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Abstract  

A novel method for analysing structural health of alumina nanocomposites filled with graphene 

nanoplatelets (GNP), carbon nanotubes (CNTs) and carbon black nano-particles (CB) is presented. All 

nanocomposites were prepared using novel colloidal processing and then by Spark Plasma Sintering. 

Good homogeneous dispersion was observed for all carbon filled materials. Nanocomposite bars were 

indented to produce sub-surface damage. Change in electrical conductivities were analysed after 

indentation to understand structural damage. For correlating change in electrical conductivity and 



Page 2 of 15 
 

indentation damage and understanding damage tolerance, mechanical properties were compared. 

Because of the systematically induced indentation damage, a sharp decrease of 86% was observed in 

the electrical conductivity of CNT nanocomposite as compared to 69% and 27% in the electrical 

conductivities of GNP nanocomposites and CB nanocomposites respectively. CNTs impart superior 

damage sensing capability in alumina nanocomposites, in comparison to GNP and CB, due to their 

fibrous nature, high aspect ratio and high electrical conductivity.  

1. Introduction 

Graphene and carbon nanotechnology [1] are becoming more and more ubiquitous because of the 

superlative combination of properties they offer to materials. They have been widely researched for their 

addition in polymer [2], ceramic [3-7] and metal [8] nanocomposites owing to the outstanding mechanical, 

thermal, and electronic properties attributed to them. Composite materials, filled with carbon nanofillers, 

are being researched for emerging applications like energy, transportation, defence, automotive, 

aerospace, sporting goods, and infrastructure sectors [9]. Particularly among ceramic based materials, 

CNTs have been reported to significantly improve mechanical, thermal and electrical properties of the 

ceramic nanocomposites [10]. For polymeric systems, carbon nanofillers have also proved to be very 

attractive because they offer structural damage sensing ability and the subject has been widely 

investigated [11-17].  

 

Structural health monitoring (SHM) is a type of a Non-destructive Evaluation (NDE) technique that 

essentially involves the strategic embedding of conductive filler into a structure to allow continuous and 

remote monitoring for damage, deformation and failure. SHM technology is applied increasingly for 

research and industrial purposes as a potential tool for quality assurance [18, 19]. However, many of the 

developed and available NDE technologies are complex, expensive and require significant calibration 

with the passage of time. Nanostructured carbon embedded polymeric systems have proven to be more 

sensitive towards structural damage [11-17]. However, the concept of self-sensing structural materials 

involving different types of carbon nanofillers is yet to be explored for ceramic composites, which is the 

subject of this research.   
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Most of the previous researched methods incorporating carbon nanofillers were based on the sensing of 

damage of long-fibre or woven reinforced brittle polymers [11-17]. Classifying cement as ceramics, 

damage sensing has been achieved in various studies with the incorporation of short carbon whiskers 

[20-22]. For cement composites with conductive fillers, self-sensing is made attainable by the damage 

and/or strain on the volume electrical conductivity of damaged or strained material [20-28]. Damage or 

stain affects the bulk conductivity to decrease, as reported for damage in the elastic regime [29], plastic 

(inelastic) deformation region [30, 31] and after complete fracture [30]. Other researchers used carbon 

nanotubes instead of carbon fibre in cement for strain sensing applications and reported electrical 

conductivities decreasing upon tension [23] and increasing upon compression [24-27]. Luo et al. prepared 

hybrid cement composites using carbon whiskers and carbon nanotubes and reported superior sensing 

than the use of carbon nanotube as the sole conductive admixture [28].  

Electrical conductivity sensing methods for alumina-carbon nanocomposites, essentially putting a voltage 

across the damaged sample and monitoring the change in resistance, have not yet been investigated in 

any research. To the best of authors’ knowledge, there is no damage sensing research for advanced 

crystalline (granular) or amorphous (glass) ceramics using different types of carbon nanofillers (graphene 

nanoplatelets, carbon nanotubes and carbon black). In this work, damage is introduced systematically by 

Vickers indentation and damage sensing capabilities of graphene nanoplatelets, carbon nanotube and 

carbon black filled alumina nanocomposites are comprehensively analysed.    

 

2. Experimental 

Single-wall/ double wall CNTs (Elicarb SWNT by Thomas Swan, UK: average outer diameter ~5 nm; 

lengths of up to 1 μm) were dispersed in dimethylformadie, DMF using high power tip ultrasonication for 

30 minutes and then hand-mixed with alumina nanopowder (Sigma–Aldrich, UK: gamma phase; particle 

size <50 nm; surface area 35–43 m2 g−1; melting point 2040 °C; and density 3.97 g cm−3) for 5 min. As 

previously reported by Inam et al. [32], DMF was found to be a much more effective dispersant than 

ethanol for making stable, homogeneous CNT and composite dispersions. The liquid mixture was rotation 

ball milled for 7 h. It was then dried at 60 °C for 12 h using a rotary drier containing milling media (3 mm 

alumina balls), followed by vacuum oven drying at 100 °C for 48 h. To avoid re-agglomeration of carbon 
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nano-fillers during lengthy drying, the alumina balls (milling media) was added during rotary drying and 

this approach has not been previously reported. The dried powder mixture was ground and sieved at 

250 mesh and then placed again in the vacuum oven at 100 °C for another 48 h to thoroughly extract the 

solvent. Nanocomposite pellets (diameter 20 mm and thickness 3 mm) were prepared by Spark Plasma 

Sintering (SPS), which is an advanced rapid processing technique for sintering advanced ceramic 

systems [33, 34]. LABOX 350 (Sinter Land Inc, Japan) furnace was used for SPS. A pressure of 95 MPa 

was applied concurrently with the heating (rate 325 °C min−1) and released at the end of the sintering 

period, which was 3 min for all of the samples. Maximum sintering temperature for all nanocomposites 

was 1600 oC. GNP and CB nanocomposites were prepared in the same way as the alumina – CNT 

nanocomposites. GNP nanopowder (grade A0-2; specific surface area: ~100 m g-2; purity: 99%; average 

flake thickness: 20 to 30 monolayers) and CB (grade 633100: average particle size < 50 nm) were 

supplied by Graphene Laboratories (USA) and Sigma–Aldrich (UK) respectively. 

 

All of the sintered samples were ground using SiC paper down to 4000 grit. The density of the ground 

samples was measured using the Archimedes’ water buoyancy method. All samples were then 

thoroughly dried in an oven for 24 hours and then diamond polished using 1 micron paste. A bar 

(dimensions: 18 x 3 x 3 mm) was cut from each sintered pellet using precision and deformation-free 

cutting machine (Accutom-50). At least 5 bars were produced for each composition. The Vickers 

indentations were performed using a Zwick microhardness tester (500 g load with 10 seconds of 

indentation time). Five indents (equally spaced) were produced on each bar and the bulk electrical 

conductivity of nanocomposites was measured at room temperature after every indentation. Four-point 

method (figure 1) was employed by using a resistivity/ Hall measurement system (Sony Tektronix 370 A). 

The connecting wires in the experimental setup (figure 1) were permanently bonded by using silver paste 

in order to avoid any contact resistance for this comparative analysis. Vickers microhardness was 

calculated by 1.854(F/D2), where F and D2 are applied force and area of indentation respectively. For this 

work, sharp diamond indenter was used. Indentation fracture toughness was calculated using Anstis 

equation [35]. After indentation, fractured (top and cross-sectional) surfaces were gold coated and 

observed in an ultra-high resolution analytical FE-SEM (Hitachi, SU-70).  
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3. Results and Discussion 

In order to efficiently exploit the full potential of carbon nanofillers to improve the sensing capability in 

ceramics, it is important to have good dispersion of CNT in the ceramic matrix. The extraordinary large 

specific surface area of CNTs is the main hurdle for homogeneous dispersion and de-bundling of CNTs. 

Though dispersion analysis is not the topic of this research, good dispersion was observed in all types of 

nanocomposites as evident in figure 2. Figure 2a shows a fractured granular microstructure where a layer 

of CNT mesh (central fractured region) can be seen. Homogenously dispersed CNTs can also be 

observed in various isolated locations between alumina grains (figure 2a). Individual CB particles and 

GNP layer can be seen in figure 2b and 2c respectively. Therefore, it can be concluded that the 

combination of DMF dispersion and rotary drying in the presence of milling media, employed for the first 

time in this work, has proved to be an effective method for preparing homogeneously dispersed alumina – 

carbon nanocomposites.    

 

Vickers indentation, at micrometre level, is currently used for ceramics to evaluate hardness and estimate 

fracture toughness. During Vickers indentation, ceramics fracture sub-surface (Hertzian cone crack) and 

from the tips of the diagonal indent to accommodate the penetrating diamond indenter [36]. 

Subsequently, new surfaces are created and radial-median and lateral crack systems are produced 

during loading and unloading of Vickers indenter (figure 3). For this work, Vickers indentation is used to 

compare the structural health monitoring in alumina nanocomposite because of its simplicity, non-

destructive nature, and the fact that minimal machining is required to prepare the sample, as evident in 

this work. Following Vickers indentation, clear damage was visible to the unaided eye for all specimens. 

At the end of 5 Vickers indentations, all samples (alumina and nanocomposites) retained their integrity 

because of the small Vickers loadings after indentation. The load (500 g) was carefully selected to cause 

appropriate sub-surface damage for analysing electrical conductivities without completely fracturing the 

sample bars.  
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Electronic microscopy revealed radial cracking from the tip of the indent (figure 4a). The flaws detected as 

the result of indentation are very large compared to the critical flaw size that would control the strength of 

ceramics. The circled area was analysed for representative samples from each type of nanocomposite. 

CNTs were found to be in tension and couple of fractured and relaxed CNTs can also be seen (figure 4b). 

For alumina – 2wt% GNP nanocomposite, multi-layered graphene was also found to be bridging a radial 

crack upon indentation (figure 4c). This is consistent with the observations by Kvetkova et al. [7]. 

However, because of the wrinkles in multi-layered graphene (figure 4c), it appears to be in semi-relaxed 

state (non-tensed) which could be due to gold coating after the indentation. It should be noted that gold 

coating was done after 5 indentations to further enhance the image quality. For alumina – 2wt% CB 

nanocomposite, isolated CB particles were observed on the edges of the fractured surfaces (figure 4d). 

As compared to CNT and GNP nanocomposites, no crack bridging was observed for CB 

nanocomposites. This is due to their particulate nature.  

 

Structural health monitoring for nanostructured carbon filled alumina composites was verified by 

measuring change in electrical resistivity after systematic introduction of damage to the samples. The 

experimental setup shown in figure 1 was specifically designed for the evaluation of the change in 

electrical conductivity during the systematically induced incremental damage. It should be noted that the 

connecting wires in the experimental setup (figure 1) were permanently bonded by using silver paste in 

order to avoid any contact resistance for this comparative analysis.  

 

It is necessary to discuss the fracture, hardness and geometry of carbon nanofillers to understand the 

induced structural health monitoring capability. The change in the electrical conductivities of 

nanocomposite samples as a result of the deliberate damage (i.e. Vickers indentation) is shown in figure 

5. Error bars represent good repeatability of measured values (figure 5). It is obvious from figure 5 that 

CNT and GNP filled nanocomposites were more sensitive towards the indentation damage as compared 

to CB filled nanocomposites (figure 5). After 5 indentations, the average electrical conductivity for CNT 

nanocomposites decreased from 84 to 12 S/m (i.e. a decrease of 86%). For GNP nanocomposites, a 

decrease of 69% was observed. For CB nanocomposites, the average electrical conductivity decreased 
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from 11 to 8 S/m (i.e. a decrease of 27%). This is due to the fibrous nature of CNTs and layer-like 

features of GNP as opposed to particulate form of CB (figure 5). The origin of the damage sensing ability 

is attributed to the fracture of fibers that bridge microcracks and the consequent resistivity increase. The 

fracture of a bridging fiber occurs upon shear of a microcrack, with the resolved shear stress in the plane 

of the crack.  

 

The different behaviour of the CNT and GNP modified matrix system and the carbon black modified 

matrix system has also to be attributed to the intrinsic structure of the percolated conductive paths in the 

composite. As reported in a review paper by Cho et al. [10] and observed in this work, the electrical 

conductivity of CNT loaded systems tends to be approximately one to two orders of magnitude higher 

than that of carbon black composites, due to the higher intrinsic conductivity of CNTs and the much 

higher connectivity of the network.  In this context, the high axial electrical conductivity of CNT and GNP 

not only offers the potential for fabricating conducting ceramics but also responsive ceramic systems. 

Also, it is obvious to understand that if CNTs and GNP are not homogeneously distributed and there is no 

separation (de-bundling) taking place among nano fillers during the fracturing, such high sensitivity (figure 

5) cannot be achieved.     

 

For correlating change in electrical conductivity and indentation damage and understand damage 

tolerance, fracture toughness and hardness of samples were compared (figure 6). It was found that CNT 

and GNP nanocomposites have 14% and 10% higher fracture toughness, respectively, as compared to 

CB nanocomposites. This means that upon indentation, more damage was done by the penetrating 

diamond indenter for CB nanocomposites as compared to CNT and GNP nanocomposites. However, 

very small change in electrical conductivity was observed for CB nanocomposites. As reported [7, 10], 

CNTs are responsible for improving fracture toughness of ceramics. As compared to CB nanocomposite, 

less damage was produced in CNT nanocomposites but a sharp decrease in electrical conductivity was 

observed. This elaborates that CNTs nanocomposite have superior damage sensing capability as 

compared to CB nanocomposites, which is due to the fibrous nature and high surface area of CNTs. It 
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should be noted that the damage was solely caused by the indentation on the surface and sub-surface, 

which was responsible for inhibiting the electrical conductivity. 

 

As compared to neat alumina, with a Vickers hardness of 15.4 GPa, decreases in hardness values were 

observed for CB, CNT and GNP nanocomposite samples (i.e. 11.3, 12.3 and 12.4 GPa respectively). This 

is primarily due to the lubricant nature of carbon nanofillers which is responsible for deeper penetration on 

the Vickers indenter during the indentation. These observations for the hardness of nanocomposites are 

in consistent with the studies conducted by different groups [3, 7, 37-38]. It is interesting to note that there 

is no significant difference in hardness for the different types of nanocomposites. However, because of 

the significant differences in the dimensions and geometry of carbonaceous fillers, their respective 

nanocomposites have very different damage sensing capabilities (i.e. irreversible change in electrical 

conductivities after damage).  

 

4. Conclusion 

Results in current work shows that the change in electrical conductivity of the sample bars are highly 

dependent on the type of filler used and number of indentations or damage. Damage was indicated by an 

irreversible decrease in the electrical conductivity for the indented nanocomposite bars. Therefore, 

damage self-sensing by electrical conductivity measurement is an effective technique for carbon 

nanofiller reinforced alumina, as shown for Vickers indented specimens. These results demonstrate the 

high potential of carbon nanofillers (graphene nanoplatelets, carbon nanotubes and carbon black nano-

particles) to be used for damage sensing in alumina nanocomposites. Carbon nanofillers were used to 

sense sub-surface damage in alumina nanocomposites. As compared to CB, CNTs and GNP possess 

superior damage sensing ability in alumina nanocomposite structures due to their high aspect ratio 

(fibrous nature) and electrical conductivity. A sharp decrease of 86% and 69% were observed in the 

electrical conductivities of alumina – CNT and alumina – GNP nanocomposites, respectively, as 

compared to 27% in the electrical conductivity of alumina – CB nanocomposite due to indentation 

damage. Therefore, it is concluded that as compared to CB, CNT and GNP offer higher sensitivity for 

structural health monitoring to diagnose a structural safety and to prevent a catastrophic failure in brittle 



Page 9 of 15 
 

materials like alumina nanocomposites. This technique can also be used for damage sensing in glass 

matrices, which is subject of future research. 
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List of figures 

 
Figure 1. Four-probe electrical conductivity measurement schematics of indented sample. Sample 

dimensions are 18 x 3 x 3 mm. 
 
 

    
 

 
 

Figure 2. Fractured surfaces showing: a) alumina – 2 wt% CNT nanocomposite; B) alumina – 2 wt% GNP 
nanocomposite; and c) alumina – 2 wt% CB nanocomposite. 
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Figure 3. Radial-median and lateral crack system: a) evolution during complete loading (+) and unloading 
(-) cycle. Dark region denotes irreversible deformation zone; and b) geometrical parameters of radial 

system [19]. 
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Figure 4. Vickers indentation on alumina – 2 wt% carbons nanocomposites showing: a) indent and radial 
cracks; b) crack bridging in CNT nanocomposite; c) crack bridging in multilayered graphene 

nanocomposite; and d) no crack bridging in CB nanocomposite. Arrow pointing CB agglomerates. 
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Figure 5. Change in electrical conductivity due to Vickers indentation in alumina – carbon 
nanocomposites. 

 
 
 
 

 
 

Figure 6. Mechanical properties evaluated from Vickers indentation. 
 




