corresponding shearing components for the second mode $\omega_2 = 10.092$ of a clamped composite beam with the fiber angle 30° in the flanges with $l/b_3 = 20$.

Figure 9: Mode shapes of the flexural and corresponding shearing components for the third mode $\omega_3 = 23.209$ of a clamped composite beam with the fiber angle 30° in the flanges with $l/b_3 = 20$.

Figure 10: Variation of the lowest three nondimensional natural frequencies with respect to fiber angle change in the bottom flange of a clamped composite beam with $l/b_3 = 10$.

Figure 11: Mode shapes of the flexural, torsional and corresponding shearing components for the first mode $\omega_1 = 8.678$ of a clamped composite beam with the fiber angle 30° in the bottom flange with $l/b_3 = 10$.

Figure 12: Mode shapes of the flexural, torsional and corresponding shearing components for the second mode $\omega_2 = 11.966$ of a clamped composite beam with the fiber angle 30° in the bottom flange with $l/b_3 = 10$.

Figure 13: Mode shapes of the flexural, torsional and corresponding shearing components for the third mode $\omega_3 = 18.980$ of a clamped composite beam with the fiber angle 30° in the bottom flange with $l/b_3 = 10$.
TABLE I The bucking loads and natural frequencies a cantilever isotropic mono-symmetric channel section beam.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Buckling loads (N)</th>
<th>Natural frequencies (rad/s)2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABAQUS</td>
<td>Theory</td>
</tr>
<tr>
<td>1</td>
<td>0.027</td>
<td>0.028</td>
</tr>
<tr>
<td>2</td>
<td>0.334</td>
<td>0.331</td>
</tr>
<tr>
<td>3</td>
<td>0.704</td>
<td>0.696</td>
</tr>
<tr>
<td>4</td>
<td>1.065</td>
<td>1.074</td>
</tr>
</tbody>
</table>
TABLE II Critical buckling loads of a cantilever composite I-beam (N).

<table>
<thead>
<tr>
<th>Lay-ups</th>
<th>Ref.[25] ABAQUS</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]_{16}</td>
<td>5720.0</td>
<td>5755.2</td>
</tr>
<tr>
<td>[15/ − 15]_{4s}</td>
<td>5174.0</td>
<td>5199.8</td>
</tr>
<tr>
<td>[30/ − 30]_{4s}</td>
<td>3848.0</td>
<td>3861.0</td>
</tr>
<tr>
<td>[45/ − 45]_{4s}</td>
<td>2665.0</td>
<td>2672.7</td>
</tr>
<tr>
<td>[60/ − 60]_{4s}</td>
<td>2119.0</td>
<td>2114.7</td>
</tr>
<tr>
<td>[75/ − 75]_{4s}</td>
<td>1950.0</td>
<td>1948.3</td>
</tr>
<tr>
<td>[0/90]_{4s}</td>
<td>3848.0</td>
<td>3857.8</td>
</tr>
</tbody>
</table>

Present: 5741.5, 5189.0, 3854.5, 2668.4, 2111.3, 1945.1, 3829.8
TABLE III Natural frequencies of a simply supported composite I-beam (Hz).

<table>
<thead>
<tr>
<th>Lay-ups</th>
<th>Formulation</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>[0]_{16}</td>
<td>Ref. [26]</td>
<td>24.194</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>24.150</td>
</tr>
<tr>
<td>[15/ − 15]_{4s}</td>
<td>Ref. [26]</td>
<td>22.997</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>22.955</td>
</tr>
<tr>
<td>[30/ − 30]_{4s}</td>
<td>Ref. [26]</td>
<td>19.816</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>19.776</td>
</tr>
<tr>
<td>[45/ − 45]_{4s}</td>
<td>Ref. [26]</td>
<td>16.487</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>16.446</td>
</tr>
<tr>
<td>[60/ − 60]_{4s}</td>
<td>Ref. [26]</td>
<td>14.666</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>14.627</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>14.042</td>
</tr>
<tr>
<td>[0/90]_{4s}</td>
<td>Ref. [26]</td>
<td>13.970</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>13.937</td>
</tr>
</tbody>
</table>
TABLE IV Nondimensional natural frequencies respect to the fiber angle change in top and bottom flanges of a clamped composite beam with span-to-height ratio $l/b_3 = 20$.

<table>
<thead>
<tr>
<th>Fiber angle</th>
<th>No shear ([28]) w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>w_5</th>
<th>Present w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>w_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.289</td>
<td>18.362</td>
<td>44.903</td>
<td>47.279</td>
<td>50.406</td>
<td>15.460</td>
<td>17.211</td>
<td>33.996</td>
<td>40.271</td>
<td>44.134</td>
</tr>
</tbody>
</table>
TABLE V Nondimensional natural frequencies respect to the fiber angle change in the bottom flange of a clamped composite beam with two span-to-height ratios $l/b_3 = 10$ and 50.

<table>
<thead>
<tr>
<th>Ratio l/b_3</th>
<th>Fiber angle °</th>
<th>Present w_1</th>
<th>Present w_2</th>
<th>Present w_3</th>
<th>Present w_4</th>
<th>Present w_5</th>
<th>Present w_6</th>
<th>Present w_7</th>
<th>Present w_8</th>
<th>Present w_9</th>
<th>Present w_{10}</th>
<th>Present w_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13.805</td>
<td>15.314</td>
<td>38.024</td>
<td>39.102</td>
<td>42.158</td>
<td>11.627</td>
<td>14.296</td>
<td>22.508</td>
<td>29.202</td>
<td>33.345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13.208</td>
<td>16.675</td>
<td>36.343</td>
<td>37.272</td>
<td>43.126</td>
<td>12.872</td>
<td>17.229</td>
<td>31.024</td>
<td>35.165</td>
<td>44.903</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIG. 1 Definition of coordinates in thin-walled open sections
FIG. 2 Isotropic mono-symmetric channel section for verification.
FIG. 3 The interaction diagram between critical buckling load and fundamental natural frequency of a simply supported composite beam with the fiber angle 0°, 30° and 60° in the flanges and web.
FIG. 4 The interaction diagram between critical buckling load and fundamental natural frequency of a cantilever composite beam with the fiber angle 0°, 30° and 60° in the flanges and web.
FIG. 5 Geometry and stacking sequences of thin-walled composite I-beam.
FIG. 6 Variation of the lowest three nondimensional natural frequencies with respect to fiber angle change in the flanges of a clamped composite beam with $l/b_3 = 20$.
FIG. 7 Mode shapes of the flexural and corresponding shearing components for the first mode $\omega_1 = 8.471$ of a clamped composite beam with the fiber angle 30° in the flanges with $l/b_3 = 20$.
FIG. 8 Mode shapes of the torsional and corresponding shearing components for the second mode $\omega_2 = 10.092$ of a clamped composite beam with the fiber angle 30° in the flanges with $l/b_3 = 20$.
FIG. 9 Mode shapes of the flexural and corresponding shearing components for the third mode $\omega_3 = 23.209$ of a clamped composite beam with the fiber angle 30° in the flanges with $l/b_3 = 20$.
FIG. 10 Variation of the lowest three nondimensional natural frequencies with respect to fiber angle change in the bottom flange of a clamped composite beam with $l/b_3 = 10$.
FIG. 11 Mode shapes of the flexural, torsional and corresponding shearing components for the first mode $\omega_1 = 8.678$ of a clamped composite beam with the fiber angle 30° in the bottom flange with $l/b_3 = 10$.
FIG. 12 Mode shapes of the flexural, torsional and corresponding shearing components for the second mode $\omega_2 = 11.966$ of a clamped composite beam with the fiber angle 30° in the bottom flange with $l/b_3 = 10$.
FIG. 13 Mode shapes of the flexural, torsional and corresponding shearing components for the third mode $\omega_3 = 18.980$ of a clamped composite beam with the fiber angle 30° in the bottom flange with $l/b_3 = 10$.