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Abstract

An improved transverse shear stiffness for vibration and buckling analysis of functionally graded

sandwich plates based on the first-order shear deformation theory is proposed in this paper. The

transverse shear stress obtained from the in-plane stress and equilibrium equation allows to derive

analytically an improved transverse shear stiffness and associated shear correction factor of the

functionally graded sandwich plate. Sandwich plates with functionally graded faces and both ho-

mogeneous hardcore and softcore are considered. The material property is assumed to be isotropic

at each point and vary through the plate thickness according to a power-law distribution of the

volume fraction of the constituents. Equations of motion and boundary conditions are derived

from Hamilton’s principle. The Navier-type solutions are obtained for simply-supported boundary

conditions, and exact formulas are proposed and compared with the existing solutions to verify

the validity of the developed model. Numerical results are obtained for simply-supported func-

tionally graded sandwich plates made of three sets of material combinations of metal and ceramic:

Al/Al2O3, Al/SiC, and Al/WC to investigate the effects of the power-law index, thickness ratio of
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layer, material contrast on the shear correction factors, natural frequencies and critical buckling

loads as well as load-frequency curves.

Keywords: Functionally graded sandwich plates; Buckling; Vibration; Load-frequency curves.

1 Introduction

Sandwich structures are a class of composite materials in that they have a core material is bonded to,

and faced with a skin material. These structures are used in a wide variety of applications including

aircraft, aerospace, naval/marine, construction, and transportation industries where strong stiff and

light structures are required. Practically however, due to the mismatch of properties between the face

sheets and the core, stress concentrations can occur at these interfaces, often leading to delamination,

which is a major concern1,2. To overcome this problem, the concept of functionally graded (FG)

sandwich structure is proposed. This structure can be categorized into two classes: FG facesheet

homogeneous core and homogeneous facesheet FG core.

Due to increasing of FG material applications in engineering fields, many computational models

have been developed for predicting the response of FG plates. The classical plate theory (CPT) has

been used for buckling and vibration analysis of FG thin plates3–8. However, for moderately thick

plates, it overestimates buckling loads and natural frequencies due to the neglecting the transverse

shear deformation effect. The first-order shear deformation theory (FSDT) accounts for the transverse

shear deformation effect, but requires a shear correction factor to correct the shear stress and force9–14.

To overcome this adversity, many higher-order shear deformation plate theories (HSDTs) have been

proposed based on the assumption of higher-order variations of displacements15–27. Although the

shear stresses are refined through the thickness direction in HSDTs, their equations of motion are

much more complicated than those of FSDT due to involving higher-order terms.

Although there are several research works reported on FG plates, the studies on buckling and vi-

bration of FG sandwich plates are few in number, most of which used the HSDTs. The sinusoidal shear

deformation theory was applied by Zenkour28 for buckling and free vibration of a simply supported

FG sandwich plate. Li et al.29 proposed a three-dimensional (3D) vibration analysis of FG sandwich

plates with FG faces and both homogeneous hardcore and softcore. Meiche et al.30 proposed a FG

sandwich plate model for buckling and vibration using a new hyperbolic shear deformation theory.

Based on a new four variable refined plate theory, Bourada et al.31 considered the thermal buckling

of FG sandwich plates. Xiang et al.32 used a n-order shear deformation theory for free vibration

of FG and composite sandwich plates. Natarajan and Manickam33 proposed an accurate theory for
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bending and vibration of FG sandwich plates in which two common types of FG sandwich plates

were considered. Neves et al.34 studied static, free vibration and buckling behaviour of isotropic and

sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a

meshless technique.

This paper, which is extended from the previous works35,36, aims to study vibration and buckling

analysis of functionally graded sandwich plates with improved transverse shear stiffness based on the

FSDT. Here, the transverse shear stress is derived from expression of the in-plane stress and equilibrium

equation and thus, its improved shear stiffness is then obtained analytically. Sandwich plates with FG

faces and both homogeneous hardcore and softcore are considered. The material property is assumed

to be isotropic at each point and vary through the plate thickness according to a power law distribution

of the volume fraction of the constituents. Equations of motion and boundary conditions are derived

from Hamilton’s principle. The Navier-type solutions are obtained for simply-supported boundary

conditions, and exact formulas are proposed and compared with the existing solutions to verify the

validity of the developed theory. Numerical results are obtained for simply-supported FG sandwich

plates made of three sets of material combinations of metal and ceramic: Al/Al2O3, Al/SiC, and

Al/WC to investigate the effects of the power-law index, thickness ratio of layer, material contrast on

the shear correction factors, natural frequencies and critical buckling loads as well as load-frequency

curves.

2 Problem formulation

Consider a three-layer sandwich plate as in Figure 1. The face layers are made of a ceramic-metal

isotropic material whose properties vary smoothly through the thickness according to the volume

fractions of the constituents. The core layer is constituted by an isotropic homogeneous material. The

vertical positions of the bottom and top surfaces, and of two interfaces between the layers are denoted

by h0 = −h
2 , h1, h2, h3 = h

2 , respectively. Here, h is the plate thickness, h1, h2 vary according the

thickness ratio of layers, ec = h2−h1 is the core thickness, eft = h3−h2, efb = h1−h0 the thicknesses

of top and bottom face, respectively. All formulations are performed under the assumption of a linear

elastic behaviour and small deformations of materials. The gravity is not taken into account. The

Greek indices are assumed to range within {1,2} while the Latin indices take values {1,2,3}.
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2.1 Effective material properties

The Voigt’s model37 is used to calculate the effective material properties of FG sandwich plates

according to the power-law form. The mixture of the two materials according to the Voigt’s model

through the plate thickness is given by:

P (j)(z) = (Pb − Pt)V
(j)
b (z) + Pt (1)

where Pt and Pb are the Young’s moduli (E), mass densities (ρ) of materials located at the top and

bottom surfaces, and at the core of the plate, respectively, the volume fraction function V
(j)
b defined

by the power law as follows:



V
(1)
b (z) =

(
z−ho
h1−h0

)p
for z ∈ [h0, h1]

V
(2)
b (z) = 1 for z ∈ [h1, h2]

V
(3)
b (z) =

(
z−h3
h2−h3

)p
for z ∈ [h2, h3]

(2)

where p is a power-law index, which is positive. Distribution of material with Vb through the plate

thickness according to the power-law form for six cases of the thickness ratio of layer is presented in

Figure 2.

2.2 Improved transverse shear stiffness

The displacement field of the FSDT is given by the following expressions:

uα(x, y, z) = uoα(x, y, z) + zθα(x, y, z)

wα(x, y, z) = woα(x, y, z)
(3)

where uoα, θα are the membrane displacements and rotations, woα denotes the transverse dis-

placement of the plate. The membrane strains and in-plane stresses are related by the constitutive

equation:

σ
(j)
αβ(x, y, z) = Q̄

(j)
αβγδ(z)(ϵ

o
γδ(x, y) + zχγδ(x, y)) (4)

where Q̄
(j)
αβγδ(z) are the components of the reduced elasticity tensor of the jth-layer at location

z, ϵoγδ, χγδ are the membrane strains and curvatures of the plate, respectively. They are related

with the membrane displacements uoα and rotations θα as follows: ϵoαβ(x, y) =
1
2(uoα,β + uoβ,α)(x, y),

χαβ(x, y) =
1
2(θα,β + θβ,α)(x, y) where the comma indicates partial differentiation with respect to the
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coordinate subscript that follows. Moreover, the generalized stresses (Nαβ, Mαβ) are associated to the

in-plane stresses σ
(j)
αβ :

Nαβ(x, y) =
3∑

j=1

∫ h/2

−h/2
σ
(j)
αβ(x, y, z) dz, Mαβ(x, y) =

3∑
j=1

∫ h/2

−h/2
zσ

(j)
αβ(x, y, z) dz (5)

That leads to the constitutive equations of the FG sandwich plates:

Nαβ(x, y) = Aαβγδ ϵ
o
γδ(x, y) +Bαβγδ χγδ(x, y)

Mαβ(x, y) = Bαβγδ ϵ
o
γδ(x, y) +Dαβγδ χγδ(x, y)

(6)

where (Aαβγδ, Bαβγδ, Dαβγδ) are the stiffnesses of the FG sandwich plates given by:

(Aαβγδ, Bαβγδ, Dαβγδ) =
3∑

j=1

∫ h/2

−h/2
(1, z, z2)Q̄

(j)
αβγδ(z)dz (7)

The inversion of Eq. (6) enables to derive the membrane strains according to the generalized

stresses as follows:

ϵoαβ(x, y) = aαβγδNγδ(x, y) + bαβγδMγδ(x, y)

χαβ(x, y) = bαβγδNγδ(x, y) + dαβγδMγδ(x, y)
(8)

where (aαβγδ, bαβγδ, dαβγδ) are the components of the compliance matrix. The matrices Q̄, A,B,D, a, b

and d can be explicitly expressed in terms of the functions E(j)(z) and ν(j)(z) describing the Young’s

modulus and the Poisson’s ratio of the jth-layer at z, respectively. Moreover, it appears that the

matrix b is symmetric owing to the fact that the material properties are isotropic. Substituting Eq.

(8) into Eq. (4) leads to:

σ
(j)
αβ(x, y, z) = n

(j)
αβγδ(z)Nγδ(x, y) +m

(j)
αβγδ(z)Mγδ(x, y) (9)

where n
(j)
αβγδ(z),m

(j)
αβγδ(z) are the components of the localization tensors that are expressed as:

n
(j)
αβγδ(z) = Q̄

(j)
αβεφ(z)(aεφγδ + zbεφγδ)

m
(j)
αβγδ(z) = Q̄

(j)
αβεφ(z)(bεφγδ + zdεφγδ)

(10)

Furthermore, it is well known that the calculation of the transverse shear stresses from the con-

stitutive equations is not realistic because of the assumption of a constant shear strain through the

plate thickness, the transverse shear stresses should be derived from the equilibrium equations:

σ
(j)
α3 = −

∫ z

−h/2
σ
(j)
αβ,β dz (11)

where the integration coefficients are selected to satisfy the boundary condition for shear stresses

at the upper and lower surfaces of the plate. Substitution Eq. (9) into Eq. (11) conducts to the

following relationship:

σ
(j)
α3 (x, y, z) = ñ

(j)
αβγδ(z)Nγδ,β(x, y) + m̃

(j)
αβγδ(z)Mγδ,β(x, y) (12)
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where,

ñ
(j)
αβγδ(z) = −

∫ z
−h/2 Q̄

(j)
αβεφ(ξ) [aεφγδ + ξbεφγδ] dξ

m̃
(j)
αβγδ(z) = −

∫ z
−h/2 Q̄

(j)
αβεφ(ξ) [bεφγδ + ξdεφγδ] dξ

ñ
(j)
αβγδ = ñ

(j)
γδαβ = ñ

(j)
βαγδ, m̃

(j)
αβγδ = m̃

(j)
γδαβ = m̃

(j)
βαγδ.

(13)

Using the equilibrium equations of the plate (Mαβ,β − Qα = 0, Nαβ,β = 0), neglecting the weak

terms: M22,1, M11,2, M12,1, M12,2, and omitting the derivative effect of the membrane resultants, the

transverse shear stresses given in Eq. (12) can be simplified as follows in the Cartesian coordinate

system (x, y, z):

σ
(j)
xz (x, z) = m̃

(j)
1111(z)Qx(x)

σ
(j)
yz (x, z) = m̃

(j)
2222(z)Qy(x)

(14)

Eq. (14) corresponds to two assumptions of cylindrical flexion around the y− and x−axis38. It

should be noted that m̃
(j)
1111(z) = m̃

(j)
2222(z) due to the isotropic properties of materials. In practice,

Eq. (14) is very often used to compute the shear stress of homogeneous plates with a quadratic form

of m̃
(j)
1111(z) and m̃

(j)
2222(z), especially when commercial finite element packages are used. Moreover, the

consideration of the balance of the transverse shear strain energy35 by taking into account the shear

stresses in Eq. (14) allows to derive the expression of an improved transverse shear stiffness for FG

sandwich plates (H44 = H55 = H):

H =

 3∑
j=1

∫ h/2

−h/2

[
m̃

(j)
1111(z)

]2
G(j)(z)

dz


−1

(15)

where G(j)(z) = E(j)(z)/2[1+ ν(j)(z)] is the shear modulus of the jth-layer at location z and there

is no coupling between the shear strains in two directions (H45 = 0). Moreover, it is well-known that

the FSDT plate models require an appropriate shear correction factor to calculate the transverse shear

force. The discussion of this topic for the plates can be found in Berthelot39 and Stefanos40. Taking

into account Eq. (15), the shear correction factor (κ44 = κ55 = κ) is given by:

κ =

 3∑
j=1

∫ h/2

−h/2
G(j)(z) dz

−1
 3∑

j=1

∫ h/2

−h/2

[
m̃

(j)
1111(z)

]2
G(j)(z)

dz


−1

(16)

where it takes the five-sixth value for homogeneous plates. However, Eq. (16) shows that the shear

correction factor depends on the material properties of FG through the plate thickness. Moreover, the

use of the improved shear stiffnesses in Eq. (15) can provide a better evaluation of transverse shear

forces.
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2.3 Motion equations of FG sandwich plates

The differential equations of dynamic equilibrium of the FG sandwich plates without transverse loads

can be derived from Hamilton principle as follows:

Nαβ,β = I0üoα + I1θ̈α

Mαβ,β −Qα = I1üoα + I2θ̈α

Qα,α + N̂αβwo,αβ = I0ẅo

(17)

where the over dot indicates partial differentiation with respect to time. The inertia terms I0, I1,

I2 are expressed by:

(I0, I1, I2) =

3∑
j=1

∫ h/2

−h/2
(1, z, z2)ρ(j)(z)dz (18)

Substitution of Eq. (6) into Eq. (17) by noticing that Qα = Hαβ(wo,β + θβ) with Hαβ = Hij

(i, j = 4, 5), leads to the differential equations of motion of FG sandwich plates:

(
Kst +Kg

)
U−MÜ = 0 (19)

where UT={uoα, θα, woα} is the displacement vector and ÜT={üoα, θ̈α, ẅoα} is the acceleration

vector. The stiffness matrix Kst, geometry stiffness matrix Kg and mass matrix M are given as

follows:

Kst =


0.5Aαβγδ (∂,δβδαγ + ∂,γβδαδ) 0.5Bαβγδ (∂,δβδαγ + ∂,γβδαδ) 0

0.5Bαβγδ (∂,δβδαγ + ∂,γβδαδ) 0.5Dαβγδ (∂,δβδαγ + ∂,γβδαδ)−Hαβ −Hαβ∂,α

0 Hαβ∂,α Hαβ∂,αα

 (20)

Kg =


0 0 0

0 0 0

0 0 N̂αβ∂,αβ

 , M =


I0 I1 0

I1 I2 0

0 0 I0

 (21)

2.4 Analytical solution for simply-supported FG sandwich plates

The Navier solution procedure is used to obtain the analytical solutions for simply-supported bound-

ary conditions. For this purpose, the displacement functions are expressed as product of undetermined

coefficients and known trigonometric functions to satisfy the governing equations and boundary con-

ditions. Consider a rectangular FG sandwich plate with in-plane lengths, a and b in the x− and

y− directions, respectively (Figure 1). The Cartesian reference coordinates (x, y, z), and displace-

ment components (uo, vo, wo)=(uo1, uo2, wo) are used. For a simply-supported rectangular plate, the

boundary conditions are given by:
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uo(x, 0, t) = 0, θx(x, 0, t) = 0, uo(x, b, t) = 0, θx(x, b, t) = 0

vo(0, y, t) = 0, θy(0, y, t) = 0, vo(a, y, t) = 0, θy(a, y, t) = 0

wo(0, y, t) = 0, wo(a, y, t) = 0, wo(x, 0, t) = 0, wo(x, b, t) = 0

Nxx(0, y, t) = 0, Nxx(a, y, t) = 0, Nyy(x, 0, t) = 0, Nyy(x, b, t) = 0

Mxx(0, y, t) = 0, Mxx(a, y, t) = 0, Myy(x, 0, t) = 0, Myy(x, b, t) = 0

(22)

These boundary conditions allow to approximate the rotational and transverse displacements as

following expansions:

uo(x, y, t) =
∞∑
r=1

∞∑
s=1

u0rs cosλx sinµy eiωt (23)

vo(x, y, t) =

∞∑
r=1

∞∑
s=1

v0rs sinλx cosµy eiωt (24)

wo(x, y, t) =

∞∑
r=1

∞∑
s=1

w0
rs sinλx sinµy eiωt (25)

θx(x, y, t) =

∞∑
r=1

∞∑
s=1

x0rs cosλx sinµy e
iωt (26)

θy(x, y, t) =

∞∑
r=1

∞∑
s=1

y0rs sinλx cosµy e
iωt (27)

where λ = rπ/a, µ = sπ/b, ω is natural frequency of the plate,
√
i = −1 the imaginary unit.

Assuming that the plate is subjected to in-plane loads of form: N̂xx = R1N0, N̂yy = R2N0

(here R1, R2 are non-dimensional load parameters), N̂xy = 0. By substituting Eqs. (23)-(27) into

Eq. (19) and collecting the displacements and acceleration for any values of r and s so that UT
rs =

{u0rs, v0rs, w0
rs, x

0
rs, y

0
rs}, the following eigenvalue problem is obtained:

[(
Kst +Kg

)
− ω2M

]
Urs = 0 (28)

where the stiffness matrix Kst, geometry stiffness matrix Kg and mass matrix M associated with

the vector Urs are expressed by:

Kst =



k11 k12 0 k14 k15

k12 k22 0 k24 k25

0 0 k33 k34 k35

k14 k24 k34 k44 k45

k15 k25 k35 k45 k55


, M =



I0 0 0 I1 0

0 I0 0 0 I1

0 0 I0 0 0

I1 0 0 I2 0

0 I1 0 0 I2


(29)

Kg
ij = 0 (i, j = 1, 2, ..., 5) except Kg

33 = (R1λ
2 +R2µ

2)N0 (30)
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where,

k11 = A1111λ
2 +A1212µ

2, k12 = (A1122 +A1212)λµ,

k14 = B1111λ
2 +B1212µ

2, k15 = (B1122 +B1212)λµ,

k22 = A1212λ
2 +A2222µ

2, k24 = k15,

k25 = B1212λ
2 +B2222µ

2, k33 = H(λ2 + µ2),

k34 = Hλ, k35 = Hµ, k44 = H +D1111λ
2 +D1212µ

2,

k45 = (D1122 +D1212)λµ, k55 = H +D2222µ
2 +D1212λ

2

(31)

2.4.1 Buckling of FG sandwich plates

For buckling analysis, by neglecting mass matrix M, the stability problem can be simplified as the

following eigenvalue one: (
Kst +Kg

)
Urs = 0 (32)

To obtain a non-trivial solution, the determinant of the matrix Kst+Kg is set equal to zero, from

which the critical buckling loads (Ncr) of FG sandwich plates can be derived.

2.4.2 Free vibration of FG sandwich plates

For vibration under in-plane loads, the following eigenvalue problem is obtained:

(
Kst +Kg − ω2M

)
Urs = 0 (33)

To obtain the nontrivial solution, the determinant should be zero, i.e. |Kst
ij +Kg

ij − ω2Mij | = 0.

By solving the achieved equation, the values of natural frequencies, mode shapes and load-frequency

curves of simply-supported FG sandwich plates can be derived.

3 Numerical results and discussion

In this section, a number of numerical examples are analyzed for verification the accuracy of present

study and investigation of the natural frequencies, critical buckling loads and load-frequency curves of

simply-supported FG sandwich plates. Unless mentioned otherwise, FG sandwich plates with b/h = 10

made of three sets of material combinations of metal and ceramic: Al/Al2O3, Al/SiC, and Al/WC are

considered. Their material properties are given in Table 1 and corresponding shear correction factors

are shown in Table 2. Two cases of FG sandwich plates are studied:

• Hardcore: homogeneous core with Al2O3 or SiC or WC (Eb, νb, ρb) and FG faces with top and

bottom surfaces made of Al (Et, νt, ρt)
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• Softcore: homogeneous core with Al (Eb, νb, ρb) and FG faces with top and bottom surfaces

made of Al2O3 or SiC or WC (Et, νt, ρt)

For convenience, the following non-dimensional critical buckling loads, natural frequencies and the

relative error (%) are used:

N̄cr =
Ncra

2

100Eoh3
, Eo = 1GPa (34)

ω̄ =
ωa2

h

√
ρo
Eo

, ρo = 1kg/m3 (35)

Error (%) =
Pc − Pm

Pm
× 100% (36)

where Pc, Pm are the results obtained from the present model and from the 5/6 shear correction factor

model, respectively.

3.1 Verification studies

For verification purpose, the natural frequencies and critical buckling loads of Al/Al2O3 sandwich

plates with homogeneous hardcore are calculated. Three different types of in-plane loads: uniaxial

compression (R1=-1, R2=0), biaxial compressions (R1=-1, R2=-0.5) and (R1=-1, R2=-1) are consid-

ered for buckling analysis. Comparisons are given in Tables 3 and 4 on the basis of the symmetric

(1-2-1) and non-symmetric (2-2-1) types of sandwich plates. The natural frequencies increase as the

mode number increases while the critical buckling loads decrease with increasing aspect ratio (b/a)

and R2. It can be seen that the present approach using κ = 5/6 almost gives the identical results as

Zenkour28 based on FSDT. Besides, a good agreement between present solution and those obtained by

the HSDT28 particularly at the higher modes of vibration can be observed and discrepancy between

them is also considerable.

To demonstrate the accuracy and validity of the present study further, Tables 5-8 provide funda-

mental natural frequencies and critical buckling loads of six types of square Al/Al2O3 sandwich plates

with homogeneous hardcore and softcore for different values of the power-law index p. The present

method is again in close agreement with the FSDT and HSDT model in Meiche et al.30, while minor

differences are shown for the comparison with the 3D solution in Li et al.29.
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3.2 Parameter studies

Parameter studies are carried out to investigate the effects of the improved shear stiffness on the

natural frequencies, critical buckling loads and load-frequency curves. The (1-2-1) Al/Al2O3, Al/SiC,

and Al/WC sandwich plates with homogeneous hardcore and softcore are considered. Figures 3 and 4

show the first three natural frequencies and critical buckling loads of Al/Al2O3 sandwich plate versus

the power-law index under different types of loadings. Some major deviations are observed between

the results of present model and that with κ = 5/6, which implies that the effect of improved shear

stiffness becomes important and can not be neglected, especially for sandwich plate with homogeneous

softcore. The critical buckling loads are the highest when (R1=-1, R2=1) and are the lowest when

(R1=-1, R2=-1) for a specified side-to-thickness ratio. Effects of the side-to-thickness ratio and power-

law index on the fundamental frequency and critical buckling load of FG sandwich plate are plotted

in Figures 5 and 6. Three groups of curves are seen, for vibration analysis, the highest group is for

Al/SiC sandwich plate and the lowest group is for to Al/WC one, however, for buckling analysis, the

highest group is for Al/WC one and the lowest group is for to Al/Al2O3, respectively. The effects

of the power-law index and aspect ratio on the natural frequencies and critical buckling loads of

sandwich plates are also summarized in Tables 6 - 14. It can be seen that with the increase of the

power-law index, the natural frequencies and critical buckling loads decrease for sandwich plate with

homogeneous hardcore, and increase for sandwich plate with homogeneous softcore. This is due to the

fact that higher values of power-law index correspond to high portion of metal in comparison with the

ceramic part for homogeneous hardcore and inversely for homogeneous softcore. With the increase of

the aspect ratio leads not only the decrease of the critical buckling loads, but also causes the changes in

corresponding mode shapes. For instance, for the square plate under biaxial compression and tension

(R1 = −1, R2 = 1), the critical buckling load occurs at (r, s) = (2, 1). Since there is no reported work

for the vibration and buckling of Al/Al2O3, Al/SiC, and Al/WC sandwich plates with homogeneous

hardcore and softcore in a unitary manner as far as the authors know, it is believed that the tabulated

results will be a reference with which other researchers can compare their results.

The next example is the same as before except that in this case, the effect of in-plane loads

on the fundamental natural frequency is investigated. The lowest load-frequency curves of (1-2-1)

rectangular FG sandwich plates with the power-law index p = 10 are plotted in Figures 7 and 8.

All natural frequencies diminish as in-plane loads change from tension to compression, which implies

that the tension loads have a stiffening effect while the compressive loads have a softening effect. The

fundamental natural frequencies are the smallest for Al/WC sandwich plates and the largest for Al/SiC

ones. However, as the in-plane loads increase, they decrease and interaction curve (Al/WC) intersects
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two other curves (Al/Al2O3) and (Al/SiC) at (N̄0=2.2521, ω̄=2.0167) and (N̄0=2.6857, ω̄=1.8138),

respectively, for homogeneous softcore (Figure 8b), thus, after these values, this order is changed.

Finally, they vanish at 3.0961, 3.3106 and 4.5244, which correspond to the critical buckling loads of

Al/Al2O3, Al/SiC and Al/WC sandwich plates with homogeneous softcore, respectively. Figures 7

and 8 also explain the duality between critical buckling load and fundamental natural frequency, which

is the characteristic of load-frequency curves.

In order to investigate the effect of improved shear stiffness on vibration and buckling analysis

further, Figures 9-12 display the relative error of the natural frequencies and critical buckling loads

of FG sandwich plates with homogeneous softcore with respect to the thickness ratio of layer (ec/ef

here eft = eft = ef ), power-law index p and side-to-thickness ratio (b/h). It is from these figures that

confirms the effect of improved shear stiffness is more pronounced in buckling analysis than vibration

one. It appears that with a specified material contrast, the maximum relative error can be found for

thickness ratio of layer ec/ef = 2 corresponding to 1-2-1 FG sandwich plates (Figure 9). For such

plates, with the increase of the material contrast and power-law index, the improved shear stiffness

decreases, thus, the relative error increases. This error for critical buckling loads is much higher than

natural frequencies. Indeed, for p = 20, with SiC/Al sandwich plate, the relative differences are -5.52%

for the fundamental frequency and -11.01% for the critical buckling load, while with WC/Al one, these

deviations are -9.82% and -19.26%, respectively (Figure 10). Relative error with respect to the power-

law index for the first three natural frequencies is also plotted in Figure 11. The diagram shows that

the relative error becomes more important for higher modes. Finally, effect of side-to-thickness ratio

on the natural frequencies and critical buckling loads is plotted in Figure 12. It is evident from this

figure that the improved shear stiffness is very effective in a relatively large region up to the point

where this ratio reaches value of b/h = 30, which confirms again that the present improved shear

stiffness should be taken into account in analysis of FG sandwich plates.

4 Conclusions

Vibration and buckling analysis of FG sandwich plates with homogeneous hardcore and softcore based

on the first-order shear deformation theory have been investigated in this paper. The material property

is assumed to be isotropic at each point and vary through the plate thickness according to a power-law.

The improved shear stiffness and associated shear correction factors are presented. The effects of the

power-law index, thickness ratio of layer, aspect ratio and material contrast on the shear correction

factor, critical buckling load, natural frequency and load-frequency curves of simply-supported FG

12



sandwich plates are investigated. The numerical results indicate that the shear correction factor is

not the same as the one of the homogeneous sandwich plate, it is a function of the power-law index,

material contrast. Consequently, that leads to the differences of the fundamental natural frequency

and critical buckling load between the present model and others using the five-sixth shear factor. This

deviation is significant for FG sandwich plates with softcore, especially for high material contrast while

this effect can be neglected for FG sandwich plate with hardcore.
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Figure 3: Effect of the power-law index p on the first three natural frequencies of (1-2-1) square

Al/Al2O3 sandwich plate.

Figure 4: Effect of the power-law index p on non-dimensional critical buckling loads (N̄cr) of (1-2-1)
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Figure 5: A 3D diagram of the power-law index p, side-to-thickness ratio (b/h) and nondimensional

fundamental natural frequency of (1-2-1) square FG sandwich plate.
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Figure 7: Effect of in-plane loads on the nondimensional fundamental frequency of (1-2-1) rectan-
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Figure 8: Effect of in-plane loads on the nondimensional fundamental frequency of (1-2-1) rect-
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Figure 9: Relative error (%) of the critical buckling loads (R1 = −1, R2 = 0) and fundamental
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Figure 10: Relative error (%) of the critical buckling loads (R1 = −1, R2 = 0) and fundamental

frequencies of (1-2-1) square FG sandwich plates with homogeneous softcore with respect to the power-

law index p.

Figure 11: Relative error (%) of the first three natural frequencies of (1-2-1) square sandwich plate

with homogeneous softcore with respect to the power-law index p.

Figure 12: Relative error (%) of the critical buckling loads (R1 = −1, R2 = 0) and fundamental

frequencies of (1-2-1) square FG sandwich plates with homogeneous softcore with respect to the side-

to-thickness ratio (b/h) (p = 10).
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(b)

Figure 1: Geometry of a functionally graded three-layer sandwich plate.
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Figure 2: Distribution of material through the plate thickness according to the power-law form.
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Figure 4: Effect of the power-law index p on non-dimensional critical buckling loads (N̄cr) of (1-2-1)

square Al/Al2O3 sandwich plate under different loading conditions.
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Figure 7: Effect of in-plane loads on the nondimensional fundamental frequency of (1-2-1) rectangular

Al/Al2O3 sandwich plates (b/a = 2, p = 10) with homogeneous hardcore and softcore.
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Figure 9: Relative error (%) of the critical buckling loads (R1 = −1, R2 = 0) and fundamental

frequencies of square FG sandwich plates with homogeneous softcore with respect to the thickness

ratio of layer ec/ef (p = 10).
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Figure 10: Relative error (%) of the critical buckling loads (R1 = −1, R2 = 0) and fundamental

frequencies of (1-2-1) square FG sandwich plates with homogeneous softcore with respect to the

power-law index p.
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Figure 11: Relative error (%) of the first three natural frequencies of (1-2-1) square sandwich plate

with homogeneous softcore with respect to the power-law index p
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Figure 12: Relative error (%) of the critical buckling loads (R1 = −1, R2 = 0) and fundamental

frequencies of (1-2-1) square FG sandwich plates with homogeneous softcore with respect to the side-

to-thickness ratio (b/h) (p = 10).
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Table 1: Material properties of metal and ceramic

Material Young’s modulus (GPa) Mass density (kg/m3) Poisson’s ratio

Aluminum (Al) 70 2707 0.3

Alumina (Al2O3) 380 3800 0.3

Silicon carbide (SiC) 420 3210 0.3

Tungsten carbide (WC) 700 15800 0.3
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Table 2: Effect of the power-law index p and thickness ratio of layer on shear correction factors for

various FG sandwich plates with homogeneous hardcore and softcore.

Core Et/Eb p Thickness ratio of layer

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

Hardcore 7/38 0 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333

0.5 0.9105 0.9072 0.8936 0.8979 0.8861 0.8789

1.0 0.9489 0.9473 0.9219 0.9333 0.9128 0.9016

5.0 0.8633 0.8953 0.8261 0.9471 0.9076 0.9398

10.0 0.8131 0.7919 0.7176 0.8793 0.8431 0.9309

7/42 0.5 0.9130 0.9086 0.8951 0.8990 0.8869 0.8796

1.0 0.9514 0.9494 0.9234 0.9347 0.9139 0.9021

5.0 0.8554 0.8902 0.8198 0.9464 0.9071 0.9384

10.0 0.8012 0.7757 0.7007 0.8720 0.8374 0.9284

7/70 0.5 0.9188 0.9143 0.8990 0.9035 0.8903 0.8818

1.0 0.9602 0.9561 0.9286 0.9387 0.9169 0.9029

5.0 0.8062 0.8686 0.7982 0.9436 0.9072 0.9276

10.0 0.7212 0.6941 0.6244 0.8404 0.8176 0.9134

Softcore 38/7 0.5 0.6048 0.5635 0.5793 0.5634 0.5835 0.5899

1.0 0.5730 0.4929 0.5062 0.4837 0.5029 0.5071

5.0 0.6362 0.4073 0.4134 0.3754 0.3899 0.3881

10.0 0.6987 0.3961 0.4003 0.3570 0.3704 0.3666

42/7 0.5 0.5881 0.5420 0.5571 0.5408 0.5610 0.5673

1.0 0.5573 0.4698 0.4821 0.4591 0.4776 0.4819

5.0 0.6250 0.3825 0.3873 0.3502 0.3636 0.3623

10.0 0.6905 0.3706 0.3738 0.3317 0.3442 0.3409

70/7 0.5 0.5079 0.4316 0.4428 0.4234 0.4410 0.4473

1.0 0.4827 0.3573 0.3636 0.3401 0.3536 0.3574

5.0 0.5713 0.2693 0.2694 0.2385 0.2470 0.2468

10.0 0.6501 0.2560 0.2553 0.2218 0.2299 0.2284
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Table 3: Nondimensional natural frequencies (ω̄) of Al/Al2O3 sandwich plates with homogeneous

hardcore (p = 2).

(r, s) 1− 2− 1 2− 2− 1

Present Present Zenkour28 Zenkour28 Present Present Zenkour28 Zenkour28

(κ = 5/6) (FSDT) (HSDT ) (κ = 5/6) (FSDT) (HSDT)

(1, 1) 1.30230 1.30020 1.30020 1.30246 1.24360 1.24148 1.26524 1.26775

(1, 2) 3.15631 3.14459 3.14452 3.15698 3.01630 3.00441 3.05968 3.07353

(2, 2) 4.90792 4.88084 4.88021 4.90879 4.69323 4.66572 4.74815 4.77998

(1, 3) 6.02622 5.98651 5.98487 6.02667 5.76484 5.72448 5.82264 5.86924

(2, 3) 7.63842 7.57701 7.57215 7.63674 7.31097 7.24850 7.36640 7.43850

(1, 4) 9.68108 9.58685 9.57284 9.67233 9.27185 9.17590 9.31198 9.42315

(3, 3) 10.17464 10.07165 10.05424 10.16314 9.74595 9.64106 9.78007 9.90179

(2, 4) 11.14296 11.02194 10.99612 11.12461 10.67641 10.55310 10.69588 10.83951

(3, 4) 13.46402 13.29541 13.23801 13.41936 12.90836 12.73640 12.87543 13.07809

(4, 4) 16.50757 16.26819 16.13722 16.40035 15.83825 15.59388 15.69346 15.98701

33



Table 4: Nondimensional critical buckling loads (N̄cr) of Al/Al2O3 sandwich plates with homogeneous

hardcore (p = 2).

(R1, R2) b/a 1− 2− 1 2− 2− 1

Present Present Zenkour28 Zenkour28 Present Present Zenkour28 Zenkour28

(κ = 5/6) (FSDT) (HSDT ) (κ = 5/6) (FSDT) (HSDT)

(-1, 0) 0.5a 23.94086 23.86154 23.86154 23.94786 21.37497 21.29983 21.29983 21.38582

1.0 5.98521 5.96539 5.96539 5.98697 5.34374 5.32496 5.32496 5.32496

2.0 2.23594 2.21831 2.21831 2.23758 2.00028 1.98352 1.98352 2.00278

(-1, -0.5) 0.5 12.61310 12.58665 12.58665 12.61540 11.25535 11.23031 11.23031 11.25893

1.0 3.99014 3.97692 3.97692 3.99131 3.56250 3.54997 3.54997 3.56430

2.0 1.98750 1.97183 1.97183 1.98896 1.77803 1.76313 1.76313 1.78025

(-1, -1) 0.5 7.56786 7.55199 7.55199 7.56924 6.75321 6.73819 6.73819 6.75536

1.0 2.99261 2.98269 2.98269 2.99348 2.67187 2.66248 2.66248 2.67323

2.0 1.78875 1.77464 1.77464 1.79006 1.60022 1.58681 1.58681 1.60222

(a) : Critical buckling occurs at (r, s) = (2, 1).
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Table 5: Nondimensional fundamental frequency (ω̄) of square Al/Al2O3 sandwich plates with homo-

geneous hardcore and softcore.

Core p Theory ω̄

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

Hardcore 0 Present 1.82442 1.82442 1.82442 1.82442 1.82442 1.82442

Present (κ = 5/6) 1.82442 1.82442 1.82442 1.82442 1.82442 1.82442

Meiche et al.30 (FSDT) 1.82442 1.82442 1.82442 1.82442 1.82442 1.82442

Meiche et al.30 (HSDT) 1.82445 1.82445 1.82445 1.82445 1.82445 1.82445

0.5 Present 1.44321 1.48332 1.50567 1.51862 1.54655 1.57407

Present (κ = 5/6) 1.44075 1.48088 1.50359 1.51638 1.54462 1.57234

Meiche et al.30 (FSDT) 1.44168 1.48159 1.51035 1.51695 1.55001 1.57274

Meiche et al.30 (HSDT) 1.44424 1.48408 1.51253 1.51922 1.55199 1.57451

1.0 Present 1.24294 1.29999 1.33320 1.35328 1.39559 1.43927

Present (κ = 5/6) 1.24032 1.29729 1.33093 1.35072 1.39336 1.43722

Meiche et al.30 (FSDT) 1.24031 1.29729 1.34637 1.35072 1.40555 1.43722

Meiche et al.30 (HSDT) 1.24320 1.30011 1.34888 1.35333 1.40789 1.43934

5.0 Present 0.94311 0.97960 1.02781 1.04347 1.10771 1.17348

Present (κ = 5/6) 0.94257 0.97870 1.02793 1.04183 1.10646 1.17159

Meiche et al.30 (FSDT) 0.94256 0.97870 1.07156 1.04183 1.14467 1.17159

Meiche et al.30 (HSDT) 0.94598 0.98184 1.07432 1.04466 1.14731 1.17397

10.0 Present 0.92464 0.93896 0.98718 0.99321 1.05866 1.12226

Present (κ = 5/6) 0.92508 0.93961 0.98937 0.99256 1.05849 1.12067

Meiche et al.30 (FSDT) 0.92508 0.93962 1.03580 0.99256 1.10261 1.12067

Meiche et al.30 (HSDT) 0.92839 0.94297 1.03862 0.99551 1.10533 1.12314

Softcore 0 Present 0.92775 0.92775 0.92775 0.92775 0.92775 0.92775

Present (κ = 5/6) 0.92775 0.92775 0.92775 0.92775 0.92775 0.92775

Li et al29 (3D) 0.92897 0.92897 - 0.92897 0.92897 0.92897

0.5 Present 1.57103 1.52374 1.48178 1.48288 1.43262 1.41475

Present (κ = 5/6) 1.59164 1.55034 1.50475 1.50942 1.45484 1.43687

Li et al29 (3D) 1.57352 1.52588 - 1.48459 1.43419 1.41662

1.0 Present 1.71619 1.66822 1.61869 1.62652 1.56650 1.55414

Present (κ = 5/6) 1.74266 1.71023 1.65563 1.67122 1.60446 1.59360

Li et al29 (3D) 1.72227 1.67437 - 1.63053 1.57037 1.55788

5.0 Present 1.83222 1.79962 1.75239 1.77215 1.71157 1.71736

Present (κ = 5/6) 1.84879 1.86166 1.80983 1.84927 1.77966 1.79408

Li et al29 (3D) 1.84198 1.82611 - 1.78956 1.72726 1.72670

10.0 Present 1.83231 1.80483 1.76179 1.78266 1.72538 1.73573

Present (κ = 5/6) 1.84209 1.86791 1.82121 1.86498 1.79890 1.82035

Li et al29 (3D) 1.84020 1.83987 - 1.80813 1.74779 1.74811

35



Table 6: Nondimensional critical buckling loads (N̄cr) of square Al/Al2O3 sandwich plates subjected

to uniaxial compressive load (R1 = −1, R2 = 0) with homogeneous hardcore and softcore.

Core p Theory N̄cr

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

Hardcore 0 Present 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449

Present (κ = 5/6) 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449

Meiche et al.30 (FSDT) 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449

Meiche et al.30 (HSDT) 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495

0.5 Present 7.35358 7.93243 8.21646 8.42959 8.80290 9.21133

Present (κ = 5/6) 7.32784 7.90563 8.19306 8.40405 8.78033 9.19048

Meiche et al.30 (FSDT) 7.33732 7.91320 8.20015 8.41034 8.78673 9.19517

Meiche et al.30 (HSDT) 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681

1 Present 5.16478 5.83869 6.19190 6.46405 6.94849 7.50558

Present (κ = 5/6) 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365

Meiche et al.30 (FSDT) 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365

Meiche et al.30 (HSDT) 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656

5 Present 2.64159 3.02825 3.38458 3.57105 4.10238 4.73046

Present (κ = 5/6) 2.63849 3.02255 3.38542 3.55959 4.09286 4.71474

Meiche et al.30 (FSDT) 2.63842 3.02252 3.38538 3.55958 4.09285 4.71475

Meiche et al.30 (HSDT) 2.65821 3.04257 3.40351 3.57956 4.11209 4.73469

10 Present 2.46665 2.72231 3.06028 3.17949 3.69009 4.27289

Present (κ = 5/6) 2.46906 2.72623 3.07431 3.17520 3.68893 4.26044

Meiche et al.30 (FSDT) 2.46904 2.72626 3.07428 3.17521 3.68890 4.26040

Meiche et al.30 (HSDT) 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991

Softcore 0 Present 2.39556 2.39556 2.39556 2.39556 2.39556 2.39556

Present (κ = 5/6) 2.39556 2.39556 2.39556 2.39556 2.39556 2.39556

0.5 Present 7.79154 7.15372 6.72642 6.66497 6.17198 5.94182

Present (κ = 5/6) 8.00364 7.41326 6.94300 6.91286 6.37091 6.13472

1 Present 9.84984 8.98965 8.39322 8.34645 7.65362 7.39422

Present (κ = 5/6) 10.16533 9.46203 8.79268 8.82558 8.04067 7.78586

5 Present 12.48575 11.42654 10.69312 10.68481 9.78827 9.57415

Present (κ = 5/6) 12.71956 12.25225 11.42742 11.66389 10.60706 10.47513

10 Present 12.77338 11.71323 11.00449 10.99040 10.09684 9.90637

Present (κ = 5/6) 12.91427 12.57142 11.78218 12.06023 11.00259 10.92575
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Table 7: Nondimensional critical buckling load (N̄cr) of square Al/Al2O3 sandwich plates subjected

to biaxial compressive loads (R1 = −1, R2 = −1) with homogeneous hardcore and softcore.

Core p Theory N̄cr

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

Hardcore 0 Present 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224

Present (κ = 5/6) 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224

Meiche et al.30 (FSDT) 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224

Meiche et al.30 (HSDT) 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248

0.5 Present 3.67679 3.96622 4.10823 4.21479 4.40145 4.60566

Present (κ = 5/6) 3.66392 3.95282 4.09653 4.20202 4.39016 4.59524

Meiche et al.30 (FSDT) 3.66866 3.95660 4.10007 4.20517 4.39336 4.59758

Meiche et al.30 (HSDT) 3.68219 3.97042 4.11235 4.21823 4.40499 4.60841

1 Present 2.58239 2.91934 3.09595 3.23203 3.47425 3.75279

Present (κ = 5/6) 2.57118 2.90690 3.08510 3.21946 3.46286 3.74182

Meiche et al.30 (FSDT) 2.57118 2.90690 3.08510 3.21946 3.46286 3.74182

Meiche et al.30 (HSDT) 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328

5 Present 1.32080 1.51412 1.69229 1.78553 2.05119 2.36523

Present (κ = 5/6) 1.31925 1.51127 1.69271 1.77979 2.04643 2.35737

Meiche et al.30 (FSDT) 1.31921 1.51126 1.69269 1.77979 2.04642 2.35737

Meiche et al.30 (HSDT) 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734

10 Present 1.23333 1.36115 1.53014 1.58975 1.84504 2.13645

Present (κ = 5/6) 1.23453 1.36311 1.53716 1.58760 1.84446 2.13022

Meiche et al.30 (FSDT) 1.23452 1.36313 1.53714 1.58760 1.84445 2.13020

Meiche et al.30 (HSDT) 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995

Softcore 0 Present 1.19778 1.19778 1.19778 1.19778 1.19778 1.19778

Present (κ = 5/6) 1.19778 1.19778 1.19778 1.19778 1.19778 1.19778

0.5 Present 3.89577 3.57686 3.36321 3.33249 3.08599 2.97091

Present (κ = 5/6) 4.00182 3.70663 3.47150 3.45643 3.18545 3.06736

1 Present 4.92492 4.49483 4.19661 4.17322 3.82681 3.69711

Present (κ = 5/6) 5.08266 4.73102 4.39634 4.41279 4.02034 3.89293

5 Present 6.24287 5.71327 5.34656 5.34240 4.89413 4.78707

Present (κ = 5/6) 6.35978 6.12612 5.71371 5.83195 5.30353 5.23756

10 Present 6.38669 5.85661 5.50225 5.49520 5.04842 4.95318

Present (κ = 5/6) 6.45714 6.28571 5.89109 6.03011 5.50129 5.46287
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Table 8: Nondimensional critical buckling loads (N̄cr) of square Al/Al2O3 sandwich plates subjected

to axial compression and tension (R1 = −1, R2 = 1) with homogeneous hardcore and softcore (r =

2, s = 1).

Core p Theory N̄cr

1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

Hardcore 0 Present 25.08395 25.08395 25.08395 25.08395 25.08395 25.08395

Present (κ = 5/6) 25.08395 25.08395 25.08395 25.08395 25.08395 25.08395

0.5 Present 14.49785 15.63207 16.16201 16.58767 17.28862 18.06726

Present (κ = 5/6) 14.37837 15.50776 16.05379 16.46950 17.18448 17.97128

1 Present 10.27527 11.61848 12.28950 12.83997 13.76415 14.84025

Present (κ = 5/6) 10.16938 11.50089 12.18741 12.72160 13.65737 14.73777

5 Present 5.24603 6.07759 6.76117 7.18544 8.22442 9.48400

Present (κ = 5/6) 5.23139 6.05010 6.76521 7.12998 8.17865 9.40856

10 Present 4.84684 5.43569 6.07595 6.38946 7.38868 8.58064

Present (κ = 5/6) 4.85800 5.45449 6.14277 6.36871 7.38309 8.52064

Softcore 0 Present 4.62073 4.62073 4.62073 4.62073 4.62073 4.62073

Present (κ = 5/6) 4.62073 4.62073 4.62073 4.62073 4.62073 4.62073

0.5 Present 14.17523 12.82227 12.14688 11.90629 11.11902 10.65703

Present (κ = 5/6) 15.04572 13.86644 13.02752 12.89777 11.92389 11.43060

1 Present 17.85957 15.82706 14.89937 14.56184 13.48899 12.91515

Present (κ = 5/6) 19.15293 17.69324 16.49581 16.42916 15.01788 14.43727

5 Present 23.29657 19.87532 18.70071 18.11033 16.74805 16.06611

Present (κ = 5/6) 24.29658 23.12874 21.61563 21.83897 19.90252 19.43169

10 Present 24.16296 20.41769 19.25702 18.57307 17.20941 16.51246

Present (κ = 5/6) 24.77655 23.81892 22.35563 22.64709 20.69369 20.30109
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Table 9: The first three non-dimensional natural frequencies (ω̄) of (1-2-1) Al/Al2O3 sandwich plates

with homogeneous hardcore and softcore.

Core b/a Mode (r, s) Theory p

0 0.5 1 5 10

Hardcore 0.5 1 (1,1) Present 1.15479 0.99406 0.90788 0.73885 0.70645

Present (κ=5/6) 1.15479 0.99336 0.90706 0.73809 0.70582

2 (1,2) Present 3.74119 3.24837 2.97893 2.44129 2.33612

Present (κ=5/6) 3.74119 3.24131 2.97052 2.43337 2.32946

3 (1,3) Present 7.59854 6.67116 6.15153 5.08947 4.87567

Present (κ=5/6) 7.59854 6.64373 6.11838 5.05746 4.84866

1.0 1 (1,1) Present 1.82442 1.57407 1.43927 1.17348 1.12226

Present (κ=5/6) 1.82442 1.57234 1.43722 1.17159 1.12067

2 (1,2) Present 4.35246 3.78606 3.47539 2.85264 2.73025

Present (κ=5/6) 4.35246 3.77659 3.46409 2.84196 2.72126

3 (1,3) Present 8.13770 7.15441 6.60202 5.46902 5.24005

Present (κ=5/6) 8.13770 7.12320 6.56425 5.43242 5.20916

2.0 1 (1,1) Present 4.35246 3.78606 3.47539 2.85264 2.73025

Present (κ=5/6) 4.35246 3.77659 3.46409 2.84196 2.72126

2 (1,2) Present 6.67896 5.84873 5.38697 4.44723 4.2593

Present (κ=5/6) 6.67896 5.82725 5.36108 4.42237 4.23835

3 (1,3) Present 10.20908 9.02134 8.34710 6.94674 6.65959

Present (κ=5/6) 10.20908 8.97372 8.28906 6.88982 6.61148

Softcore 0.5 1 (1,1) Present 0.58723 0.90459 0.99774 1.10940 1.12247

Present (κ=5/6) 0.58723 0.91382 1.01431 1.14192 1.15837

2 (1,2) Present 1.90245 2.82533 3.07379 3.34643 3.37378

Present (κ=5/6) 1.90245 2.90906 3.22063 3.62579 3.68104

3 (1,3) Present 3.86398 5.49440 5.88934 6.27608 6.30548

Present (κ=5/6) 3.86398 5.78299 6.38268 7.18600 7.30254

1.0 1 (1,1) Present 0.92775 1.41475 1.55414 1.71736 1.73573

Present (κ=5/6) 0.92775 1.43687 1.59360 1.79408 1.82035

2 (1,2) Present 2.21330 3.26211 3.53910 3.83753 3.86632

Present (κ=5/6) 2.21330 3.37201 3.73087 4.20024 4.26497

3 (1,3) Present 4.13815 6.12408 6.61530 7.13333 7.18349

Present (κ=5/6) 4.13815 6.17714 6.81492 7.67274 7.79808

2.0 1 (1,1) Present 2.21330 3.26211 3.53910 3.83753 3.86632

Present (κ=5/6) 2.21330 3.37201 3.73087 4.20024 4.26497

2 (1,2) Present 3.39636 4.87565 5.24173 5.61023 5.64041

Present (κ=5/6) 3.39636 5.10773 5.64044 6.35024 6.45188

3 (1,3) Present 5.19148 7.20674 7.66527 8.08358 8.10812

Present (κ=5/6) 5.19148 7.67627 8.45719 9.52217 9.68176

39



Table 10: Nondimensional critical buckling loads (N̄cr) of (1-2-1) Al/Al2O3 sandwich plates with

homogeneous hardcore and softcore.

Core (R1, R2) b/a Theory p

0 0.5 1 5 10

Hardcore (-1, 0) 0.5a Present 52.01795 36.84532 30.02233 18.92183 17.09157

Present (κ=5/6) 52.01795 36.76190 29.93460 18.85898 17.04178

1.0 Present 13.00449 9.21133 7.50558 4.73046 4.27289

Present (κ=5/6) 13.00449 9.19048 7.48365 4.71474 4.26044

2.0 Present 4.70324 3.38761 2.78255 1.77825 1.60887

Present (κ=5/6) 4.70324 3.36962 2.76333 1.76411 1.59762

(-1, -1) 0.5 Present 16.5877 11.69721 9.50956 5.97149 5.39158

Present (κ=5/6) 16.5877 11.68038 9.49193 5.95896 5.38166

1.0 Present 6.50224 4.60566 3.75279 2.36523 2.13645

Present (κ=5/6) 6.50224 4.59524 3.74182 2.35737 2.13022

2.0 Present 3.76259 2.71009 2.22604 1.42260 1.28710

Present (κ=5/6) 3.76259 2.69569 2.21067 1.41128 1.27810

(-1, 1) 0.5 Present 27.64616 19.49535 15.84926 9.95248 8.98596

Present (κ=5/6) 27.64616 19.46730 15.81989 9.93159 8.96943

1.0a Present 25.08395 18.06726 14.84025 9.48400 8.58064

Present (κ=5/6) 25.08395 17.97128 14.73777 9.40856 8.52064

2.0 Present 6.27099 4.51681 3.71006 2.37100 2.14516

Present (κ=5/6) 6.27099 4.49282 3.68444 2.35214 2.13016

Softcore (-1, 0) 0.5a Present 9.58225 23.76728 29.57688 38.29658 39.62548

Present (κ=5/6) 9.58225 24.53887 31.14342 41.90052 43.70299

1.0 Present 2.39556 5.94182 7.39422 9.57415 9.90637

Present (κ=5/6) 2.39556 6.13472 7.78586 10.4751 10.92575

2.0 Present 0.86639 1.99819 2.42159 3.01240 3.09609

Present (κ=5/6) 0.86639 2.14324 2.70699 3.64344 3.80645

(-1, -1) 0.5 Present 3.05563 7.73871 9.71073 12.73667 13.20800

Present (κ=5/6) 3.05563 7.90048 10.04242 13.50957 14.08400

1.0 Present 1.19778 2.97091 3.69711 4.78707 4.95318

Present (κ=5/6) 1.19778 3.06736 3.89293 5.23756 5.46287

2.0 Present 0.69311 1.59856 1.93727 2.40992 2.47687

Present (κ=5/6) 0.69311 1.71459 2.16559 2.91475 3.04516

(-1, 1) 0.5 Present 5.09271 12.89784 16.18454 21.22778 22.01334

Present (κ=5/6) 5.09271 13.16746 16.73737 22.51595 23.47333

1.0a Present 4.62073 10.65703 12.91515 16.06611 16.51246

Present (κ=5/6) 4.62073 11.43060 14.43727 19.43169 20.30109

2.0 Present 1.15518 2.66426 3.22879 4.01653 4.12812

Present (κ=5/6) 1.15518 2.85765 3.60932 4.85792 5.07527

(a) : Critical buckling occurs at (r, s) = (2, 1).
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Table 11: The first three non-dimensional natural frequencies (ω̄) of (1-2-1) Al/SiC sandwich plates

with homogeneous hardcore and softcore.

Core b/a Mode (r, s) Theory p

0 0.5 1 5 10

Hardcore 0.5 1 (1,1) Present 1.32091 1.11899 1.01214 0.80376 0.76356

Present (κ=5/6) 1.32091 1.11819 1.01123 0.80297 0.76291

2 (1,2) Present 4.27939 3.65629 3.32058 2.65537 2.52463

Present (κ=5/6) 4.27939 3.64829 3.31126 2.64712 2.51786

3 (1,3) Present 8.69165 7.50826 6.85610 5.53487 5.26839

Present (κ=5/6) 8.69165 7.47722 6.81944 5.50157 5.24096

1.0 1 (1,1) Present 2.08688 1.77185 1.60449 1.27653 1.21294

Present (κ=5/6) 2.08688 1.76988 1.60222 1.27454 1.21131

2 (1,2) Present 4.97860 4.26142 3.87388 3.10270 2.95050

Present (κ=5/6) 4.97860 4.25069 3.86136 3.09157 2.94135

3 (1,3) Present 9.30838 8.05208 7.35809 5.94753 5.66204

Present (κ=5/6) 9.30838 8.01677 7.31631 5.90946 5.63067

2.0 1 (1,1) Present 4.97860 4.26142 3.87388 3.10270 2.95050

Present (κ=5/6) 4.97860 4.25069 3.86136 3.09157 2.94135

2 (1,2) Present 7.63979 6.58272 6.00413 4.83658 4.60251

Present (κ=5/6) 7.63979 6.55840 5.97549 4.81071 4.58121

3 (1,3) Present 11.67773 10.15303 9.30262 7.55408 7.19555

Present (κ=5/6) 11.67773 10.09916 9.23848 7.49495 7.14674

Softcore 0.5 1 (1,1) Present 0.58723 0.95454 1.06566 1.20657 1.22500

Present (κ=5/6) 0.58723 0.96585 1.08612 1.24721 1.27001

2 (1,2) Present 1.90245 2.97009 3.26637 3.61336 3.65396

Present (κ=5/6) 1.90245 3.07211 3.44638 3.95904 4.03498

3 (1,3) Present 3.86398 5.75131 6.22421 6.72857 6.77860

Present (κ=5/6) 3.86398 6.10050 6.82391 7.84277 8.00164

1.0 1 (1,1) Present 0.92775 1.49127 1.65750 1.86377 1.88996

Present (κ=5/6) 0.92775 1.51835 1.70613 1.95938 1.99569

2 (1,2) Present 2.21330 3.42664 3.75705 4.13800 4.18145

Present (κ=5/6) 2.21330 3.56037 3.99178 4.58595 4.67480

3 (1,3) Present 4.13815 6.12408 6.61530 7.13333 7.18349

Present (κ=5/6) 4.13815 6.51538 7.28517 8.37341 8.54413

2.0 1 (1,1) Present 2.21330 3.42664 3.75705 4.13800 4.18145

Present (κ=5/6) 2.21330 3.56037 3.99178 4.58595 4.67480

2 (1,2) Present 3.39636 5.10827 5.54607 6.02332 6.07261

Present (κ=5/6) 3.39636 5.38950 6.03160 6.93142 7.07022

3 (1,3) Present 5.19148 7.52656 8.07852 8.63683 8.68587

Present (κ=5/6) 5.19148 8.09248 9.03679 10.3890 10.6056
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Table 12: Nondimensional critical buckling load (N̄cr) of (1-2-1) Al/SiC sandwich plates with homo-

geneous hardcore and softcore.

Core (R1, R2) b/a Theory p

0 0.5 1 5 10

Hardcore (-1, 0) 0.5a Present 57.49352 40.35869 32.65022 20.10553 18.03736

Present (κ=5/6) 57.49352 40.26658 32.55521 20.04133 17.98770

1.0 Present 14.37338 10.08967 8.16256 5.02638 4.50934

Present (κ=5/6) 14.37338 10.06665 8.13880 5.01033 4.49693

2.0 Present 5.19832 3.71202 3.02782 1.89138 1.69976

Present (κ=5/6) 5.19832 3.69214 3.00699 1.87690 1.68851

(-1, -1) 0.5 Present 18.33377 12.81134 10.34038 6.34339 5.68830

Present (κ=5/6) 18.33377 12.79276 10.32130 6.33059 5.67841

1.0 Present 7.18669 5.04484 4.08128 2.51319 2.25467

Present (κ=5/6) 7.18669 5.03332 4.06940 2.50517 2.24846

2.0 Present 4.15866 2.96962 2.42226 1.51310 1.35981

Present (κ=5/6) 4.15866 2.95371 2.40559 1.50152 1.35081

(-1, 1) 0.5 Present 30.55628 21.35223 17.23396 10.57232 9.48050

Present (κ=5/6) 30.55628 21.32127 17.20216 10.55099 9.46402

1.0a Present 27.72437 19.79747 16.14838 10.08735 9.06537

Present (κ=5/6) 27.72437 19.69142 16.03726 10.01013 9.00540

2.0 Present 6.93109 4.94937 4.03709 2.52184 2.26634

Present (κ=5/6) 6.93109 4.92285 4.00932 2.50253 2.25135

Softcore (-1, 0) 0.5a Present 9.58225 25.49135 31.94771 41.55328 43.00124

Present (κ=5/6) 9.58225 26.45206 33.90385 46.0497 48.08656

1.0 Present 2.39556 6.37284 7.98693 10.38832 10.75031

Present (κ=5/6) 2.39556 6.61302 8.47596 11.51243 12.02164

2.0 Present 0.86639 2.12623 2.58868 3.22291 3.31064

Present (κ=5/6) 0.86639 2.30498 2.94062 3.99803 4.18239

(-1, -1) 0.5 Present 3.05563 8.32005 10.52354 13.88475 14.40457

Present (κ=5/6) 3.05563 8.52209 10.93935 14.85403 15.50296

1.0 Present 1.19778 3.18642 3.99346 5.19416 5.37516

Present (κ=5/6) 1.19778 3.30651 4.23798 5.75621 6.01082

2.0 Present 0.69311 1.70098 2.07094 2.57833 2.64851

Present (κ=5/6) 0.69311 1.84399 2.35249 3.19842 3.34591

(-1, 1) 0.5 Present 5.09271 13.86674 17.53923 23.14126 24.00761

Present (κ=5/6) 5.09271 14.20348 18.23225 24.75672 25.83827

1.0a Present 4.62073 11.33988 13.80628 17.18885 17.65676

Present (κ=5/6) 4.62073 12.29324 15.68328 21.32283 22.30607

2.0 Present 1.15518 2.83497 3.45157 4.29721 4.41419

Present (κ=5/6) 1.15518 3.07331 3.92082 5.33071 5.57652

(a) : Critical buckling occurs at (r, s) = (2, 1).
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Table 13: The first three non-dimensional natural frequencies (ω̄) of (1-2-1) Al/WC sandwich plates

with homogeneous hardcore and softcore.

Core b/a Mode (r, s) Theory p

0 0.5 1 5 10

Hardcore 0.5 1 (1,1) Present 0.76864 0.68054 0.62849 0.51503 0.49181

Present (κ=5/6) 0.76864 0.68004 0.62794 0.51462 0.49150

2 (1,2) Present 2.49017 2.22861 2.06914 1.71207 1.63717

Present (κ=5/6) 2.49017 2.22356 2.06343 1.70768 1.63383

3 (1,3) Present 5.05767 4.58909 4.29138 3.59900 3.44849

Present (κ=5/6) 5.05767 4.56930 4.26847 3.58060 3.43439

1.0 1 (1,1) Present 1.21435 1.07824 0.99726 0.81931 0.78266

Present (κ=5/6) 1.21435 1.07701 0.99588 0.81828 0.78188

2 (1,2) Present 2.89704 2.59867 2.41576 2.00330 1.91629

Present (κ=5/6) 2.89704 2.59190 2.40806 1.99734 1.91174

3 (1,3) Present 5.41654 4.92312 4.60818 3.87163 3.71073

Present (κ=5/6) 5.41654 4.90058 4.58201 3.85049 3.69452

2.0 1 (1,1) Present 2.89704 2.59867 2.41576 2.00330 1.91629

Present (κ=5/6) 2.89704 2.59190 2.40806 1.99734 1.91174

2 (1,2) Present 4.44559 4.02093 3.75439 3.13887 3.00619

Present (κ=5/6) 4.44559 4.00546 3.73656 3.12469 2.99534

3 (1,3) Present 6.79527 6.21509 5.83782 4.93765 4.73732

Present (κ=5/6) 6.79527 6.18052 5.79729 4.90423 4.71160

Softcore 0.5 1 (1,1) Present 0.58723 0.87379 0.90143 0.89350 0.88371

Present (κ=5/6) 0.58723 0.89458 0.93523 0.95048 0.94498

2 (1,2) Present 1.90245 2.64295 2.66487 2.55119 2.50780

Present (κ=5/6) 1.90245 2.81948 2.94153 2.99574 2.98254

3 (1,3) Present 3.86398 4.97548 4.90944 4.56159 4.46182

Present (κ=5/6) 3.86398 5.54532 5.77228 5.89245 5.87552

1.0 1 (1,1) Present 0.92775 1.35372 1.38675 1.35964 1.34209

Present (κ=5/6) 0.92775 1.40261 1.46532 1.49010 1.48206

2 (1,2) Present 2.21330 3.03296 3.04513 2.89782 2.84563

Present (κ=5/6) 2.21330 3.26177 3.40126 3.46541 3.45111

3 (1,3) Present 4.13815 5.28158 5.19926 4.81619 4.70855

Present (κ=5/6) 4.13815 5.91613 6.15642 6.28633 6.26939

2.0 1 (1,1) Present 2.21330 3.03296 3.04513 2.89782 2.84563

Present (κ=5/6) 2.21330 3.26177 3.40126 3.46541 3.45111

2 (1,2) Present 3.39636 4.44440 4.40367 4.11506 4.02877

Present (κ=5/6) 3.39636 4.90874 5.11129 5.21511 5.19845

3 (1,3) Present 5.19148 6.42302 6.27346 5.75318 5.61569

Present (κ=5/6) 5.19148 7.32145 7.61144 7.77964 7.76355
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Table 14: Nondimensional critical buckling load (N̄cr) of (1-2-1) Al/WC sandwich plates with homo-

geneous hardcore and softcore.

Core (R1, R2) b/a Theory p

0 0.5 1 5 10

Hardcore (-1, 0) 0.5a Present 95.82254 64.94925 51.03866 28.37511 24.64075

Present (κ=5/6) 95.82254 64.79755 50.89483 28.30233 24.59067

1.0 Present 23.95563 16.23731 12.75967 7.09378 6.16019

Present (κ=5/6) 23.95563 16.19939 12.72371 7.07558 6.14767

2.0 Present 8.66387 5.98230 4.74329 2.67967 2.33217

Present (κ=5/6) 8.66387 5.94945 4.71162 2.66312 2.32072

(-1, -1) 0.5 Present 30.55628 20.60965 16.15474 8.94343 7.76193

Present (κ=5/6) 30.55628 20.57908 16.12589 8.92896 7.75198

1.0 Present 11.97782 8.11866 6.37983 3.54689 3.08009

Present (κ=5/6) 11.97782 8.09969 6.36185 3.53779 3.07383

2.0 Present 6.93109 4.78584 3.79464 2.14374 1.86574

Present (κ=5/6) 6.93109 4.75956 3.76929 2.13049 1.85658

(-1, 1) 0.5 Present 50.92714 34.34942 26.92457 14.90572 12.93655

Present (κ=5/6) 50.92714 34.29846 26.87648 14.88159 12.91997

1.0a Present 46.20728 31.90558 25.29757 14.29159 12.43826

Present (κ=5/6) 46.20728 31.73043 25.12862 14.20328 12.37718

2.0 Present 11.55182 7.97640 6.32439 3.57290 3.10957

Present (κ=5/6) 11.55182 7.93261 6.28215 3.55082 3.09430

Softcore (-1, 0) 0.5a Present 9.58225 36.97288 47.42629 62.07606 64.11738

Present (κ=5/6) 9.58225 39.80326 53.18593 75.06686 78.74836

1.0 Present 2.39556 9.24322 11.85657 15.51902 16.02934

Present (κ=5/6) 2.39556 9.95082 13.29648 18.76671 19.68709

2.0 Present 0.86639 2.93453 3.60597 4.42878 4.52436

Present (κ=5/6) 0.86639 3.43013 4.56906 6.47551 6.80994

(-1, -1) 0.5 Present 3.05563 12.25796 15.95509 21.36900 22.16413

Present (κ=5/6) 3.05563 12.86453 17.20899 24.25939 25.43073

1.0 Present 1.19778 4.62161 5.92829 7.75951 8.01467

Present (κ=5/6) 1.19778 4.97541 6.64824 9.38336 9.84355

2.0 Present 0.69311 2.34762 2.88477 3.54302 3.61949

Present (κ=5/6) 0.69311 2.74410 3.65525 5.18041 5.44795

(-1, 1) 0.5 Present 5.09271 20.42993 26.59182 35.61500 36.94022

Present (κ=5/6) 5.09271 21.44089 28.68166 40.43232 42.38456

1.0a Present 4.62073 15.65081 19.23181 23.62015 24.12991

Present (κ=5/6) 4.62073 18.29401 24.36830 34.53606 36.31966

2.0 Present 1.15518 3.91270 4.80795 5.90504 6.03248

Present (κ=5/6) 1.15518 4.57350 6.09208 8.63401 9.07992

(a) : Critical buckling occurs at (r, s) = (2, 1).
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