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Flexural-torsional coupled vibration and buckling of thin-walled open section

composite beams using shear-deformable beam theory

Thuc Phuong Vo∗ and Jaehong Lee†

Department of Architectural Engineering, Sejong University

98 Kunja Dong, Kwangjin Ku, Seoul 143-747, Korea

(Dated: November 7, 2008)

A general analytical model based on shear-deformable beam theory has been developed to study

the flexural-torsional coupled vibration and buckling of thin-walled open section composite beams

with arbitrary lay-ups. This model accounts for all the structural coupling coming from the

material anisotropy. The seven governing differential equations for coupled flexural-torsional-

shearing vibration are derived from the Hamilton’s principle. The resulting coupling is referred

to as sixfold coupled vibration. Numerical results are obtained to investigate effects of shear

deformation, fiber orientation and axial force on the natural frequencies, corresponding mode

shapes as well as load-frequency interaction curves.

Keywords: Thin-walled composite beams; shear deformation; flexural-torsional-shearing vibration; load-frequency

interaction curves.

I. INTRODUCTION

Fiber-reinforced composite materials have been used over the past few decades in a variety of structures. Composites

have many desirable characteristics, such as high ratio of stiffness and strength to weight, corrosion resistance and

magnetic transparency. Thin-walled structural shapes made up of composite materials, which are usually produced by

pultrusion, are being increasingly used in many engineering fields. However, the structural behavior is very complex

due to coupling effects as well as warping-torsion and thus, the accurate prediction of stability limit state and dynamic
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2

characteristics is of the fundamental importance in the design of thin-walled composite structures. Moreover, it is

well known that the classical laminated beam theory, based on Euler-Bernoulli hypothesis, is inaccurate for moderate

length to thickness ratio and/or for highly anisotropic composite beams. Therefore, incorporation of shear deformation

effects is a major issue in the analysis of thin-walled composite beams due to their lower transverse modulus compared

to in-plane modulus.

The theory of thin-walled open section members made of isotropic materials was first developed by Vlasov [1]

and Gjelsvik [2]. Up to the present, investigation into the stability and vibrational behavior of these members has

received widespread attention and has been carried out extensively since the early works of Timoshenko [3,4] and

Trahair [5]. Closed-form solution for the flexural, torsional natural frequencies and critical buckling loads of isotropic

thin-walled beams are found in the literature. For thin-walled composite material, Chandra et al. [6] presented a

free vibration analysis of coupled composite I-beams with couplings under rotation. In order to validate the theory,

graphite-epoxy and kevlar-epoxy I-beams with bending-torsion coupling were fabricated using an autoclave molding

technique and tested in an in vacuo rotor test facility for their vibration characteristics. Song and Librescu [7]

focused on the formulation of the general dynamic problem of arbitrary thin-walled open section composite beams.

Besides, the monograph of Librescu and Song [8] was concerned not only with the foundation and formulation of

linear and nonlinear theories but also provided powerful mathematical tools to address issues of statics and dynamics

of thin-walled composite beams. Kollar [9-11] presented the analysis of flexural-torsional buckling and vibration of

thin-walled open section composite beams. Vlasov’s classical theory of thin-walled beams was modified to include

both the transverse shear and the restrained warping induced shear deformations. Qiao et al. [12] introduced

analytical study for free vibration analysis of fiber-reinforced plastic composite cantilever I-beams. Della and Shu

[13,14] provided not only a relevant survey on the available analytical models and numerical analyses for the free

vibration of delaminated composite laminates but also presented an analytical solution to the free vibrations of beams

with two overlapping delaminations under axial compressive loads. In their model, the delaminated beam was analyzed

as seven interconnected Euler-Bernoulli beams.

For some practical applications, earlier studies have shown that the effect of axial force on the natural frequencies and

mode shapes is significant. Although a large number of studies have been performed on the dynamic characteristics

of axially loaded isotropic thin-walled beams, it should be noted that only a few deal with thin-walled composite

structures with arbitrary lay-ups. A literature survey on the subject shows that there appear some works reported on

the free vibration of axially loaded closed-section thin-walled composite beams. Many numerical techniques have been
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3

used to solve the dynamic analysis of thin-walled composite beams. One of the most effective approach is to derive the

exact stiffness matrices based on the solution of the differential equation of beam. Most of those studies adopted an

analytical method that required explicit expressions of exact displacement functions for governing equations. Banerjee

[15,16] applied the exact dynamic stiffness matrix to perform the free vibration analysis of axially loaded composite

Timoshenko beams. Li et al. [17-19] developed the analytical solution to determine the flexure-torsion coupled dynamic

responses of axially loaded thin-walled composite beam under concentrated, distributed time-dependent loads and

external stochastic excitations. The influences of axial force, Poisson effect, axial deformation, shear deformation and

rotary inertia were also discussed in their research. By using finite element method, Bank and Kao [20] analysed free

and forced vibration of thin-walled fibre reinforced composite material beams by using the Timoshenko beam theory.

The works of Cortinez, Piovan, Machado and coworkers [21-23] deserved special attention because they introduced a

new theoretical model for the generalized linear analysis of thin-walled composite beams. This model allowed studying

many problems of static’s, free vibrations with or without arbitrary initial stresses and linear stability of composite

thin-walled beams. Machado et al. [23] also investigated the dynamic stability of thin-walled composite beams under

axial external force. The analysis was based on a small strain and moderate rotation theory, which was formulated

through the adoption of a second-order displacement field. In their research [21-23], thin-walled composite beams

for both open and closed cross-sections and the shear flexibility (bending, non-uniform warping) were incorporated.

However, it was strictly valid for symmetric balanced laminates and especially orthotropic laminates. Recently, Kim

et al.[24-26] evaluated not only the exact element stiffness matrix to perform the spatially coupled stability analysis

of thin-walled composite beams under a compressive force but also dynamic stiffness matrix of thin-walled composite

I-beam with arbitrary laminations.

In this paper, which is an extension of the author’s previous works [27-30], flexural-torsional coupled vibration and

buckling of thin-walled open section composite beams with arbitrary lay-ups is presented. This model is based on

the first-order shear-deformable beam theory, and accounts for all the structural coupling coming from the material

anisotropy. The seven governing differential equations for coupled flexural-torsional-shearing vibration are derived

from the Hamilton’s principle. The resulting coupling is referred to as sixfold coupled vibration. A displacement-based

one-dimensional finite element model is developed to solve the problem. Numerical results are obtained to investigate

the effects of shear deformation, fiber orientation and axial force on the natural frequencies, corresponding mode

shapes as well as load-frequency interaction curves.
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II. KINEMATICS

The theoretical developments presented in this paper require two sets of coordinate systems which are mutually

interrelated. The first coordinate system is the orthogonal Cartesian coordinate system (x, y, z), for which the x- and

y-axes lie in the plane of the cross section and the z axis parallel to the longitudinal axis of the beam. The second

coordinate system is the local plate coordinate (n, s, z) as shown in Fig.1, wherein the n axis is normal to the middle

surface of a plate element, the s axis is tangent to the middle surface and is directed along the contour line of the

cross section. The (n, s, z) and (x, y, z) coordinate systems are related through an angle of orientation θ as defined in

Fig.1. Point P is called the pole axis, through which the axis parallel to the z axis is called the pole axis.

To derive the analytical model for a thin-walled composite beam, the following assumptions are made:

1. The contour of the thin wall does not deform in its own plane.

2. Transverse shear strains γ◦xz, γ
◦
yz and warping shear γ◦ω are incorporated. It is assumed that they are uniform

over the cross-sections.

3. Each laminate is thin and perfectly bonded.

4. Local buckling is not considered.

According to assumption 1, the midsurface displacement components ū, v̄ at a point A in the contour coordinate

system can be expressed in terms of a displacements U, V of the pole P in the x, y directions, respectively, and the

rotation angle Φ about the pole axis,

ū(s, z) = U(z) sin θ(s) − V (z) cos θ(s) − Φ(z)q(s) (1a)

v̄(s, z) = U(z) cos θ(s) + V (z) sin θ(s) + Φ(z)r(s) (1b)

These equations apply to the whole contour. The out-of-plane shell displacement w̄ can now be found from the

assumption 2. For each element of middle surface, the midsurface shear strains in the contour can be expressed with

respect to the transverse shear and warping shear strains.

γ̄nz(s, z) = γ◦xz(z) sin θ(s) − γ◦yz(z) cos θ(s) − γ◦ω(z)q(s) (2a)

γ̄sz(s, z) = γ◦xz(z) cos θ(s) + γ◦yz(z) sin θ(s) + γ◦ω(z)r(s) (2b)

Further, it is assumed that midsurface shear strain in s− n direction is zero (γ̄sn = 0). From the definition of the
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shear strain, γ̄sz = 0 can also be given for each element of middle surface as:

γ̄sz(s, z) =
∂v̄

∂z
+
∂w̄

∂s
(3)

After substituting for v̄ from Eq.(1) into Eq.(3) and considering the following geometric relations,

dx = ds cos θ (4a)

dy = ds sin θ (4b)

Displacement w̄ can be integrated with respect to s from the origin to an arbitrary point on the contour,

w̄(s, z) = W (z) + Ψy(z)x(s) + Ψx(z)y(s) + Ψω(z)ω(s) (5)

where Ψx,Ψy and Ψω represent rotations of the cross section with respect to x, y and ω, respectively, given by:

Ψy = γ◦xz(z) − U ′ (6a)

Ψx = γ◦yz(z) − V ′ (6b)

Ψω = γ◦ω(z) − Φ′ (6c)

When the transverse shear effect is ignored, Eq.(6) degenerates to Ψy = −U ′, Ψx = −V ′ and Ψω = −Φ′. As a result,

the number of unknown variables reduces to four leading to the Euler-Bernoulli beam model. The prime (′) is used

to indicate differentiation with respect to z; and ω is the so-called sectorial coordinate or warping function given by

ω(s) =

∫ s

s◦

r(s)ds (7a)

The displacement components u, v, w representing the deformation of any generic point on the profile section are

given with respect to the midsurface displacements ū, v̄, w̄ by assuming the first order variation of inplane displacements

v, w through the thickness of the contour as:

u(s, z, n) = ū(s, z) (8a)

v(s, z, n) = v̄(s, z) + nψ̄s(s, z) (8b)

w(s, z, n) = w̄(s, z) + nψ̄z(s, z) (8c)

where, ψ̄s and ψ̄z denote the rotations of a transverse normal about the z and s axis, respectively. These functions

can be determined by considering that the midsurface shear strains γnz is given by definition:

γ̄nz(s, z) =
∂w̄

∂n
+
∂ū

∂z
(9)
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By comparing Eq.(2) and (9), the function can ψ̄z can be written as

ψ̄z = Ψy sin θ − Ψx cos θ − Ψωq (10)

Similarly, using the assumption that the shear strain γsn should vanish at midsurface, the function ψ̄s can be obtained

ψ̄s = −
∂ū

∂s
(11)

The strains associated with the small-displacement theory of elasticity are given by

ǫs(s, z, n) = ǭs(s, z) + nκ̄s(s, z) (12a)

ǫz(s, z, n) = ǭz(s, z) + nκ̄z(s, z) (12b)

γsz(s, z, n) = γ̄sz(s, z) + nκ̄sz(s, z) (12c)

γnz(s, z, n) = γ̄nz(s, z) + nκ̄nz(s, z) (12d)

where

ǭs =
∂v̄

∂s
; ǭz =

∂w̄

∂z
(13a)

κ̄s =
∂ψ̄s

∂s
; κ̄z =

∂ψ̄z

∂z
(13b)

κ̄sz =
∂ψ̄z

∂s
+
∂ψ̄s

∂z
; κ̄nz = 0 (13c)

All the other strains are identically zero. In Eq.(13), ǭs and κ̄s are assumed to be zero, and ǭz, κ̄z and κ̄sz are

midsurface axial strain and biaxial curvature of the shell, respectively. The above shell strains can be converted to

beam strain components by substituting Eqs.(1), (5) and (8) into Eq.(13) as

ǭz = ǫ◦z + xκy + yκx + ωκω (14a)

κ̄z = κy sin θ − κx cos θ − κωq (14b)

κ̄sz = κsz (14c)

where ǫ◦z, κx, κy, κω and κsz are axial strain, biaxial curvatures in the x- and y-direction, warping curvature with
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respect to the shear center, and twisting curvature in the beam, respectively defined as

ǫ◦z = W ′ (15a)

κx = Ψ′
x (15b)

κy = Ψ′
y (15c)

κω = Ψ′
ω (15d)

κsz = Φ′ − Ψω (15e)

The resulting strains can be obtained from Eqs.(12) and (14) as

ǫz = ǫ◦z + (x+ n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω (16a)

γsz = γ◦xz cos θ + γ◦yz sin θ + γ◦ωr + nκsz (16b)

γnz = γ◦xz sin θ − γ◦yz cos θ − γ◦ωq (16c)

III. VARIATIONAL FORMULATION

The total potential energy of the system can be stated, in its buckled shape, as

Π = U + V (17)

where U is the strain energy

U =
1

2

∫

v

(σzǫz + σszγsz + σnzγsz)dv (18)

After substituting Eq.(16) into Eq.(18)

U =
1

2

∫

v

{

σz

[

ǫ◦z + (x+ n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω

]

+ σsz

[

γ◦xz cos θ + γ◦yz sin θ + γ◦ωr + nκsz

]

+ σnz

[

γ◦xz sin θ − γ◦yz cos θ + γ◦ωq
]

}

dv (19)

The variation of strain energy, Eq.(19), can be stated as

δU =

∫ l

0

(Nzδǫz +Myδκy +Mxδκx +Mωδκω + Vxδγ
◦
xz + Vyδγ

◦
yz + Tδγ◦ω +Mtδκsz)ds (20)

where Nz,Mx,My,Mω, Vx, Vy, T,Mt are axial force, bending moments in the x- and y-directions, warping mo-

ment (bimoment), and torsional moment with respect to the centroid, respectively, defined by integrating over the
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cross-sectional area A as

Nz =

∫

A

σzdsdn (21a)

My =

∫

A

σz(x+ n sin θ)dsdn (21b)

Mx =

∫

A

σz(y − n cos θ)dsdn (21c)

Mω =

∫

A

σz(ω − nq)dsdn (21d)

Vx =

∫

A

(σsz cos θ + σnz sin θ)dsdn (21e)

Vy =

∫

A

(σsz sin θ − σnz cos θ)dsdn (21f)

T =

∫

A

(σszr + σnzq)dsdn (21g)

Mt =

∫

A

σszndsdn (21h)

The potential of in-plane loads V due to transverse deflection

V =
1

2

∫

v

σ0

z

[

(u′)2 + (v′)2
]

dv (22)

where σ0

z is the averaged constant in-plane edge axial stress, defined by σ0

z = P 0/A. The variation of the potential

of in-plane loads at the centroid is expressed by substituting the assumed displacement field into Eq.(22) as

δV =

∫

v

P 0

A

[

U ′δU ′ + V ′δV ′ + (q2 + r2 + 2rn+ n2)Φ′δΦ′ + (Φ′δU ′ + U ′δΦ′)
[

n cos θ − (y − yp)
]

+ (Φ′δV ′ + V ′δΦ′)
[

n cos θ + (x− xp)
]

]

dv (23)

The kinetic energy of the system is given by

T =
1

2

∫

v

ρ(u̇2 + v̇2 + ẇ2)dv (24)

where ρ is a density.
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The variation of the kinetic energy is expressed by substituting the assumed displacement field into Eq.(24) as

δT =

∫

v

ρ

{

δẆ

[

Ẇ + Ψ̇x(y − n cos θ) + Ψ̇y(x+ n sin θ) + Ψ̇ω(ω − nq)

]

+ δU̇

[

U̇ + Φ̇
[

n cos θ − (y − yp)
]

]

+ δV̇

[

m0V̇ + Φ̇
[

n sin θ + (x − xp)
]

]

+ δΦ̇Φ̇

[

U̇
[

n cos θ − (y − yp)
]

+ V̇
[

n sin θ + (x− xp)
]

+ Φ̇(q2 + r2 + 2rn+ n2)

]

+ δΨ̇xΨ̇x

[

Ẇ (y − n cos θ) + Ψ̇x(y − n cos θ)2 + Ψ̇y(x+ n sin θ)(y − n cos θ) + Ψ̇ω(y − n cos θ)(ω − nq)

]

+ δΨ̇yΨ̇y

[

Ẇ (x+ n sin θ) + Ψ̇x(x+ n sin θ)(y − n cos θ) + Ψ̇y(x+ n sin θ)2 + Ψ̇ω(x+ n sin θ)(ω − nq)

]

+ δΨ̇ωΨ̇ω

[

Ẇ (ω − nq) + Ψ̇x(y − n cos θ)(ω − nq) + Ψ̇y(x+ n sin θ)(ω − nq) + Ψ̇ω(ω − nq)2

]}

dv (25)

In Eqs.(23) and (25), the following geometric relations are used (Fig.1)

x− xp = q cos θ + r sin θ (26a)

y − yp = q sin θ − r cos θ (26b)

In order to derive the equations of motion, Hamilton’s principle is used

δ

∫ t2

t1

(T − Π)dt = 0 (27)

Substituting Eqs.(20), (23) and (25) into Eq.(27), the following weak statement is obtained

0 =

∫ t2

t1

∫ l

0

{

δẆ
[

m0Ẇ −mcΨ̇x +msΨ̇y + (mω −mq)Ψ̇ω

]

+ δU̇
[

m0U̇ + (mc + ypm0)Φ̇
]

+ δV̇
[

m0V̇ + (ms − xpm0)Φ̇
]

+ δΦ̇
[

(mc + ypm0)U̇ + (ms − xpm0)V̇ + (mp +m2 + 2mr)Φ̇
]

+ δΨ̇x

[

−mcẆ + (my2 − 2myc +mc2)Ψ̇x + (mxycs −mcs)Ψ̇y + (myω −myωqc +mqc)Ψ̇ω

]

+ δΨ̇y

[

msẆ + (mxycs −mcs)Ψ̇x + (mx2 + 2mxs +ms2)Ψ̇y + (mxω +mxωqs −mqs)Ψ̇ω

]

+ δΨ̇ω

[

(mω −mq)Ẇ + (myω −myωqc +mqc)Ψ̇x + (mxω +mxωqs −mqs)Ψ̇y + (mω2 − 2mqω +mq2)Ψ̇ω

]

− P 0
[

δU ′(U ′ + Φ′yp) + δV ′(V ′ − Φ′xp) + δΦ′(Φ′ Ip
A

+ U ′yp − V ′xp)
]

−NzδW
′

− MyδΨ
′
y −MxδΨ

′
x −MωδΨ

′
ω − Vxδ(U

′ + Ψy) − Vyδ(V
′ + Ψx) − Tδ(Φ′ − Ψω) −Mtδ(Φ

′ − Ψω)

}

dzdt (28)

All the inertia coefficients in Eq.(28) are given in Appendix.
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IV. CONSTITUTIVE EQUATIONS

The constitutive equations of a kth orthotropic lamina in the laminate co-ordinate system of section are given by
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(29)

where Q̄∗
ij are transformed reduced stiffnesses. The transformed reduced stiffnesses can be calculated from the

transformed stiffnesses based on the plane stress assumption and plane strain assumption. More detailed explanation

can be found in Ref.[31]

The constitutive relation for out-of-plane stress and strain is given by

σnz = Q̄55γnz (30)

The constitutive equations for bar forces and bar strains are obtained by using Eqs.(16), (21) and (29)
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(31)

where Eij are stiffnesses of thin-walled composite beams and given in Ref.[30].
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V. EQUATIONS OF MOTION

The equations of motion of the present study can be obtained by integrating the derivatives of the varied quantities

by parts and collecting the coefficients of δW, δU, δV, δΦ, δΨy, δΨx and δΨω

N ′
z = m0Ẅ −mcΨ̈x +msΨ̈y + (mω −mq)Ψ̈ω (32a)

V ′
x + P 0

(

U ′′ + Φ′′yp

)

= m0Ü + (mc + ypm0)Φ̈ (32b)

V ′
y + P 0

(

V ′′ − Φ′′xp

)

= m0V̈ + (ms − xpm0)Φ̈ (32c)

M ′
t + T ′ + P 0

(

Φ′′ Ip
A

+ U ′′yp − V ′′xp

)

= (mc −my + ypm0)Ü + (ms − xpm0)V̈ + (mp +m2 + 2mr)Φ̈ (32d)

M ′
y − Vx = msẄ + (mxycs −mcs)Ψ̈x + (mx2 + 2mxs +ms2)Ψ̈y (32e)

+ (mxω +mxωqs −mqs)Ψ̈ω (32f)

M ′
x − Vy = −mcẄ + (my2 − 2myc +mc2)Ψ̈x + (mxycs −mcs)Ψ̈y (32g)

+ (myω −myωqc +mqc)Ψ̈ω (32h)

M ′
ω +Mt − T = (mω −mq)Ẅ + (myω −myωqc +mqc)Ψ̈x (32i)

+ (mxω +mxωqs −mqs)Ψ̈y

+ (mω2 − 2mqω +mq2)Ψ̈ω (32j)

The natural boundary conditions are of the form

δW : Nz (33a)

δU : Vx (33b)

δV : Vy (33c)

δΦ : T +Mt (33d)

δΨy : My (33e)

δΨx : Mx (33f)

δΨω : Mω (33g)

The 7th denotes the warping restraint boundary condition. When the warping of the cross section is restrained,

Ψω = 0 and when the warping is not restrained, Mω = 0.

Eq.(32) is most general form for axial-flexural-torsional-shearing vibration of thin-walled composite beams. For

general anisotropic materials, the dependent variables, U , V , W , Φ, Ψx, Ψy and Ψω are fully-coupled implying that
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the beam undergoes a coupled behavior involving bending, twising, extension, transverse shearing, and warping. The

resulting coupling is referred to as sixfold coupled vibrations. If all the coupling effects and axial force are neglected as

well as cross section is symmetrical with respect to both x- and the y-axes, Eq.(32) can be simplified to the uncoupled

differential equations as

(EA)comW
′′ = ρAẄ (34a)

(GAy)com(U ′′ + Ψ′
y) = ρAÜ (34b)

(GAx)com(V ′′ + Ψ′
x) = ρAV̈ (34c)

(GJ1)comΦ′′ − (GJ2)comΨ′
ω = ρIpΦ̈ (34d)

(EIy)comΨ′′
y − (GAy)com(U ′ + Ψy) = ρIyΨ̈y (34e)

(EIx)comΨ′′
x − (GAx)com(V ′ + Ψx) = ρIxΨ̈x (34f)

(EIω)comΨ′′
ω + (GJ2)comΦ′ − (GJ1)comΨω = ρIωΨ̈ω (34g)

From above equations, (EA)com represents axial rigidity, (GAx)com, (GAy)com represent shear rigidities with respect

to x- and y-axis, (EIx)com and (EIy)com represent flexural rigidities with respect to x- and y-axis, (EIω)com represents

warping rigidity, and (GJ)com, (GJ1)com, (GJ2)com represent torsional rigidities of the thin-walled composite beams,

respectively, written as

(EA)com = E11 (35a)

(EIy)com = E22 (35b)

(EIx)com = E33 (35c)

(EIω)com = E44 (35d)

(GJ)com = 4E55 (35e)

(GAy)com = E66 (35f)

(GAx)com = E77 (35g)

(GAω)com = E88 (35h)

(GJ1)com = E55 + E88 (35i)

(GJ2)com = E55 − E88 (35j)

In Eq.(34), Ip denotes the polar moment of inertia. It is well known that the three distinct vibration modes flexural
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vibration in the x- and y-direction and torsional vibration, are identified in this case and the corresponding natural

frequencies are given by the approximate solution or orthotropy solution for a clamped beam boundary conditions

[11]

ωxn
=

√

[ ρA

(EIy)
com

L4

(n+ 0.5)4π4
+

ρA

(GAy)
com

L2

n2π2

]−1

(36a)

ωyn
=

√

[ ρA

(EIx)com

L4

(n+ 0.5)4π4
+

ρA

(GAx)com

L2

n2π2

]−1

(36b)

ωθn
=

√

[ ρIp
(EIω)com

L4

(n+ 0.5)4π4
+

ρIp
(GAω)com

L2

n2π2

]−1

+
(GJ)com

ρIp

n2π2

L2
(36c)

where ωxn
, ωyn

, ωθn
are the flexural natural frequencies in the x- and y-direction, and torsional natural frequency,

respectively.

VI. FINITE ELEMENT FORMULATION

The present theory for thin-walled composite beams described in the previous section was implemented via a

displacement based one-dimensional finite element method. The generalized displacements are expressed over each

element as a combination of the one-dimensional Lagrange interpolation function ψj associated with node j and the

nodal values

W =

n
∑

j=1

wjψj (37a)

U =

n
∑

j=1

ujψj (37b)

V =

n
∑

j=1

vjψj (37c)

Φ =

n
∑

j=1

φjψj (37d)

Ψy =

n
∑

j=1

ψyjψj (37e)

Ψx =

n
∑

j=1

ψxjψj (37f)

Ψω =
n

∑

j=1

ψωjψj (37g)

Substituting these expressions into the weak statement in Eq.(28), the finite element model of a typical element can

be expressed as
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([K] − P 0[G] − ω2[M ]){∆} = {0} (38)

where [K], [G] and [M ] are the element stiffness matrix, the element geometric stiffness matrix and the element

mass matrix, respectively. More detailed explanation explicit forms of [K] can be found in Ref.[30] and those of [G]

and [M ] are given in Appendix.

In Eq.(38), {∆} is the eigenvector of nodal displacements corresponding to an eigenvalue

{∆} = {W U V Φ Ψy Ψx Ψω}
T (39)

VII. NUMERICAL EXAMPLES

For verification purpose, the buckling behavior and free vibration of a cantilever isotropic mono-symmetric channel

section beam, as shown in Fig.2, with length l =200cm under axial force at the centroid is performed. The material

properties are assumed to be: E = 3 × 104N/cm2 , G = 1.15 × 104N/cm2 , ρ = 7.85 × 10−3N/cm3. The buckling

loads and natural frequencies are evaluated and compared with numerical results of Kim et al.[32] which is based on

dynamic stiffness formulation and ABAQUS solutions in Table I. The present results are in a good agreement with

those by Kim et al.[32].

The next example demonstrates the accuracy and validity of this study for thin-walled composite beams. Ten

quadratic elements with three nodes are used in the numerical computation. The symmetric angle-ply I-beams with

various fiber angles and boundary conditions are considered. Following dimensions for I-beam are used: both of

flanges width and web height are 5cm. The flanges and web are assumed to be symmetrically laminated with respect

to its midplane and made of sixteen layers with each layer 0.013cm in thickness. All computations are carried out

for the glass-epoxy materials with the following material properties: E1 = 53.78GPa , E2 = 17.93GPa , G12 = G13 =

8.96GPa , G23 = 3.45GPa , ν12 = 0.25. The critical buckling loads for a cantilever composite beam with length

l =100cm and the natural frequencies for a simply supported one with length l =200cm under compressive force at

the centroid are presented. The comparison of the results obtained from the proposed finite element solution, the

analytical approach by Kim et al.[25,26] are given in Tables II and III for different stacking sequences. The present

solution again indicates good agreement with the analytical solution and ABAQUS results for all lamination schemes

considered. The effect of compressive axial force on the fundamental natural frequencies of the cantilever and simply

supported beam with various fiber angles is exhibited in Figs.3 and 4. It can be seen that the change in the natural
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frequency due to axial force is noticeable. The natural frequency diminishes when the axial force changes from tensile

to compressive, as expected. It is obvious that the natural frequency decreases with the increase of axial force, and

the decrease becomes more quickly when the fiber angle increases and the axial force is close to critical buckling load.

With θ = 0◦, 30◦ and 60◦, at about P=5.74× 103N, 3.85× 103N and 2.11× 103N, respectively, for simply supported

beam, the natural frequencies become zero which implies that at these loads, flexural-torsional bucklings occur as

a degenerate case of natural vibration at zero frequency. Moreover, Figs.3 and 4 also explain the duality between

flexural-torsional buckling and natural frequency.

In order to investigate the coupling and shear effects on the natural frequencies and mode shapes, a clamped thin-

walled composite I-beam is considered. The geometry of the I-section is shown in Fig.5, and the following engineering

constants are used

E1/E2 = 25, G12/E2 = 0.6, G13 = G12 = G23, ν12 = 0.25 (40)

For convenience, the following nondimensional natural frequency is used

ω̄ =
ωl2

b3

√

ρ

E2

(41)

The top and bottom flanges are considered as angle-ply laminates [θ/−θ] and the web laminates are assumed to be

unidirectional, (Fig.5a). For this lay-up, the coupling stiffnesses E35, E38 do not vanish due to unsymmetric stacking

sequence of the flanges. The lowest three natural frequencies by model of no shear effects based on previous research

[28] and the present model with l/b3 = 20 are given in Table.IV. It is interesting to note that as fiber angle increases,

the shear effects decrease and become negligbly small especially in the interval θ ∈ [30◦, 90◦] even for the lower

span-to-height ratio and higher natural frequencies. This trend can be explained that flexural stiffnesses decrease

significantly with increasing fiber angle, and thus, the relative shear effects become smaller for higher fiber angles.

The lowest three natural frequencies by the finite element analysis and the orthotropy solutions, which neglects the

coupling effects of E35, E38, from Eqs.(36a)-(36c) for each mode are illustrated in Fig.6. Due to coupling stiffnesses,

the orthotropy solution might not be accurate. However, as fiber angle increases, the coupling effects coming from

the material anisotropy become negligible. Therefore, it can be seen in Fig.6, for all cases of fiber angle, the lowest

two natural frequencies by the finite element analysis always correspond to the first flexural mode in x-direction

and the torsional mode. Vice versa, the third mode exhibits the first flexural mode in y-direction in the range of

θ ∈ [0◦, 25◦], and after this range, this mode becomes predominantly the second flexural mode in x-direction. It can

be explained partly by the mode shapes corresponding to ω1, ω2 and ω3 with fiber angle θ = 30◦ in Figs.7-9. In each



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

16

mode the amplitude along the beam length is nomalized with respect to the maximum amplitude for that mode.

Since the vibration mode 1, 2 and 3 are purely first flexural x-direction, torsional mode and the second flexural mode

in x-direction, the othotropy solution and the finite element analysis are identical. It is indicated that the simple

orthotropy solution is sufficiently accurate for this lay-up.

To investigate the coupling and shear effects further, the same configuration with the previous example except the

laminate stacking sequence is considered. Stacking sequence of the top flange and web are considered as [0/45◦], while

the bottom flange is [θ2], (Fig.5b). All the coupling stiffnesses, especially, E16, E17, E18, E36, E38 and E78 become no

more negligibly small. Table.V shows that the solutions excluding shear effects remarkably underestimate the natural

frequencies for all the range of fiber angle even for higher span-to-height ratio. It is indicated that the coupling effects

become significant because the transverse shear little affects the behavior of this beam (l/b3 = 50). This implies

that discarding shear effects leads to an overprediction of the natural frequencies especially for higher modes. Thus,

the orthotropy solution and the finite element solution show discrepancy in Fig.10. The mode shapes corresponding

to the lowest three natural frequencies with fiber angle θ = 30◦ are illustrated in Figs.11-13. Relative measures of

flexural displacements, torsional and shearing rotation show that when the beam is vibrating at the natural frequency

belonging to the first and second mode exhibits fourfold coupled mode (flexural vibration in the x-direction, torsional

and corresponding shearing vibration), whereas, third mode displays sixfold coupled mode (flexural mode in the x-,

y-direction, torsional mode and corresponding shearing vibration). This fact explains as the fiber angle changes, for

lower span-to-height ratio (Fig.10), the orthotropy solutions disagree with the finite element solutions as anisotropy of

the beam gets higher. That is, the orthotropy solution is no longer valid for unsymmetrically laminated beams, and

sixfold coupled flexural-torsional-shearing vibration should be considered even for a doubly symmetric cross-section.

VIII. CONCLUDING REMARKS

An analytical model based on shear-deformable beam theory is developed to study the flexural-torsional coupled

vibration and buckling of thin-walled composite beams. This model is capable of predicting accurate natural frequen-

cies, buckling loads as well as corresponding mode shapes for various configuration including boundary conditions,

laminate orientation and span-to-height ratio. To formulate the problem, a one-dimensional displacement-based finite

element method is employed. All of the possible vibration modes including the flexural mode in the x- and y-direction,

the torsional mode, and fully coupled flexural-torsional-shearing mode are included in the analysis. The shear effects

become significant for lower span-to-height ratio and higher degrees of orthotropy of the beam. The orthotropy solu-



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

17

tion is accurate for lower degrees of material anisotropy, but, becomes inappropriate as the anisotropy of the beam gets

higher, and fully coupled equations should be considered for accurate analysis of thin-walled composite beams. The

present model is found to be appropriate and efficient in analyzing flexural-torsional coupled vibration and buckling

of thin-walled composite beams.
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APPENDIX

Inertia coefficients in Eq.(28) are defined by

m0 = I0

∫

s

ds (42a)

mc = I1

∫

s

cos θds (42b)

mr = I1

∫

s

rds (42c)

mp = I0

∫

s

(q2 + r2)ds (42d)

mq = I1

∫

s

qds (42e)

ms = I1

∫

s

sin θds (42f)

mω = I0

∫

s

ωds (42g)

m2 = I2

∫

s

ds (42h)

mc2 = I2

∫

s

cos2 θds (42i)

ms2 = I2

∫

s

sin2 θds (42j)

mq2 = I2

∫

s

q2ds (42k)

mx2 = I0

∫

s

x2ds (42l)

my2 = I0

∫

s

y2ds (42m)

mω2 = I0

∫

s

ω2ds (42n)

mcs = I2

∫

s

sin θ cos θds (42o)
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mqc = I2

∫

s

q cos θds (42p)

mqs = I2

∫

s

q sin θds (42q)

mxs = I1

∫

s

x sin θds (42r)

myc = I1

∫

s

y cos θds (42s)

mqω = I1

∫

s

qωds (42t)

mxω = I0

∫

s

xωds (42u)

myω = I0

∫

s

yωds (42v)

mωc = I1

∫

s

ω cos θds (42w)

mωs = I1

∫

s

ω sin θds (42x)

mxycs = I1

∫

s

(−x cos θ + y sin θ)ds (42y)

mxωqs = I1

∫

s

(−qx+ ω sin θ)ds (42z)

myωqc = I1

∫

s

(qy + ω cos θ)ds (42aa)

where

(I0, I1, I2) =

∫

n

ρ(1, n, n2)dn (43)

[M ] is the 7×7 element mass matrix with coefficients given by

M11

ij = M22

ij = M33

ij =

∫ l

0

m0ψiψjdz (44a)

M15

ij =

∫ l

0

msψiψjdz (44b)

M16

ij = −

∫ l

0

mcψiψjdz (44c)

M17

ij =

∫ l

0

(mω −mq)ψiψjdz (44d)

M24

ij =

∫ l

0

(mc +m0yp)ψiψjdz (44e)

M34

ij =

∫ l

0

(ms −m0xp)ψiψjdz (44f)

M44

ij =

∫ l

0

(mp +m2 + 2mr)ψiψjdz (44g)

M55

ij =

∫ l

0

(mx2 + 2mxs +ms2)ψiψjdz (44h)
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M56

ij =

∫ l

0

(mxycs −mcs)ψiψjdz (44i)

M57

ij =

∫ l

0

(mxω +mxωqs −mqs)ψiψjdz (44j)

M66

ij =

∫ l

0

(my2 − 2myc +mc2)ψiψjdz (44k)

M67

ij =

∫ l

0

(myω −myωqc +mqc)ψiψjdz (44l)

M77

ij =

∫ l

0

(mω2 − 2mqω +mq2)ψiψjdz (44m)

and [G] is the 7×7 element geometric stiffness matrix with coefficients given by

G22

ij = G33

ij =

∫ l

0

ψ′
iψ

′
jdz (45a)

G24

ij =

∫ l

0

ypψ
′
iψ

′
jdz (45b)

G34

ij = −

∫ l

0

xpψ
′
iψ

′
jdz (45c)

G44

ij =

∫ l

0

Ip
A
ψ′

iψ
′
jdz (45d)

All other components are zero.
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CAPTIONS OF TABLES

Table I: The bucking loads and natural frequencies a cantilever isotropic mono-symmetric channel section beam.

Table II: Critical bucking loads of a cantilever composite I-beam (N).

Table III: Natural frequencies of a simply supported composite I-beam (Hz).

Table IV: Nondimensional natural frequencies respect to the fiber angle change in top and bottom flanges of a

clamped composite beam with span-to-height ratio l/b3 = 20.

Table V: Nondimensional natural frequencies respect to the fiber angle change in the bottom flange of a clamped

composite beam with two span-to-height ratios l/b3 = 10 and 50.
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CAPTIONS OF FIGURES

Figure 1: Definition of coordinates in thin-walled open sections.

Figure 2: Isotropic mono-symmetric channel section for verification.

Figure 3: The interaction diagram between critical buckling load and fundamental natural frequency of a simply

supported composite beam with the fiber angle 0◦, 30◦ and 60◦ in the flanges and web.

Figure 4: The interaction diagram between critical buckling load and fundamental natural frequency of a cantilever

composite beam with the fiber angle 0◦, 30◦ and 60◦ in the flanges and web.

Figure 5: Geometry and stacking sequences of thin-walled composite I-beam.

Figure 6: Variation of the lowest three nondimensional natural frequencies with respect to fiber angle change in the

flanges of a clamped composite beam with l/b3 = 20.

Figure 7: Mode shapes of the flexural and corresponding shearing components for the first mode ω1 = 8.471 of a

clamped composite beam with the fiber angle 30◦ in the flanges with l/b3 = 20.

Figure 8: Mode shapes of the torsional and corresponding shearing components for the second mode ω2 = 10.092

of a clamped composite beam with the fiber angle 30◦ in the flanges with l/b3 = 20.

Figure 9: Mode shapes of the flexural and corresponding shearing components for the third mode ω3 = 23.209 of a

clamped composite beam with the fiber angle 30◦ in the flanges with l/b3 = 20.

Figure 10: Variation of the lowest three nondimensional natural frequencies with respect to fiber angle change in

the bottom flange of a clamped composite beam with l/b3 = 10.

Figure 11: Mode shapes of the flexural, torsional and corresponding shearing components for the first mode ω1 =

8.678 of a clamped composite beam with the fiber angle 30◦ in the bottom flange with l/b3 = 10.

Figure 12: Mode shapes of the flexural, torsional and corresponding shearing components for the second mode

ω2 = 11.966 of a clamped composite beam with the fiber angle 30◦ in the bottom flange with l/b3 = 10.

Figure 13: Mode shapes of the flexural, torsional and corresponding shearing components for the third mode

ω3 = 18.980 of a clamped composite beam with the fiber angle 30◦ in the bottom flange with l/b3 = 10.
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TABLE I The bucking loads and natural frequencies a cantilever isotropic mono-symmetric channel section beam.

Mode Buckling loads (N) Natural frequencies (rad/s)2

Ref.[32] Ref.[32]

ABAQUS Theory Present ABAQUS Theory Present

1 0.027 0.028 0.026 13.789 14.001 12.977

2 0.334 0.331 0.334 111.840 113.100 113.440

3 0.704 0.696 0.707 191.160 190.080 190.567

4 1.065 1.074 1.084 255.100 256.670 263.999
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TABLE II Critical bucking loads of a cantilever composite I-beam (N).

Lay-ups Ref.[25] Present

ABAQUS Theory

[0]16 5720.0 5755.2 5741.5

[15/ − 15]4s 5174.0 5199.8 5189.0

[30/ − 30]4s 3848.0 3861.0 3854.5

[45/ − 45]4s 2665.0 2672.7 2668.4

[60/ − 60]4s 2119.0 2114.7 2111.3

[75/ − 75]4s 1950.0 1948.3 1945.1

[0/90]4s 3848.0 3857.8 3829.8
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TABLE III Natural frequencies of a simply supported composite I-beam (Hz).

Lay-ups Formulation Mode

1 2 3 4 5 6

[0]16 Ref.[26] 24.194 35.233 45.235 96.726 109.441 180.616

Present 24.150 35.169 45.063 96.392 109.011 178.129

[15/ − 15]4s Ref.[26] 22.997 36.247 42.996 91.940 107.655 171.678

Present 22.955 36.067 42.851 91.701 107.156 169.616

[30/ − 30]4s Ref.[26] 19.816 37.051 37.864 79.225 102.159 147.938

Present 19.776 36.797 36.953 79.133 100.473 146.658

[45/ − 45]4s Ref.[26] 16.487 30.827 37.915 65.916 94.884 123.085

Present 16.446 30.758 35.125 65.895 90.447 122.286

[60/ − 60]4s Ref.[26] 14.666 27.420 35.372 58.633 87.051 109.484

Present 14.627 27.361 32.213 58.623 81.972 108.800

[75/ − 75]4s Ref.[26] 14.077 26.319 31.313 56.278 79.330 105.087

Present 14.042 26.258 29.945 56.255 77.149 104.342

[0/90]4s Ref.[26] 13.970 26.119 29.175 55.850 75.767 104.287

Present 13.937 26.056 29.133 55.820 75.652 103.494



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

27

TABLE IV Nondimensional natural frequencies respect to the fiber angle change in top and bottom flanges of a clamped

composite beam with span-to-height ratio l/b3 = 20.

Fiber No shear ([28]) Present

angle w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

0 16.289 18.362 44.903 47.279 50.406 15.460 17.211 33.996 40.271 44.134

15 14.401 16.429 39.698 42.154 45.561 14.122 16.064 32.174 38.063 42.818

30 8.525 10.172 23.499 26.604 31.022 8.471 10.092 23.209 25.126 27.457

45 4.880 6.228 13.452 16.021 24.622 4.862 6.202 13.392 15.919 21.991

60 3.691 4.854 10.175 12.342 19.946 3.678 4.836 10.147 12.286 19.855

75 3.386 4.438 9.334 11.294 18.298 3.374 4.421 9.308 11.239 18.211

90 3.330 4.346 9.180 11.079 17.996 3.319 4.330 9.152 11.022 17.905
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TABLE V Nondimensional natural frequencies respect to the fiber angle change in the bottom flange of a clamped composite

beam with two span-to-height ratios l/b3 = 10 and 50.

Ratio Fiber No shear ([28]) Present

l/b3 angle w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

0 13.805 15.314 38.024 39.102 42.158 11.627 14.296 22.508 29.202 33.345

15 13.133 14.678 36.189 37.278 40.342 11.588 13.995 20.624 29.246 34.644

30 9.571 11.574 26.302 30.360 31.804 8.678 11.966 18.980 23.249 30.062

10 45 5.467 10.197 14.908 25.900 28.077 5.115 11.873 13.712 18.565 26.182

60 4.082 9.923 11.072 21.552 24.702 3.897 10.444 11.855 18.289 19.969

75 3.731 9.864 10.102 19.648 24.432 3.577 9.569 11.849 18.204 18.279

90 3.666 9.853 9.924 19.300 24.384 3.516 9.402 11.847 17.951 18.185

0 14.082 16.446 38.512 39.112 43.623 13.088 18.257 35.408 37.544 48.414

15 13.208 16.675 36.343 37.272 43.126 12.872 17.229 31.024 35.165 44.903

30 10.146 13.706 27.500 30.358 34.547 9.643 15.021 25.697 26.624 38.358

50 45 7.357 10.970 18.060 25.900 28.960 6.672 14.335 16.734 24.742 30.961

60 6.185 10.435 14.532 24.702 25.730 5.655 13.651 14.076 24.161 24.621

75 5.837 10.310 13.564 23.839 24.432 5.358 12.792 13.971 22.899 23.975

90 5.761 10.284 13.365 23.465 24.384 5.293 12.613 13.943 22.555 23.932
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FIG. 1 Definition of coordinates in thin-walled open sections
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FIG. 2 Isotropic mono-symmetric channel section for verification.
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FIG. 3 The interaction diagram between critical buckling load and fundamental natural frequency of a simply supported

composite beam with the fiber angle 0◦, 30◦ and 60◦ in the flanges and web.
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FIG. 4 The interaction diagram between critical buckling load and fundamental natural frequency of a cantilever composite

beam with the fiber angle 0◦, 30◦ and 60◦ in the flanges and web.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

33

FIG. 5 Geometry and stacking sequences of thin-walled composite I-beam.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

34

0

10

20

30

40

0 15 30 45 60 75 90

ω̄

θ

ωx1

ωy1

× × ×
×

×

×

×

×

×
×

× × × × × × × × × ×

×

ωx2

⋆ ⋆ ⋆
⋆

⋆

⋆

⋆

⋆

⋆

⋆
⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆
ωθ1

b b b
b

b

b

b

b

b

b
b

b b b b b b b b b

b

ω1

ω2

b b b
b

b

b

b

b

b

b
b

b b b b b b b b b

b

ω3

⋆ ⋆ ⋆
⋆

⋆
⋆

⋆

⋆

⋆

⋆
⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆

FIG. 6 Variation of the lowest three nondimensional natural frequencies with respect to fiber angle change in the flanges of a

clamped composite beam with l/b3 = 20.
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FIG. 7 Mode shapes of the flexural and corresponding shearing components for the first mode ω1 = 8.471 of a clamped

composite beam with the fiber angle 30◦ in the flanges with l/b3 = 20.
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FIG. 8 Mode shapes of the torsional and corresponding shearing components for the second mode ω2 = 10.092 of a clamped

composite beam with the fiber angle 30◦ in the flanges with l/b3 = 20.
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FIG. 9 Mode shapes of the flexural and corresponding shearing components for the third mode ω3 = 23.209 of a clamped

composite beam with the fiber angle 30◦ in the flanges with l/b3 = 20.
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FIG. 10 Variation of the lowest three nondimensional natural frequencies with respect to fiber angle change in the bottom

flange of a clamped composite beam with l/b3 = 10.
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FIG. 11 Mode shapes of the flexural, torsional and corresponding shearing components for the first mode ω1 = 8.678 of a

clamped composite beam with the fiber angle 30◦ in the bottom flange with l/b3 = 10.
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FIG. 12 Mode shapes of the flexural, torsional and corresponding shearing components for the second mode ω2 = 11.966 of a

clamped composite beam with the fiber angle 30◦ in the bottom flange with l/b3 = 10.
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FIG. 13 Mode shapes of the flexural, torsional and corresponding shearing components for the third mode ω3 = 18.980 of a

clamped composite beam with the fiber angle 30◦ in the bottom flange with l/b3 = 10.


