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Abstract 

Pressurised fluid extraction (PFE), or under the Dionex tradename, Accelerated solvent 

extraction (ASE"'m) is a solvent extraction technique based on high pressure and 

temperature. PFE has been used to extract a wide range of analytes from both spiked and 

unspiked soils. The PFE extraction parameters of temperature, pressure, static extraction 

time, and number of static flush cycles were optimised for each of the chosen analytes, 

pentachlorophenol (PCP), bupirimate (5-butyl-2-ethylamino-6-niethylpyrimidin-4-yI 

dimethylsulphamate), ethirimol (5-butyl-2-ethylamoino-6-methylpyrimidin-4-ol), DDT 

(1,1, I-trichloro-2,2-bis(p-chlorophenyl) ethane), DDD (1, I-dichloro-2,2-bis(p- 

chlorophenyl) ethane) and DDE (1, I-dichloro-2,2-bis(p-chlorophenyl) ethylene). The 

PFE methodology was validated by extracting natively contaminated soil, aged spiked 

matrices and a certified reference material. Further investigation into the extraction 

procedure prompted a more detailed investigation into the selection of the extraction 

solvent, culminating in a model to predict the optimum solvent for extraction. The model 

is based on the Hildebrand solubility parameter, and has been applied to spiked and aged 

matrices, a certified reference material, and examples from the literature. The model was 

determined to be robust for contaminated soil and sediment. 

An investigation into the photolysis of selected pesticides, PCP and buprmate on soil 

was performed. The soil matrix was deemed to have a significant effect on the rate of 

degradation. PCP degradation followed first order kinetics, with a soil dependent rate 

constant between - 8.69 x 10-() s- I for compost and - 2.00 x 10-() s- I for mix 2. PLS 

determined that the sand and organic matter content of the soil was important in the 



degradation of PCP. Application of PLS to the results of bupirimate photolysis 

determined that percentage sand and organic matter content significantly effected the rate 

of photolysis, and that percentage silt and percentage clay influenced the rate to a lesser 

extent. 
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Aims 

The aims of this project were 

* To evaluate pressurised fluid extraction as a new technique for the extraction of' 

pesticides from soil. 

0 To optimise the extraction parameters for a range of analytes. 

9 To determine the influence of solvent on the extraction procedure. 

0 To identify whether the soil matrix has any etTect on the extractlon procedure. 

0 To determine whether photolysis of analytes occurs on soils in the absence of 

microbial activity. 

9 To quantify the photolysis and identify any degradation products. 

* To determine which soil parameters influence the rate of photolysis, 



Chapter I 

Environmental Legislation 



Environmental Legislation 

1.0 Introduction 

In the past 200 years, advancements in industrial processes have yielded new products 

and materials. Increased exposure of the environment to chemicals was inevitable. 

Many chemicals are inert, and pose negligible threat; others such as cadmium and Di), r 

do not. Notable in the past century (1900 - 2000) is the case of DDT [ 1,1,1 -trichloro- 

2,2-bis-(chlorophenyl)ethane]. DDT is an organochlonne pesticide that had worldwide 

use until its banning in the West in the 1970's, due to concerns about its prolonged 

existence in the environment, and implications of adverse effects on human health. 

DDT has been implicated in the acceleration of breast cancer. I DDT and its metabolic 

breakdown products (DDD and DDE) will be present in the environment well into the 

next century. 
2 Other pollutants, e. g. PAH's, are present from the increase in vehicular 

emissions. 
3 Recently, the problems with particulate and gaseous emissions have been 

highlighted. High levels of so-called 'nano particles' (PMI()'s) and polycyclic aromatic 

hydrocarbons have been linked to an increase in childhood diseases such as asthma and 

eczema. 
3, 

In 1989, a list of priority pollutants was produced in the UK, after a conference on the 

state of the North Sea. The Red List (table 1.1 5) is comprised of pesticides, as well as 

gaseous oxides (oxides of sulphur and nitrogen) and metals. These molecules were 

found to have a detrimental effect on the health of living organisms. Legislation now 

governs the limits of these compounds in the environment. Due to the diverse nature of 

organic analytes in the natural world, distribution into air, land and sea is inevitable. 



Hence, separate legislation has been prepared for all three zones of the environment by 

the European Union (EU) and the United States Environmental Protection Agency (US 

EPA), amongst others. 

Table 1.1 the 'Red List"; 

Mercury and its compounds Simazine 
Cadmium and its compounds Tributyltin compounds 

DDT Triphenyltin compounds 
Pentachlorophenol and its 

compounds 
Hexachlorobutadiene 

Aldrin Atrazine 
Endrin Trichlorobenzene 

Polychlorinated biphenyls Dichlorvos 
Malathion Fenitrothion 

Azinphos-methyl Dieldrin 
Trifluralin Hexachlorobenzene 

y-Hexachlorocyclohexane 1,2 dichloroethane 
Endosulfan 

This chapter does not include legislation on radioactivity, or on the selection ot'sites for 

waste disposal site location. A lot of the legislation for pollution from these areas is 

included in air, water and soil protection. 

1.1 Derinitions 

One widely accepted definition of pollution is, 

The introduction by man, directly or indirectly, of substances or energy into the 

environment resulting in deleterious effects of such a nature as to endanger human 

health, harm living resources and ecosystems, and irripair or interfere with amenities and 

other legitimate uses of the environment. 6,7 



Article 2, section 1, part c of the Council Directive of 27 June 1967 9 definesthe 

environment as'. 

(1) (c) "environment" means water, air and land and their inter-relationship as well as 

relationships between them and any living organism. 

According to the UK Environmental Protection Act of 1990 c 43 part 1, section I 

article 3 "Pollution of the environment" means pollution of the environment due to the 

release (into any environmental medium) from any process of substances, which are 

capable of causing harm to man or any other living organisms supported by the 

environment. 9 

1.2 History of European Environmental law 

Reduction of the pollution of essential local resources, such as, drinking water and air, 

was the principal aim of the first legislation dealing with human health and safety. 

Statutes existed as far back as the fiflh century AD in Rome. Complaints about the 

level of city waste in the River Tiber prompted action from the authorities, More 

recently, prohibition of the use of open coal furnaces in London was the earliest 

example of environmental measures in the UK. 'This was introduced by Fdward I in 

1306. 

As the Industrial Revolution progressed, environmental procedures became more 

widely employed. The Napoleonic Decree of 18 10 concerned with air Pollution was 

enforced in France, Belgium and The Netherlands. In 1863, England adopted health 

and safety procedures aiming to prevent harm from industrial air pollution. However, 

only since the end of World War 11, and partially due to the international public concern 

3 



expressed over the environment, were broader measures to fight pollution of inland 

waters, air, oceans and soil, introduced. The Treaty of Rome saw the establishment of 

the European Community in 1957.1 () In 1967 the first major tanker oil spill from the 

Torrey Canyon off the Southern coast of Britain encouraged both individuals and 

groups to express their concern about the state of the environment. This and many 

other incidents, for example, the earlier nuclear bomb on Hiroshima, pressed scientists 

and the general public to query the after effects of 'Scientific Progress'. 7,11,12 

The end of the 1960's saw environmental legislation implemented at national level. The 

publication of the first documentation on international environmental law was in direct 

response to the Stockholm Conference on the Human Environment in 1972.10 1 Fhe 

main points of the Stockholm declaration on the human environment were: 

e Definition of the environment and the right of humans and animals to live in a 

pollution free environment. 

0 To ensure further pollution of the environment was reduced, thus preventing 

irreversible harm to the environment. 

0 To conserve the way of life for future generations. 

* These goals are to be achieved by both individuals and groups, as all are responsible 

for the conservation of the planet. 

The most important principles, from a pollution aspect, are principles 3 to 9. These 

state that the responsibility for preservation of wildlife and the prevention of 

pollution from chemicals, heat etc. is everyone's. Countries unable to accept the 

full financial / technological burden should be given aid by those countries who can, 

in a co-operative system. By the 1990's, all of Europe had introduced 

4 



environmental legislation at least at National level. In Rio de Janeiro in 1992, on 

the 20"' anniversary of the Stockholm Conference, a large-scale Conference on 

Environment and Development was held. The Rio 'Earth Summit', heralded a 

more unified approach to global conservation. During the Conference, several key 

papers were agreed, that represent a more united effort towards reducing 

environmental pollution and promoting environmentally sustainable processes. I () 

The main points of the Earth Summit were as follows, 

0 That the right to development of the planet must not be at the expense of the 

environment, and vice versa. 

* Co-operation between ALL countries is paramount. "Deals" excluding poorer 

countries were to be avoided. 

All States (countries) should aim to reduce the transport of waste to other 

countries for disposal. Cost effective measures should be taken to reduce 

pollution and discharge of substances harmful to the environment, and it is the 

responsibility of national bodies to promote waste reduction. 

* Environmental assessment must be undertaken if any procedure is likely to harm 

the environment, and, in the case of natural disasters, all effiorts should be made 

to aid afflicted States. 

These declarations were adopted on 14 June 1992. Subsequently, the E-uropean 

Community now administrates environmental policy and procedure 'n the LIK, I'I 

1.3 Legislation regarding chemicals and other noxious substances. 

In 1967, the first EU directive on dangerous substances or chemicals harmful to people 

or the environment was introduced (Council Directive 67/548/F. EC (notification and 

5 



labelling). The directive aimed to unify the existing laws that governed dangerous 

substances, in particular the regulation concerning testing, packaging and labelling. 

Several updates (>25 to date) of this directive exist. The most noticeable changes to 

the original directive were made in 1979 (Directive 79/83 1 /EEC)'-' and 1992 (Directive 

92/32/EEC). 15 The council adopted directive 92/32/EEC on April 30 th 1992 for 

implementation by October 1993.1 -5 The first major revision in 1979 dealt mainly with 

introducing a regime of pre-market testing and notification for new chemicals. Before 

1979, new chemicals could be marketed ahead of environmental fate and toxicology 

study completion. The revision in 1979 required manufacturers of new chemicals, prior 

to marketing, to supply information on the properties and long term exposure effects of 

the chemical to the environment and people, as well as emergency procedures in case of 

spillages. The information was required to be submitted 45 days before the launch date 

to the EU and other regulatory bodies for approval. Chemicals already subject to FLJ 

legislation e. g. pharmaceuticals and low volume chemicals were omitted from this 

clause. In cases such as this more detailed information on toxicological studies (both 

human and environmental) were required. Chemicals placed on the market bef'ore, 

September 1981, were classed as existing and as such, were exempt from the new 

legislation. 14 Lists of existing chemicals are found in the European inventory of 

existing commercial chemical substances (EINECS). 16 The revised directive III also 

included a classification list for noxious substances, The 14 categories ranged from 

explosive, to corrosive and finally to mutagenic compounds. The directive also 

introduced standard risk and safety phrases, for use on the MSDS of the substance, as 

well as a symbol system for the most hazardous property of the substance. Chemicals 

6 



classed as hazardous are listed in this directive. The list is regularly updated. 14 The 

1992 amendment (Council Directive 92/32/EEC) was a further attempt to harmonise 

the EU member states' laws regarding hazardous substances. The classifications of 

hazardous substances were broadened and for the first time included classification 

criteria for environmental hazards. The supply of MSDS for substances was 

mandatory. 
15 In 1976, the first of thirteen directives Council Directive 76/769/EEC 

(marketing and use of dangerous substances) 17 controlling the advertising and use of 

dangerous substances was introduced. Member states were required to guarantee that 

particular hazardous chemicals were only supplied for use under certain conditions. 

Chemicals included in this list were PCB's, PCT's, carbon tetrachloride and asbestos. 

In 1990, probably the most important piece of legislation in the field of environmental 

law since the control of pollution act of 1974 was introduced. This was the UK 

Environmental Protection Act. The passage of the act coincided with the increase in 

public concern about the state of the environment. However this was not seen as a 

4cure all' piece of legislation, the strongest criticism of the act was that it did not have a 

coherent approach to the problem of environmental pollution. The main reason for this 

is the diverse nature of both the environment and current environmental issues. Part I 

dealt with integrated pollution control (ICP). There are two pollution control schemes. 

ICP and LAAPC (Local Authority Air Pollution Control), Before the establishment of 

industrial processes, authorisation is required from the governing body for processes 

that are capable of causing harm to the environment. The difference between ICP and 

LAAPC is in their responsibility and personnel and the local authority governs I-AAPC. 

The most polluting industrial processes are under centralised control with respect to 

discharges into the environment. Pollution is considered in its entirety before a decision 



on the maximum permissible levels. Her Majesty's Inspectorate for Pollution in 

England and Wales enforces IPC. Scotland has its own environmental bodies. 

The aims of IPC were laid down in the white Paper, Our Common Inheritance, 19 and 

include the following: 

making air cleaner and safer. 

- to further improve water quality and the state of the North Sea and coastal waters. 

- the establishment of Pollution emission levels in both air and recreational waters, 

and to determine safety tolerances. 

to maintain and strengthen controls over pollution, with a control mechanism based 

on levels. 

to provide incentive to industry to develop clean technologies and to improve 

environmental standards. 

to prevent pollution at source, hence decreasing the risk of harm to both humans 

and the environment by application of the most advanced technology available and 

to recognise the integrated nature of the environment. 

assess levels of pollutants in the local environment. 

- introduce the polluter pays concept. 

IPC aimed to harmonise the current rules and legislation on pollution. 9' I') - 21 

Over the next five years, (up to 1995), an increase in awareness of environmental issues 

dealing with contaminated land, prompted the publication of the 1995 Environment 

Act. The act established two new bodies, the Environment Agency (EA), responsible 

for enforcing legislation in England and Wales, and the Scottish Environmental 

8 



Protection Agency, (SEPA). Part 11 of the act dealt with contaminated land and 

extended the scope of the 1990 EPA. 

Neither of these acts is a full and comprehensive code of practice, as separate 

legislation exists for pesticide pollution and radiation contamination. In 1996, a unified 

agency was created for England and Wales with responsibility for IPC, regulation of 

waste, control of radioactive pollution and the regulation of water pollution. This body 

is called the Environment Agency. 9,22 

1.4 Water Pollution 

1.4.0 Introduction 

There are numerous types of water pollution, including; thermal pollution, chemical 

pollution (i. e. pesticide run off), radioactive pollution, oil spills, and, siltation, The first 

three are forms that interfere with reproductive cycles. The last two are more visible 

sources, such as, oil spills and siltation, which have a larger impact on the public view 

of pollution. The effect the contamination has depends on several factors, including the 

actual amount of contaminant and the physico-chemical nature of the molecule. For 

example, addition of ammonia, a form of nutrient enrichment, causes an increase in the 

biological oxygen demand. 23 Organisms can cope with small increases of this type of 

pollution before detrimental effects are seen. On the other hand, a small dose of 

radioactive material can have a devastating effect in a short time period. 24 

1.4.1 Sources of pollution 

Water pollution can be divided into two categories, point sources and non-point 

sources. Point sources are, as the name implies, derived from single points, and relate 

9 



to end of pipe industrial effluents, and sewer and septic systems. Non-point sources are 

those where the location of the source is not easily definable, such as agricultural run 

off Hencepollution from a non-point source often occurs over a wide area and is 

influenced by the weather e. g., high rainfall etc. 

1.4.2 Legislation 

The European Union has divided the water legislation into three categories, each 

relating to different water usage. 

Regulations relating to setting water quality objectivesJor various uses. 

Water usage under this title includes that for drinking, bathing and for freshwater fish. 

In 1975, the first EEC council directive (75/440/EEC) set the requirements for drinking 

water of surface water origin. The directive set out standards of treatment that had to 

be met before water was deemed to be of a suitable quality for human consumption. 25 

In 1980, a new directive (80/778/EEC) superseded that of 1975.26 This amendment 

stated maximum permissible levels for 62 microbial, chemical and physical parameters, 

e. g. pH, turbidity etc. The directive also stated that regular monitoring of water quality 

must occur. The most recent legislative proposal from 1994 (COM (94) 612) aims to 

extend Directive 80/778/EEC to all water for domestic use. In addition, the water 

quality would be subject to stricter guidelines, for example, the maximum permitted 

lead level per litre of drinking water would be reduced from 50 ýtg /L to 10 ýjg / 1,. 

Other directives under this section include those for bathing water and standards for 

freshwater fish. 
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Directives wh ich sough t to limit or prohibit disch arges of dangerous su bstan ces in to 

waters by industrial plants. 

The 1976 council directive 76/464/EEC identified two lists of substances that were 

classified as hazardous. The 129 substances located on List 1, also known as the Black 

List, were those that were to be eliminated from the environment due to their toxicity 

and bioaccumulation. They included organophosphorus compounds, certain heavy 

metals and their compounds, (such as, mercury, tin and cadmium), hydrocarbons from 

petrol distillation processes, as well as persistent synthetic substances, such as vinyl 

chloride. The limits set on these substances were to ensure pollution by these 

molecules was drastically reduced. Table 1.2 lists the levels of certain black list 

substances permitted in both inland and coastal waters over the space of a year. 
5 

Table 1.2 Selected Black List substances 

Compound Inland (gg / L) Coastal and 
territorial (gg / L) 

Aldrin, dieldrin, aldrin 
and isodrin 

0.03 (total) a 

Cadmium and its 
compounds 

5 (total) 2.5 (as dissolved metal) 

Carbon t; trachloride 12 12 
Chloroform 12 12 

DDT 0.025 0.025 
4,4'-DDT 0.01 0.01 

Hexachlorobenzene 0.03 0.03 
Hexachlorobutadiene 0.1 0.1 

Mercury and its 
compounds 

I (total) 0.3 (as dissolved metal) 

Pentachlorophenol and 
its comp unds 

2 I 2 

a- There is no official limit for this compound in coastal and territorial waters' 

List 11, the Grey List, was separated into two parts. Part (a) contained compounds 

from List I for which the safety limit values had not yet been established. Part (b) 

contained compounds that also had a detrimental effect on the environment, for 



example, both elemental and inorganic compounds of phosphorus, cyanides and 

fluorides-, however, their contamination could be contained within a given area. This 

was dependent on the geological characteristics and actual location of that area i. e. 

discharge of pollutants to a pond. Six daughter directives governing the limits of 

specific compounds contained in List I were also implemented. 27 These daughter 

directives included limitations on the discharge of mercury (82/176/EEC and 

84/156/EEC), 28,29 cadmium (83/513/EEC), 30 hexachlorocyclohexane (84/491 /EEC), 31 

and DDT, pentachlorophenol and carbon tetrachloride (86/85/EEC). 32 More recently, 

in directives 88/347/EEC 33 and 90/415/EEC 34 limits for the levels of other chlorinated 

substances, such as aldrin, dieldrin, 33 tfichlorobenzene and 1,2-dichloroethane have 

34 
been added . 

pr()vj., jij, pns ()n marine pollution which aim primarily to put an end to pollution, 

prt)tect the North Sea, the Baltic Sea and the Mediterranean and to prevent 

pjjjjuti(., n from land-based sources. 

The Paris Convention proposed to reduce and ultimately prevent marine contamination 

from land based sources, such as, that from watercourses and submerged pipelines. 

35 Council decision 75/437/EEC 
, approved and adopted this proposal. In 1986, the 

directive was amended to include marine pollution from atmospheric sources. 32 

Emergency protocols in the case of spillages have been under consideration since 1983, 

but to December 1999, no guidelines have been published. Dumping of waste into the 

North Sea has been banned since 1993, but the cessation of PCB dumping was not 

implemented until the end of last year (1999). 
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1.5 Air pollution 

According to the 1987 Air Pollution Act (Ireland), 36 air pollution is defined as 'a 

condition of the atmosphere in which pollutants are present in such quantities as to be 

liable to: 

be injurious to public health, 

have a harmful effect on flora or fauna or damage property, or 

impair or interfere with amenities or with the environment. 

Primary air pollutants are those produced by industrial process, and fossil fuel 

combustion, and include nitrous oxides, hydrocarbons, and heavy metals. Secondary 

air pollutants are mainly comprised of sulphur and nitrogen compounds, and, include 

pesticidal preparations. They result from the use of chemicals in the general 

population. The sources of air pollution far exceed the number of air pollutants. The 

main offenders are vehicular emissions, and those from waste disposal plants. 

Legislation 

In 1975, the European council instigated procedure for exchange of information 

between air monitoring associations. This directive mainly dealt with pollution by 

sulphurous compounds and suspended particulate matter. . 17 Further directives 

concerning air quality and power station emissions were passed by the EC in the 1980s. 

LegislationfOr vehicular emissions. 

The first EU directive dealing with vehicular emission appeared in 1970 

(70/220/EEC). 19 Emission regulations for hydrocarbons and carbon monoxide from 

LPG vehicles were set. In 1977, limits of NOx were added to the directive 
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(77/102/EEC). 39 The limits of these compounds were further decreased in 1978 and 

1983 (dirýFtives VOWEEC and 83/351 /EEC respectively) . 
40,4 1 These levels reduced 

further to coincide with restrictions imposed in the USA in 1988. Diesel emissions 

were limited in directive 88/436/EEC and 88/77/EEC. 42,43 

Lead pollution is a serious health threat. High levels of lead in the blood can lead to 

poor memory and severe learning difficulties in young children. 44,45 In 1982, Directive 

82/884/EEC set the maximum annual mean concentration of atmospheric lead to 

-3 46 
2 ýtg M. Directive 85/210/EEC reduced the amount of lead in petrol from a 

maximum of 0.4 g /L 47 to 0.15 g/L . 
48 The directive also stipulated that lead free 

petrol (< 0.0 13 g/ L) should be available to the consumer by the end of 1989. All the 

laws regarding lead emissions from various classes of vehicles were amalgamated and 

amended in Directive 91/441/EEC. 49 

In the intervening years, continual reductions in emissions for new cars have been 

implemented. Particulate matter from diesel engines was reviewed in directive 

91/542/EEC . 
5() By 1997, all vehicles were subject to strict emission guidelines. It was 

noted, however, that the quality of the fuel played a large role in vehicular emissions. 

Hence, in 1996/7, proposals to increase fuel quality were introduced. The directives 

(COM (96) 248 51 and COM (97) 77)52 stated that higher standards for fuel would be 

implemented from year 2000, to guarantee targets for air quality are met by 20 10. 
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Legislation from industrialplant emissions. 

The first legislation dealing with emissions from industrial plants was set out in council 

directive 84/360/EEC. 53 The directive laid down measures aimed at reducing pollution 

from these sources. Processes listed in Annex I of the directive (Table 1.3) had to seek 

permission before running the plant from the relevant local and national authorities. 

The granting of permission was subject to two stringent criterial 

I- that all suitable precautions had been taken to prevent air pollution, i. e. BATNEEC, 

and, 
2. that the process would not exceed emission limits. 

Table 1.3 Prescribed Processes 53 

Industry Example 
Energy Coke ovens, thermal power stations 

Production and processing of metals Pig iron and crude steel 
Manufacture of non metallic mineral 

products 
Cement, ceramic, glass 

Chemical Industry Inorganic and organic chemical 
production 

Waste disposal Incineration 
Other Pýper pulp production 

However, in 1988 directive 88/609/EEC 54 set guidelines for atmospheric emissions 

from large industrial plants. Limits for sulphur dioxides and nitrous oxides (SOx. NOx) 

and dust was set for both new and existing plants. The aim of the directive was to 

reduce pollution from these discharges by nearly 60 % by 2003. Later, in 1994, smaller 

industrial plants operating using solid fuels were subject to similar restrictions. SO, 

from larger plants were also reduced. 
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Other Legislation 

Protection of the ozone laver. 

The first legislation on the protection of the ozone layer the EC brought into force was 

in 1978.55 The aim of this resolution was to limit the production of CFC's and to 

promote alternative compounds. Several directives exist on limiting the production of 

specific ozone depleting substances, such as Decision EEC/80/372,56 which capped the 

production of CFC- II and CFC- 12. 

The 1985 Vienna convention 
57,5 8 highlighted the need for protection of the ozone 

layer, and laid down the foundation for the Montreal protocol. 59 This further discussed 

the problem of ozone reduction and obliged countries to state their position on 

reduction of CFC's and other ozone damaging compounds. The protocol also laid 

down a time scale for the reduction and phasing out of use of CFC's. The protocol 

was further amended by the addition of new limits and substances in 1990,1992 and 

1995.60-62 Selected examples from the most recent list of controlled ozone depleting 

compounds, and a measure of their depleting potential is shown in table 1.4.63 The 

depleting potential is an index from 0 to 10, and is a measure of the potential etTect 

each controlled substance has on the ozone layer, 0 having no effect and 10 having the 

most detrimental effect with respect to current ozone levels. Note, groups VII and 

Vill are incomplete. 
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Table 1.4 63 Ozone Depleting Potential of Various Air Pollutants 

Group Molecular Formula Ozone 
Depleting 
Potential 

Group I Chlorofluorocarbons CFC1. j (CFC-1 1) 1.0 
C F202 (CFC- 12) 1.0 

C2F403 (CFC-1 13) 0.8 
C2F402 (CFC-1 14) 1.0 
C2F50 (CFC- I 15) 0.6 

Group 11, fully halogenated CF. 10 (C FC- 13) 1.0 

Chlorofluorocarbons, including isomers C2FC15 (CFC- II 1) 1.0 
C2F204 (CFC- 112) 1.0 
C3FC17 (CFC-21 1) 1.0 

C. IF206 (CFC-212) 1.0 
C3F305 (CFC-213) 1.0 
C3F4C14 (CFC-214) 1.0 
C31`503 (CFC-215) 1.0 

. jF6Q2 (CFC-216) 1.0 
C. 3F70 (CFC-217) 1.0 

Group III Halons CF2BrC1 (Halon- 1211 3.0 
CF3Br (Halon- 130 1) 10,0 

C2F4Br2 (Halon-2402) 6.0 
Group IV, Carbon tetrachloride CC14 1.1 

Group V, 1,1,1-trichloroethane C211.103 0.1 

Group VI, Methyl bromide CH3Br 0.6 
Group VII Hydrobromofluorocarbons CHFBr2 1.0 

CHF213r 0.74 
CH2FBr 0.73 
C2HFBr4 0.8 

C2HF2Br3 1.8 
C2HF3Br2 1.6 
C21IF4Br 1.2 
CIHFBr(, 1.5 
C3HF4Br., 2.2 
C_IHF6Br 3.3 

C3H2F3Br3 5.6 
C3H2F4Br2 7.5 
C3H2F5Br 1.4 

Group Vill Hydrochlorofluorocarbons CHFC12 (HCFC-2 1) 0.04 
CH2FC1 (HCF('-3 1) 

_-'ý 
-02 

CH3FC12 (HCFC-14]b) 0.110 
C2H4FCI (HCFC- 15 1) 0.005 
C3HF6C1 (HCFC-226) 0.1 
C3H4FC]3 (HCFC-25 1) 0.01 
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Table 1.5 shows the phase out dates for each group of compounds 56 

Table 1.5 Phase out dates. for Ozone Depleting Compounds 

Group Phase out date 
1999 
1999 
1999 

IV 1999 
v 1999 
vi 2005 
Vil 1999 
Vill 2010 

Waste incineration olantse 

Regulations limit emissions from waste incineration plants. In 1990, two directives 

came into force regarding these emissions and both new and existing waste incineration 

plants. 
(A , 

65 

1.6 Terrestrial Pollution 

1.6.1 Soil 

Soil is an essential part of the ecosystem. It helps to filter out waterborne and 

atmospheric pollutants before they reach the groundwater. The soil composition varies 

according to the soil type and location. 66 For many years it was classed as a renewable 

resource, requiring little or no protection via legislation. Increased use and abuse of the 

soil has depleted nutrients and reduced its capability to remove chemicals. A report by 

UNEP in 1987 estimated that 15 % of global land i. e. 22.2 million sq. krn, has 

deteriorated, an area nearly the size of the entire North American Continent. 1,7 

Contaminated land is inherently difficult to define. Contamination is a necessary 

condition for pollution. Contamination can be defined as 'the introduction or presence 
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in the environment of alien substances or energy, on which we do not wish or are 

unable to pps judgomippt on whether they cause, or are liable to cause, damage or 

harm. Claksif ying land, as to whether it is contaminated is much harder, There are no 

set criteria on which to base an evaluation. 9,21 

1.6.2 Sources of pollution 

There are three main sources of terrestrial pollution, those from natural events e. g. 

PAH's from volcanoes, forest fires etc., and that from industrial sources e. g Chernobyl 

in 1985, and that from landfill sites. 

1.6.3 Legislation 

Legal protection for soil is relatively recent. There are few laws that directly address 

contamination/pollution of the land. Most of these laws are a result of protecting other 

compartments of the environment, e. g. water and air. Iceland was the first country to 

address the subject of soil erosion in 1895 due to the significant problems that the 

country has- By 1907, Iceland had a national agency to deal with the Issue. 7 

In 1972, the Council of Europe adopted the European Soil Charter. The Charter 

contains guidelines for action with regard to soil protection, as well as focusing on the 

need for soil conservation. Although very little was actually actioned by the soil 

charter, it laid the framework for more specific and binding legislation in other 

sectors. 68 A good example of this is the 1986 directive (86/278/EEC) dealing with the 

use of sewage sludge for agricultural purposes. The directive states a code of practice 

for the use of sludge and restricts the planting of certain crops post -application - 
01) 

Other directives aimed at reducing pollution to other compartments of the environment 
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70 by restricting 'dumping' include directive 91/676/EEC, the protection of waters from 

nitrate pollution, and directive 91/156/EEC71 on encouraging recycling and making 

provisions for the harmless disposal of waste, 

The 1990 EPA was criticised for almost ignoring the problem of contaminated land, 

and in 1995, the EA focused on extending the provision of the EPA, and included more 

detail on the civil liability aspects of contaminated land. The EA of 1995 shifts the 

emphasis from previous land use, to the presence of substances that may cause harm. 

However, a major problem still lies in the classification of contaminated land. For 

example, under the 1990 regulations, two adjacent sites of land, which are not classed 

as contaminated individually, could not be combined and the whole are designated 

contaminated. This meant the local authority could not action the landowner to clean 

up the land. The 1995 regulation changed this and consequently, more land can be 

cleaned at the owner's expense. 

1.7 Summary 

The evolution of environmental legislation over the last 40 years is shown in figure 1.1. 

The problems faced by the EC in drawing up appropriate protection for the 

environment are in part due to the diverse nature of both pollution and the ecosystem. 

To a certain extent, legislation is governed by the ability of the environment to cope 

with inputs of energy. The sources of pollution are numerous, and control ofthe 

processes causing detrimental effects is key in the conservation of the environment, 

While adequate procedures and laws exist for the protection water and air, little is 

available for protection of the soil. The main reason is that soil was viewed for a long 
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time as a renewable self-sustaining resource. It has taken time to realise the extent of 

the damage caused by overuse of farmland and chemical reduction of crop damaging 

pests. 
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Figure 1.1 Evolution of Environmental Legislation in Europe -5,7,10 

1957 --Treaty establishing the European Economic Community 10 

EC Directive relating to the Classification, Packaging and Labelling of 1967 
Dangerous Substances 67/548 9 

1968 _European 
Declaration of Principles of Air Pollution Control'72 

European Water Charter 10 

1972 European Soil Charter, 68 Stockholm Conference on the Human Environment 

and Plan of Action 69 

EC Directive relating to the Classification, Packaging and labelling of 1973 
Solvents(73/173/EEC), 73 First EC Programme of Action on the Environment") 

1975 EC Directive on the Sulphur Content of Certain Liquid Fuels (75/116), 7 EC 
Directive Concerning the Quality of Bathing Water (76/16 ) 74 

EC Directive on Pollution Caused by Certain Dangerous Substances 
1976 27 Discharged in the Aquatic Environment of the Communities (76/464) 

1978 EC Directive on Toxic and Dangerous Wastes (78/3 19), 75 EC Directive 
Relating to the Classification, Packaging and Labelling of Pesticides 
(78/631). 76 EC Directive Concemme the Lead Content of Petrol (78/611)77 
EC Directive on Chlorofluorocarbons (90/372), 56 EC Directive Relating to 

1980 -the Quality of Water Intended for Human Consumption (80/778) 26 

EC Directive on Limit values and Quality Objectives for Mercury Discharges 
1982 - -by the Chloro-Alkali electrolysis Industry (82/176), 29 EC Directive on a 

Limit Value for Lead in the Air (82/884) 79 
Agreement in Dealing with Pollution of the North Sea by Oil and Other 

1983 
Harinful Substances 10 

1984 EC Directive on Combating Air Pollution from Industrial Plants (84/360), 53 

EC Directive on Limit values and Quality Objectives for Discharges of 
Hexachlorocvclohexane (84/49 1) 31 

1985 Vienna Convention for the Protection of the Ozone Layer, 57,58 EC Directive 

on Limits of Lead and Benzene in Petrol (95/58 1) 79 

1986 - -EC Directive on Sewage Sludge used in Agriculture (86/278), 69 EC Directive 
on Limit Values and Quality Objectives for Discharges of Certain Dangerous 
Substances (86/2801 90 

1987 - -Montreal Protocol on Substances that Deplete the Ozone Layer 59 

1990 Environmental Protection Act 9,19 

1991 EC Directive on Toxic and Dangerous Waste (91/698) 91 

1992 -Rio Declaration on Environment and Development I () 

1995 --Environment Act ( Incorporating Integrated Pollution Control) 9,21 

1996 --Proposal for an EC Directive on Fuel Quality 51 

1997 Proposal for an EC Directive on the Reduction of Air Pollution from Motor 
Vehicles 52 
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Extraction Techniques in Environmental Analysis 

2.0 Introduction 

There are a wide range of organic analytes in the environment, including polycyclic 

aromatic hydrocarbons (PAH's), polychlorinated biphenyls (PCB's), and pesticides. 

Contamination by pesticides is different from that caused by other organic molecules, as 

the introduction of pesticides into the environment is deliberate. Pesticides tend to 

partition between all the environmental compartments, air, water and soil. 1,2 , Fhe 

quantification of pesticides and other carcinogenic compounds in the environment is 

essential. Health risks for both humans and animals have been highlighted in the last 

century, notably with DDT, the effects of which will be felt well into the new century. 

The preliminary and probably the most important stage in any analysis, is the quantitative 

removal of the analyte from the matrix. This chapter concentrates on the extraction of 

environmentally relevant organic analytes from natively contaminated soil and sediment. 

Several methods of solid / liquid extraction are commercially available, these range firom 

simple sequential shaking of the solid with aliquots of solvent, such as Shake Flask 

extraction, to extraction using high pressure and temperature in a sealed system, as in 

pressurised fluid extraction. Publication of the use and inter-comparison of these 

techniques is prolific. However, validation of the proposed analytical method is required 

to determine the robustness of the procedure. Commonly, validation takes the form of 

extraction of a material for which the contamination level is known. Suitable 

environmental solids for the determination of most organic analytes, especially pesticides 

are scarce. Assessment of the robustness of any extraction techniques is firequently 
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achieved by the extraction of spiked samples. However, caution should be exercised when 

analysing the data, as it provides no real indication of the behaviour of the analyte in the 

matrix. Many researchers try to simulate matfix-analyte interactions by artificially ageing 

the sample. Ageing can take the form of one or more of the followingl extremes ot' 

temperature, exposure to UV light, and simply leaving the analyte and matrix for a fixed 

period of time preceding extraction. Spiked samples are relatively easy to prepare. Two 

procedures are commonly used- "spot" spiking and "slurry" spiking. Spot spiking involves 

the introduction of the analyte in a small volume of organic solvent (ý11. ) to a 

comparatively large quantity of matrix. The solvent is removed by evaporation prior to 

sample extraction and analysis. Alternatively, slurry spiking is when the analyte is added 

to the matrix in a large volume of organic solvent (mL). The slurry mixture is then 

continually stirred while the solvent is evaporating. An additional benefit of stirring is that 

the sample is as homogeneous as possible. 5-7 

Before analysis and hence quantification of the analyte can occur, it is usually necessary to 

remove the target compound from the matrix it is in, using an organic solvent (or solvent 

mixture). Energy is also required. Traditional extraction techniques, such as, Soxhlet 

extraction or Soxtec extraction use heat energy to remove the analyte, whilst sonication or 

shake-flask extraction use agitation of the solvent-matrix mixture. Nevertheless, these 

procedures can be time consuming. Recently, automation has played a large role in the 

development of new extraction techniques. These include supercritical fluid extraction 

(SIFE), microwave-assisted extraction (MAE) and pressurised fluid extraction (PFE). 

These techniques have been applied to a wide range of analytes and matrices. 
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2.1 What is soil? 

Soil is formed through the gradual breakdown of rock, by several mechanisms, including 

weathering and erosion, the rock is gradually ground down to smaller and smaller 

particles. Soil can best be defined as a composition of five main components. These are 

clay minerals, organic matter air, water and a living component. The quantities of these 

constituents vary according to the soil type and location. 8 As this chapter concentrates on 

the extraction from soil and sediment, a brief look at the components of soil is beneficial, 

as this can also give insight into the behaviour of the analyte in 'real' samples. 

2.1.1 Clay minerals 

The effect of soil clay and organic matter is often cited in the literature as having 

significant effects on the extraction of pesticides. 9- 13 The clay minerals for instance have 

been associated with the difficulties in extracting planar (or nearly planar) molecules e, g. 

naphthalene from soil. 14 There have been several hypotheses as to why this should be 

true. The main theory is thought to be due to the structure of the clay minerals. 15 Clay 

minerals are based primarily on silicates and oxides. They typically have a particle size of 

less than 0.002 mm. They form a "sticky wet looking" mass when wet and "clump 

together" when they are dry. There are many types of clay minerals found in soil. They 

can be based on crystalline structure as in the case of gibbsite, an aluminium oxide, or 

amorphous (i. e. no regular structure) such as calcite or dolomite. However, by far the 

most interesting is the behaviour of certain crystalline silicate minerals. Crystalline clay 

minerals can be further classified as having chain structure or layer structure. The most 
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interesting are those with layer structure. These come in two categories, I -. I layers such 

as kaolinite (figure 2.1) and 2: 1 layers such as montmorillonite (figure 2.2). 16 

Figure 2.1 Kaolinite/Kandite group. 
1: 1 family of layered silicates. 

Figure 2.2 Montmorillonite/Smectic group 
2: 1 family of layered silicates. 
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The I-I layer structure is based on a repeating pattern of tetrahedrally (four co-ordinated) 

silicon and octahedral (six co-ordinated) alurmmurn atoms. The presence of oxygen atoms 

and hydroxyl groups allows hydrogen bonding, and consequently helps to stabilise the 

crystal structure. The 2A layer is based on an octahedral co-ordinated aluminium atom 

sandwiched between two layers of tetrahedrally co-ordinated silicon atoms. When water 

is introduced to the latter of these systems, the polar water molecules can get in between 

the layers causing swelling. As the clay dries, the layers return to their original interplanar 

distance. if the water is associated with pesticides, the pesticides are then stuck in the 

layer structure when the clay is dry. Hence there are implications for extraction. 14,17 

Since the bonds between the layers are relatively strong, the pesticide is unable to move, 

hence there have been studies performed on the adsorption of pesticides to clay 

m, 
16,18-20 1 Inerais. These have shown that after the clay has dried, the extraction of the 

pesticides is very difficult and low extraction efficiencies are obtained. The cation 

exchange capacity is also fundamental to the behaviour of the clay minerals. It is a 

measure of the ability of the clay to substitute metal ions from the lattice to the 

surrounding environment. These metal ions are not directly bonded to the lattice, but they 

balance out any charges within the crystal structure. 16 

2.1.2 Organic matter 

The organic matter content of any soil is dependent upon location. For example, a soil in 

an area with high vegetation, such as in a forest will have a larger amount of organic 

matter than a soil with very little flora around. The organic matter can be split into three 

distinct components, humic acid, fulvic acid and humin. Humin is the decomposing 
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remains of both plants and animals. Humic and fulvic acids are not well characterised. 

They are not classed as single substances, but are a mixture of acids with similar 

properties. For example, humic acid is that fraction of humus that is soluble in dilute 

alkali, but does not precipitate upon addition of a mineral acid. Figure 2.3 21 summarises 

the various fractions and their solubilities. 

Figure 2.3 Fractionation of Organic Matter 
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Organic matter has been studied by several groups and they have implied that the higher 

the organic matter content of a soil, the greater the adsorption of the analyte, hence 

reduced extraction efficiencies are obtained. 9- 11 

2.1.3 Water 

Water plays a principal role in the soil environment. Not only does it affect plant growth, 

it can help to create or destroy soil structure. The relationship between soil and water is 

very complex, it affects the physical properties of a soil, for example, the expansion of the 

clay fraction (see above), and the transport of nutrients through the soil profile. The water 

content of a soil can vary immensely, from being totally saturated to completely dry. The 

maximum amount of water a soil can hold without it draining away is known as the field 

capacity. This is an important quantity that can greatly influence the extraction of 

pesticides fi-om field samples. 16 

2.1.4 Micro organisms 

The living portion of the soil is composed of microorganisms such as fungi, and bacteria. 

They are responsible for breaking down dead and decaying matter, they also help to 

release nutrients into the soil through decomposition. 9 The living population can make up 

around 5% of the soil volume. The micro-organisms present in soil do not directly 

influence the ease of extraction. Frequently, they degrade the parent pesticide to give a 

wide range of metabolites, that in turn can strongly adsorb to soil, as in the case of 

atrazine degradation. 22 
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As stated earlier, the composition of soils varies from location to location. However, a 

system of classification of soil types has been in use for many years. This classification is 

based on the sand, clay and slit content of the soil. 16 The silt fraction is composed of very 

fine particles and their size is between 0.002 mm and 0.05 mm. The silt fraction has a fine 

texture when it is dry. Sand has a gritty texture and has a diameter between 0.05 mm and 

2 mm. Sand, clays and silt make up the largest volume of soil (around 45 % of the total 

soil volume), and consist primarily of silicates. Organic matter is the smallest fraction, 

only making up around 5% of the soil volume. Water makes up around 25 % ofthe soil 

volume and carries the nutrients essential for plant life. g The soil textural triangle gives a 

broad indication of soil type. 9 Commonly, further information is required about the exact 

composition of a test soil. Methods exist that allow the calculation of several of these 

parameters, for example, cation exchange capacity (CEC) which is a measure of the ability 

of a soil to co-ordinate to multivalent species, such as metal ions. pli is a measure of the 

soil acidity, 
I () which can influence the extraction of ionic pesticides, organic matter and 

clay type and content can also be established, their importance to the extraction of' 

pesticides is highlighted above. 

2.2 Microwave-Assisted Extraction 

2.2.1 Interaction of microwaves with matter. 

Microwaves are short wavelength, high frequency electromagnetic radiation. To prevent 

interference with radio transmissions, industrial and domestic microwaves fibriction at a 

wavelength of around 12.2 cm (1.02 x 10-3 eV). Microwaves are made up of two wave 

components acting perpendicular to each other and the direction of propagation (travel) 
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and vary sinusoidally. These are a magnetic field component and an electric field 

component. Like other electromagnetic energy, microwaves are said to have a dual 

nature, that is, they can act like waves, but also have particulate character (photons). 

Electrons in the ground state of a molecule absorb photons. The electron is raised to the 

next energy level. These changes in the levels are discrete and do not occur continuously, 

as electrons occupy definite energy levels. The energy is quantised. The electric field 

cornponent interacts only with charged (or polar) particles. The dielectric constant ofa 

material determines the ease of polarisation of the molecule. If charged particles (e. g. 

electrons) present in the molecule are mobile, a current is set up in the material. I 'lowever, 

strongly bound electrons undergo a different phenomenon. The particles reorganise 

themselves so they are in phase with the electric field. This is called dielectric polarisation. 

Four components have been identified within the total dielectric polarisation. They 

represent the four main types of charged particles that are found in matter, electrons, 

nuclei, permanent dipoles and charges at interfaces. 

An equation linking all four constituents of the total dielectric polarisation is stated in 

equation 2.1. 

(X I- (XC + Cc a+ Ocd + (71 Eqn. 2.1 

Where u, is the total dielectric polarisation 

is the electronic polarisation 

(xa is the atomic polarisation 

(ld is the dipolar polarisation 
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and (x, is the interfacial polarisation. 23 

Frequent changes in the orientation of the electric field cause similar changes in the total 

dielectric polarisation. Changes in the dipolar polarisation results in heating in the 

material. Interfacial polarisation (the Maxwell-Wagner effect) only has a significant eflect 

on dielectric heating when conducting particles are suspended in a non-conducting 

material. The other two components have no effect on heating. Therefore, in order to 

heat a solvent (or mixture of solvents) part of it must be polar. Sensitisers are molecules 

that preferentially absorb the microwave radiation and pass it on to other molecules. 2.1 

Non polar solvents, such as, hexane do not absorb microwave energy, but a mixture of 

hexane and acetone does. 

2.2.2 Instrumentation for Microwave-Assisted Extraction: 

A microwave extraction system consists of a microwave generator (magnetron), wave 

guide, resonant cavity and a power supply. The magnetron is a diode in a magnetic field. 

Indentations in the magnetron act as anode, causing resonance. This resonance behaves as 

a source for the microwave energy. The wave-guide concentrates the microwave energy 

onto the sample. Two types of industrial microwave extraction systems are available- 

Pressurised MAE and Atmospheric MAE. In pressurised systems, the pressure can be 

controlled up to 200 psi, while the pressure is constant in atmospheric MAL The power 

rating for the two systems is also different. Atmospheric instruments have a power rating 

of 300 watts compared to 950 watts for some pressurised systems. In the pressurised 

system, up to 12 samples are placed into a carousel in a microwave transparent extraction 

vessel, The vessels are lined with an inert material. The vessels are irradiated with 
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microwave energy. The temperature and pressure in one of the cells can be monitored and 

controlled using an infrared sensor and water manometer, respectively. The controllable 

parameters are temperature of the extraction, time of extraction, and pressure in each 

vessel as well as the amount of microwave power the vessels receive. In built safety 

features of the extraction system, include solvent vapour alarm and rupture membranes in 

each vessel. Rupture membranes fracture when the pressure exceeds the maximum, 

allowing the contents to siphon into a central container. 25 

2.2.3 Applications of Microwave-assisted extraction: 

Extraction of Pesticides 

Microwave technology has been used to extract pesticides from spiked and real samples. 

Steinheimer 22 has used microwave technology to extract the herbicide atrazine and its 

degradation products, deisopropylatrazine (DIA) and deethylatrazine (DEA) ftom 

contaminated soil samples. Briefly, the soil sample was extracted with water and then 

three successive times with dilute hydrochloric acid. The extracts were combined and 

analysed using HPLC with UV detection. Two soils of differing composition were 

investigated. The first was a loamy soil (Nashua) and the second was a silly loam 

(Treynor). Sample clean up was required due to the coloured nature of the extract. Solid 

phase extraction (SPE) and centrifugation was employed for this. The average recoveries 

of the degradation compounds (DEA and DIA) were between 85 - 95 % flor the loamy soil 

and 85 - 115 % for the silty loam soil, The recoveries for the parent compound (atrazine) 

and a surrogate, terbutylazine (TBA) were 65 - 55 % for Nashua soil and 55 - 50 % for 
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Treynor soil. The decrease in the extraction efficiency was thought to be due to the 

increased basic nature of the degradation products over the parent compound. 

The influence of solvent on the microwave extraction of DDT and it's metabolites, DDD 

26 
and DDE has been investigated by Pastor et al. This group investigated three solvent 

systems, acetone: hexane (1: 1 v/v), toluene and hexane. The latter two solvents had 10 

water added to allow heating effects to occur. Taking Soxhlet extraction recovery as 100 

%, they found that all the solvents performed within the error of the experiment, with 

recoveries ranging from 97 - 103 %. An investigation into the effect of sample: solvent 

ratio is represented in figure 2.4. The results indicate that quantitative extraction requires 

at least a 1-3 sample- solvent volume ratio. 

Figure 2.4 Effect of Sample: Solvent Volume Ratio 
on the Extraction of Pesticides from Soil 
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MAE has extracted organochlorine pesticides (OCP's) from soil. McMillan et al., 27 have 

used MAE for the extraction of Arochlor residues from soil samples. They have 

compared this approach with Soxhlet extraction and sonication. Microwave extraction 

consistently extracted greater amount of Arochlor for all the 12 samples investigated. 

However, they expressed concern at the possible loss of solvent. They completed a study 

that showed the loss of solvent was less than 2% of the whole and not deemed to be 

significant. The major problem encountered with the microwave approach was that 

additional sample cleanup was required compared to the other two techniques. However 

for this study, high dilution factors negated the necessity of extensive sample clean up. 

They also included published data that shows that the bias of microwave extraction is low. 

Studies by Lopez Avila et al. 28 and Onuska and Terry 29 have shown that extraction time 

and temperature had no effect on the extraction of 20 OCPs from certified marine 

sediments and soils. The moisture content of the sediment is crucial. Work by Onuska 

and Terry has shown that the presence of moisture is required for quantitative extraction 

of OCP, s (figure 2.5) from sediment. 

Figure 2.5 Influence of Moisture on OCP Extraction 
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Extraction of PAH's 

MAE has been utilised for the extraction of PAH from two marine sediments by Chee et 

al. 30 Four solvent systems were assessed, along with various extraction temperatures, 

extraction times, and volumes of solvent, using a OA16 matrix. The optimum extraction 

conditions were determined as 30 mL acetone: hexane ( 1: 1 v/v), at a temperature of 115 

OC for 5 minutes. The results of the optimised microwave extraction were compared with 

Soxhlet. The results were comparable for both sediments (figure 2.6). 

Figure 2.6 Comparison of MAE and Soxhlet of PAH Extraction 
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Barnabas et al. has also performed optimisation of MAE extraction conditions. 31 Working 

on natively contaminated land samples, the optimum microwave operating parameters 

were elucidated via a central composite design. The limits of the design were, 

temperature, 40 - 120 T, extraction time, 5- 20 minutes, and, extraction solvent volume, 

30 - 50 mL. The most favourable conditions were determined as a temperature of 120 OC, 

for 20 minutes, with a solvent volume of 40 mL. A comparison between MAE and 

Soxhlet for the extraction of PAH's from contaminated land samples, showed good 
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agreement. The influence of extraction solvent was carried out using one of the soil 

samples. Various mixtures of acetone and hexane, ranging from 41 hexane: acetone (v/v) 

to 100 % acetone, were used to extract the PAH's. The extraction of PAI I's increased as 

the proportion of acetone increased (figure 2.7). 

30 

-a 25 

20 

15 
lo 

5 

Figure 2.7 Effect of Increasing Acetone 

Proportion on selected PAH Extraction 
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Comparison of MAE with both DCM and acetone showed that in all cases, acetone was 

more effective as an extraction solvent than DCM. The optimised MAE method was 

applied to CONTEST soil, using both acetone and DCM. The results were compared 

with Soxhlet. Figure 2.8 shows that MAE is a viable alternative to high solvent 

consumption techniques, such as Soxhlet extraction. 

Pastor et al. 
26 also investigated the influence of solvent on PAH's extraction. All three 

systems investigated (acetone- hexane L. I v/v, toluene + 10 % water and hexane + 10 % 

water), gave similar results as Soxhlet and slightly better than ultrasonic extraction with 

toluene. 
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Figure 2.8 Comparison of Extraction Techniques for 

PAH Extraction from CONTEST Soil. 
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Letellier et al. 32 have also extracted PAH's from environmental reference materials. They 

compared a focused microwave assisted extraction technique with Soxhlet extraction and 

compared both sets of results with the certified values. The results were found 

comparable, and an investigation into matrix dependency determined that no specific 

matrix optimisation was required. The ratio of MAE to Soxhlet extraction values for two 

of the marine sediment studies, showed recoveries of 86 - 109 %. Whereas the ratio of 

MAE to certified values for CRM 524 (soil), and SRM 1649a (Urban Dust), showed 

recoveries between 83 % and 109 %. Extraction efficiencies for the third marine sediment 

(SRM 1941 a) are compared in figure 2.9. 
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Figure 2.9 Comparison of Extraction Techniques 
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Extraction of PCBs 

Lopez-Avila et al., 33 have investigated the potential of MAE to replace high solvent 

consumption techniques by extracting PCB's from certified matrices (soil and marine 

sediments). Comparison of the certified results with MAE yielded a high correlation 

between the two sets of results, as did comparison of MAE with Soxhlet extraction. 

Pastor et a]. 26 have compared the room temperature extraction of PCB's wlth MAE at 

various power levels and extraction times. Even at only 23 % power for three minutes, 

MAE was capable of extracting a higher amount of PCB's from the mafine sediment 

Investigated than a room temperature extraction (figure 2.10). Comparison of Soxhlet 

extraction with MAE showed that MAE at 66 % power for 6 minutes gave similar results 

to those obtained by Soxhlet extraction. 
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Figure 2.10 MAE vs. Room Temperature Extraction 
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Determination of phenol and methyl phenol isomers from soils by a microwave-assisted 

process (MAP) has been performed by Llompart and co workers: 14 They optirmsed the 

extraction procedure using a CCD, and spiked samples of soil. The parameters they 

investigated were temperature, volume of solvent, and the quantity of acetic acid 

(derivatising agent) required for maximum extraction efficiency. The extraction 

temperature and the amount of acetic anhydride was deemed to be significant for all the 

analytes (phenol, o-, m-, and p-cresol) except m-cresol. The volume of extraction solvent 

(hexane) was also found significant for o-, and m-cresol. The only interaction term that 

was significant was the quadratic term for acetic anhydnde. From these data, they 

determined that 10 mL solvent, with 800 pL of acetic anhydride at 130 I)C for 5 minutes 

was the optimum. Using the optimised procedure and real coke plant soil samples, they 
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compared the in situ derivatisation procedure with sonic probe extraction. In all cases, the 

microwave procedure extracted more of the target analytes than the sonic probe extraction 

(Table 2.1). 

Table 2.1 MAE vs. Sonic Probe Extraction of Phenols from Soil. 

MAE 
lig/g 

Sonic probe 

- 
gg/g 

Phenol 7.0 3.5 
o-Cresol 1.5 0.8 

L 

m-Cresol 4.5 1.2 
_Cre 1.5 0.8 

Lopez Avila et al., 29 have investigated the effect of soil moisture on phenol extraction 

from certified ERA soil (lot no. 323). Moisture was deemed to be an insignificant 

parameter in the extraction of four of the five compounds investigated. Ilentachlorophenol 

extraction was significantly reduced in the absence of moisture, and 2-methylphenol was 

poorly recovered irrespective of soil moisture content. 

Extraction of oth er ctpmp(-)und. s 

Several basic and neutral compounds have been extracted from certified materials by 

Lopez Avila et al. 28 They investigated the effect of water on the extraction recovery and 

compared the results with those on the certificate. Moisture content was not deemed to 

have significant effect on the results (figure 2.11). Acceptable recoveries (-- 78 %) vs. the 

certificate were obtained for all the compounds, except the three chlorobenzene 

compounds. Losses due to volatilisation could account for these poor recoveries, as 

further investigation showed no significant degradation in solvent, and only 30 % in a soil 

solvent suspension. 
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Figure 2.11 Effect of Moisture Content on Extraction 
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2.3 Supercritical Fluid Extraction (SFE) 

2.3.1 Introduction. 

n 1879, Hannay and Hogarth 35 noted the enhanced extraction abilities of supercritical 

fluids. Supercritical fluids were first used commercially in the I 960's to produce 

decaffeinated coffee. 36 Since then, further developments have enabled the use of SFE on 

an analytical scale. Several solvents can be used in their supercritical state to extract 

matrices; these include dinitrogen oxide (N20), pentane, carbon dioxide, W02) and 

ammonia (NH3). However, all except C02 have safety problems, such as high reactivity 

and flammability. 37 The move to supercntical fluids as extraction solvents was prompted 

by environmental organisations, as typically, the extraction procedure uses 

environmentally innocuous compounds, such as water and carbon di ide. Environmental oxi 

incentives for using supercntical fluids include the fact that it is inert to most materials and 
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biologically non toxic, on the commercial side, it is also relatively inexpensive and gives 

minimal solvent residues, hence disposal costs are reduced, 

2.3.2 Theory 

Above a critical temperature and pressure gases can become liquefied. The fluids are 

known as supercritical fluids, The physical properties of supercritical fluids give them 

several advantages over liquids, the viscosity of the supercritical fluid is lower than that of 

an analogous liquid, this aids penetration of the solvent into the matrix, thus assisting 

extraction. 
19 

2.3.3 Instrumentation 

A typical SFE system consists of two pumps, one each for high purity organic modifier 

and high purity solvent. The extraction cell is enclosed in an oven, and a restrictor 

controls the carbon dioxide pressure. The extract is collected in a suitable vessel. The 

most common supercritical fluid used is C02- Carbon dioxide is a non-polar solvent, 

reducing the extraction efficiency of polar analytes. Organic modifiers are added to the 

carbon dioxide to increase the polarity of the extraction solvent. The organic modifier is 

usually methanol, although other solvent such as acetone can be used. Liquid carbon 

dioxide is pumped into the extraction cell where it is raised to its supercritical temperature 

and pressure (3 1.1 'C and 74.8 atm). The sample is mixed with a drying agent and placed 

in the stainless steel extraction cell. As the supercritical fluid passes through the sample, it 

dissolves the target analytes. The extract is pumped out of the cell and passes through a 

restrictor into a collection vessel. Whilst in the restrictor the fluid cools enough to returns 

47 



to it's gaseous state, and in order to quantitatively collect the analyte, a few mL of organic 

solvent (typically the organic modifier) is added to the collection vial. The restrictor 

maintains supercritical fluid conditions in the extraction cell, as well as allowing the extract 

to pass into the collection vial. The extract frequently requires further preparative 

treatment prior to analysis, such as filtration. 37,25,39 

2.3.4 Applications of SFE 

Extraction ofpe. vticides 

Hawthorne and Miller 40 (39a) have investigated the effect of temperature on the 

extraction of triazine herbicides and OPP's in real site contaminated soil samples with 

unmodified C02. The soil samples were from various sources, railroad bed soil, industrial 

site soil, agricultural soil and diesel. Higher recoveries from agncultural soil were 

obtained at 200 'C vs. 50 "C. A further increase in temperature to 350 T reduced the 

recoveries significantly (figure 2.12). SFE at 200 'C gave comparable results to Soxhlet 

and the precision was similar. 
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Figure 2.12 Effect of Temperature on OPP Extraction. 
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Although real contaminated soils have been investigated, examples pertaining to the 

extraction of pesticides from real soils and sediments are harder to find. Snyder I () and 

Naude 41 have both extracted weathered residues from soils and sediments. The groups 

came to similar conclusions; that SFE could act as a potential replacement flor older high 

solvent consumption techniques. Snyder et al. 10 extracted three native (real) soils The 

first soil was dark topsoil and was contaminated with DDT and it's metabolites. There 

was no significant difference between the amount extracted by either sonication or SFE. 

The precision for both techniques was vastly different. The average % RSD for SFE was 

6.9 %, compared to 13.5 % for sonication. The other two soils were both found to be 

contaminated with other organochlorine pesticides, including endrin and endrin ketone. 

One soil was a sandy loam and the other was a sandy soil. Again, there was very little 

difference for each pesticide extracted by both SFE and sonication. Howcver fior the 

sandy loam soil, sonication gave better preCision than SFE for all the analytes with the 

exception of endosulfan It. The main conclusions of this work was that sonication vs. 

SFE for real samples did not yield significantly different results, and SFF gave the best 

overall precision for the 12 pesticides. Naude, 41 collected real world samples with a grab 

sampler from various areas of the Pongolo flood plain in KwaZulu-Natal South Afi - rica. 

The samples were freeze dried and sieved. For each of the four area samples, 'Sýoxhlet 

gave lower results than SFE for DDT and DDD, but comparable results fior DDE, 

However further statistical analysis showed that the differences between the amount 

extracted by both Soxhlet and SFE were not significantly different, indicating that SFE 

could potentially replace Soxhlet (figure 2.13). 
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Figure 2.13 Extraction of DDT and its metabolites by SFE and Soxhlet 
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Frost et aL, II has compared four extraction techniques, SFE, ASE, MAE and Soxhlet to 

remove weathered hexaconazole residues from two fully characterised soils. Extraction of 

the soil after 52 weeks application showed that the amount of extractable material had 

reduced significantly. A time study using SFE was performed but showed no difference 

between 20,40 and 60 minutes' SFE extractions. There were differences between the two 

soil types; the soil with the lower organic matter gave comparable recoveries for all four 

techniques, whereas the results for the soil with the higher organic matter gave results that 

are more varied. For example, recoveries by MAE and SFE were half of the target 

Soxhlet value. ASE however gave comparable results to Soxhlet. Using this data, it was 

tentatively suggested that ASE is matrix independent to a certain extent (figure 2.14). 
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Figure 2.14 Comparison of techniques for the extraction of 
weathered "exaconazole residues 
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Extraction of PAHs 

Saim et al. 
42 used CCD to determine the optimum extraction parameters of ASE of PAH's 

from natively contaminated soil. When total PAH concentration was considered, the CCD 

showed that none of the parameters investigated (temp, pressure and static extraction time 

were significant. Temperature was significant for three individual PAH's; naphthalene, 

benzo[b]fluoranthene and chrysene. An investigation into the extraction solvent was 

performed. The solvents were chosen based on their polarity, measured by dielectric 

constant. Only hexane seemed to have an effect on the recovery of the PAH's, extracting 

less than the other solvent systems that were investigated. The authors attnbuted this to 

its lower polarity. 

The influence of extraction parameters has been applied to a standard reference material 

by Dankers and co workers. 43 SRM 1647b, contalning the 16 pnority PAH pollutants 

was extracted by SFE under optimised conditions; 270 atm, 70 OC, C02 density of 0.77 g/ 

mL for 30 minutes. The influence of DCM as a static modifier was investigated. Sol] 
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samples were spiked with DCM before extraction and the results were compared with 

unspiked soil. The addition of DCM before extraction increased the efficiency of the 

extraction. The authors attribute this to the ability of DCM to penetrate the soil matrix 

and solubilise the PAH's. The main conclusions of this work were that the density and 

volume Of C02 used, as well as the collection solvent and choice of modifier are 

important. The authors noted that the soil matrix might have an influence on the 

extractability of the PAH's. Hawthorne and Miller 44 have extracted urban dust certified 

for PAH's (SRM 1649) with good agreement between the certified values and those 

obtained by SFE. 

Mineral coal samples were extracted by SFE and compared with Soxhlet and Sonication 

by Vale and co workers. 45 They investigated the use of isopropanol as a supercritical 

fluid. Significantly better yields were achieved by SFE at 425 'C and 95 atmospheres in 

90 minutes than either 48 hour Soxhlet extraction in DCM or 75 minute sonication 

extractions in DCM. 

Extraction of PCB ý'w 

Onuska and Terry 29 have applied SFE to the extraction of PCB's from a certified 

sediment, EC- 1. They compared the SFE results with both Soxhlet and sonication, as well 

as the certified values. They found that supercritical carbon dioxide with 2% methanol as 

the organic modifier at a pressure of 20.7 MPa at 40 T was comparable to both the 

Soxhlet and sonication values and was in excellent agreement with the certified values. 

They also performed leaching experiment to determine if matrix effects were present. 
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Spiked sediment was extracted at 10.35 MPa, at a temperature of 60 T. All the 11('B's 

were quantitatively extracted in eight minutes. This experiment was repeated using 

samples of the certified sediment. Exhaustive extraction of all the PCB's was achieved in 

, 46 
10 minutes. Langenfeld and co workers have investigated the effect of pressure and 

temperature on the extraction of PCB's from a certified river sediment (SRM 1939) using 

pure supercritical C02. Extraction pressure had no significant effiect on PCB recovery, 

however an increase in extraction temperature increased the recovery of the PCB 

congeners investigated (figure 2.15). 

Figure 2.15 Effect of temperature on PCB recovery at 350 atm 
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2.4 Other solid/liquid techniques. 

Commonly, other liquid/solid techniques are used in comparison with newer instrumental 

techniques. As a result, literature dealing just with the t1ollowing techniques is limited. 
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2.4.1 Soxhlet extraction 

2.4.1.1 Instrumentation 

Soxhlet extraction is used as the benchmark for any new extraction techniques. Studies 

use Soxhlet extraction for comparison to new and updated techn'ques. Baslc Soxhlet 

extraction apparatus consists of a solvent reservoir, Soxhlet extraction body, a heat source 

(e. g. isomantle) and water cooled reflux condenser. Soxhlet uses a range of organic 

solvents to remove organic compounds, primarily from solids. The sample is combined 

with a drying agent, e. g., anhydrous sodium sulphate. The mixture is then placed in a 

porous extraction thimble, and extracted under reflux conditions. During the extraction 

process, the solvent is boiled and the vapour passes though the water cooled apparatus 

and is condensed. The liquid solvent then passes through the sample, removing the 

analyte as it does. The extract then passes into the boiling solvent and the whole process 

occurs again. As the boiling point of the analyte and solvent mixture is higher than that of' 

the solvent alone, fresh solvent is continually circulating thorough the sample, This 

process is continued for 16 to 24 hours. If required, the extract is then exchang , cd into a 

solvent that is compatible with the analysis technique. 

2.4.1.2 Applications 

Studies have been performed comparing Soxhlet extraction with several other extraction 

techniques, e. g. SFE, MAE for the extraction of pesticides from various spiked and real 

samples. 

Tavares and co workers used Soxhlet extraction to determine the level of DDT and its 

metabolites DDD and DDE in bay sediment. Aliquots of the sediment were extracted with 

180 mL of a mixture of dichloromethaneý methanol (11 v/v) containing activated copper 
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wire. The results showed that due to the ratio between DDT and DDE, the pesticide 

could have been used during the last five years. 47 

2.4.2 Sonication 

2.4.2.1 Instrumentation 

Sonic extractions can be achieved by the placement of the sample in a solvent in a sonic 

bath, or via the insertion of a sonic probe into the sample solvent system. 

2.4.2.2 Applications 

This technique has been taken over by newer automated techniques, but has been used in 

the past to compare various solvent systems for the extraction offour herbicides fironi 

aged, spiked soil samples. 
49 The technique was compared with another Superseded 

techniques, shake flask. The soils investigated were of various compositions. Soils were 

sampled and extracted after both 6 months of weathering and 17 months ot'weathering, 

Not surprisingly, in all cases the amount of each herbicide that was extraeted decreased 

the longer the soil was weathered. After six months weathering all the herbicides (no data 

for triallate) were quantitatively extracted from all the matrices. Atler 17 months of' 

weathering comparison of sonication and shake flask for the extraction of both riltroten 

and profluralin was performed, using ACN-. water as the solvent. The results were not 

significantly different between the two extraction techniques. An average recovery ot'87 

% by both shake flask and sonication for the extraction of profluralm, and 81% by 

sonication, compared with 87 % recovery by shake flask (recovered on two soils oniv), for 

nitrofen, After 17 months weathering all the herbicides (no data for benzoyl prop- ethyl) 

were extracted from all the matrices with at least 85 % recovery. 
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2.4.3 Shake flask 

2.4.3.1 Instrumentation 

Solid samples, e. g. soil, sediment etc. are placed in a stoppered flask along with the 

extraction solvent. The entire system is then shaken using a mechanical shaker, Cor a set 

period of time, usually for around an hour. Repeat extractions can be pertormed to 

quantitatively remove the analyte from the sample and then the extracts are combined 

before analysis. As the sample is in contact with the solvent, sample cleanup via SPF or 

similar is normally required prior to analysis. 

Although this technique is now rarely used as a definitive method, variations have been 

used extensively in the past and also when assessing the efficiency of new techniques such 

as SFE and ASE. 

2.4.3.2 Applications 

Cotterill 49 has published work that uses the technique to assess the efficlency of solvent 

systems for the extraction of weathered herbicide residues from soil. Samples of soil of 

different compositions spiked with herbicides from a range offarnifies. The herbicides 

included linuron, simazine and propyzamide. The soils were extracted three months atler 

herbicide application. Two different techniques, Soxhlct extraction and shake Ilask 

evaluated several solvent systems. Methanol: water (4ý 1, v/v) consistently gave higher 

recoveries of selected herbicides from all the soil types using shake flask extraction. A 

comparison of acetonitrile- water (9.1, v/v) as the extraction solvent for both Soxhlet 

extraction and shake flask showed that for soil with a high sand content and low oryamc 

carbon, there was very little difference between the recovery of the herbicides. AqueoLis 

50 



methanol extraction of herbicides from a soil with high sand content and pli 7.0 showed 

that recoveries of greater than 73 % were possible for the pesticides. 

2.5 Other Techniques 

Matrix solid phase dispersion is a new technique currently being developed for the 

extraction of organic analytes from environmentally relevant samples, such as soil, as well 

as biological matrices such as fish tissue. Other techniques that are not mentioned here 

include the use of SPME for extracting volatile and semi-volatile compounds, such as 

herbicides from sludges and soils. 50-53 

An increase in automation will dramatically change the evolution of extraction techniques 

Procedures that reduce solvent consumption and decrease sample preparation time are 

already widely used. These systems, for example, accelerated solvent extraction and 

microwave assisted extraction, will rapidly replace the use of other techniques Such as 

Soxhlet and Sonication. 
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Pressurised Fluid Extraction in Environmental Analysis 

3.0 Introduction 

PFE (pressurised fluid extraction), I is also known as ASEIm (accelerated solvent extraction)and 

PLE (pressurised liquid extraction). 2 All three names relate to the process (if extraction that 

utilises common organic solvents under high pressure and high temperature. This approach to the 

extraction of analytes is not novel. SFE (supercritical fluid extraction) and MAE. Onicrowave 

assisted extraction) have also been used to enhance extraction efficiency. In SIT, the organic 

solvent is replaced with carbon dioxide above its critical temperature and pressure (3 1.1 "C and 

74.8 atm). Carbon dioxide in this state has been shown to have superior extraction propel-ties. I-ý 

Users of both MAE and SFE have a similar problem to overcome. 'The supercrifical carbon 

dioxide used in SFE is a non-polar molecule, hence, the extraction ell'iciency ot'polar molecules is 

minimal. In MAE, the organic solvent used for the extraction must have a degree ot'polarity, as 

only polar molecules absorb microwave energy and contribute to the heating process, which aids 

extraction. Users of SFE tend to overcome this drawback by the addition ofa small aniount of 

polar organic solvent, usually methanol, often referred to as the organic niodifier. " -9 Microwave 

assisted extraction can also use high temperature and pressure to aid analyte extraction, ') In MAU' 

the heating limitation can be overcome by the addition ofa polar solvent to a non-polar one, flor 

example the addition of acetone to hexane. "M , rhe sample is also in direct contact with the 

solvent, hence extensive sample clean up is usually required, leading to the loss ofthe analyte. 

In PFE, organic solvent, whether individually, or as a mixture oftwo or more solvents is used flor 

extraction. 
It - 14 The US EPA has used PFE, since the rate of solvent consumption is low 

compared to other techniques, e. g. Soxhlet extraction. This requires ail assessment of PFE versus 
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other techniques. As Soxhlet extraction is often quoted as the 'benchmark' for other techniques, 

the EPA has compared PFE with Soxhlet for a variety of compounds from different solid 

matrices. The results showed the equivalency of PFE to Soxhlet. Further studies using shake 

flask and sonication, for the extraction of the same analytes and matrices, showed similar trends. ' 

3.1 Theory of PFE extraction. 

Richter et al. 
15 and David and Sieber 16 have postulated that the enhanced extraction efficiency 

seen when using PFE is due to two main effects, disruption of surface equilibrium and solubility 

and mass transfer effects. 

3.1.1 Disruption of Surface Equilibrium. 

As temperature increases, the physical properties of the solvent change. For example viscosity 

decreases figure 3.1 and the surface tension figure 3.2 of the solvent is also reduced. 

Figure 3.1 Effect of Temperature on the Viscosity of Toluene 
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Figure 3.2 Effect of Temperature on the Surface Tension of Water 
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Pressure also has an effect on the viscosity of a solvent. This most easily measured by use of a 

gas. The relationship between the viscosity of a gas and pressure is mirrored in a liquid, but the 

effect of pressure on a gas is easier to measure (figure 3.3). 17 

Figure 3.3 Effect of Pressure on the Viscosity of Methane Gas at 100 IC 18 
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3.1.2 Mass Transfer and Solubility Effects. 

Kinetic theory predicts that for every 10 OC rise in temperature the kinetics of a reaction increase. 

Figure 3.4 shows the effect of temperature on the kinetics of a gas phase reaction. A similar 
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phenomenon occurs for liquid phase reactions. Pressure has minimal effect on the rate of liquid 

phase reactions. 
19,20 

Figure 3.4 Effect of Temperature on the Kinetics Of C02 Formation. 
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Changes also occur with respect to the analyte. It becomes more soluble in the solvent as the 

temperature increases. Thus for quantitative extraction, there is a reduction in solvent volume. 

Figure 3.5 shows the effect of temperature on the solubility of glycine in water. 21 

Figure 3.5 Effect of Temperature on the Solubility of Crlycine in Water 
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3.2 Method Development 

3.2.1 Optimisation of PFE extraction conditions. 

Central composite design (CCD) is an efficient method of optimising the PFE extraction 

conditions. In order to accomplish this, an aged, highly contaminated sample is necessary. A 

matrix similar to that of interest is also beneficial. A central composite design (CCD) is the 

combination of a two-level full factorial design superimposed on a star design. The centres of the 

two designs coincide (figure 3.6). The CCD takes the form of a cube with star points located in 

the centre of each face (figure 3.6). 22 

Figure 3.6 Development of a Central Composite Design 
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Composite Design 
46 

Pressure, temperature and time are typically operated between the following limitsý pressure, 1000 

and 2400 psi, temperature, 40 and 200 OC, and, time, two and 16 minutes. These limits are based 

on instrumental constraints and allow the extractions to occur safely. Sixteen experiments are 
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performed, incorporating replicate experiments to evalLiate the reprodLicibilitv. Multilinear 

regression shows the relationship between response and the parameters. The results ofthe 

regression analysis are used to plot a response surface. Sairn et al. ') I used this approach to 

determine the optimum extraction conditions of polycyclic aromatic hydrocarbons. They lound 

that none of the parameters investigated had any significant ellect on the recovery. A dfllýrent 

approach used by Schantz et al., 20 involved keeping the oven temperature constant ( 100 "C) and 

varying the pressure between 1000 and 2200 psi. To optimise the extraction temperature, 

constant pressure was established, whilst the temperature was varied between 50 and 150 "C 

The optimum conditions for PAH's, PCBs and chlorinated pesticides werc established as 100 "C 

and 2000 psi. Obana et al . 
13 used a 'change one thing at a t, i-ne' for the extraction ofacephate 

and methamidophos from orange juice. They determined that an increase in pressure improved 

the extraction efficiency, but time and temperature had no ell'ect oil this system. 

3.2.2 Optimisation of Static / Flush Cycles. 

There is a fundamental difference between Soxhlet extraction and PFE. In Soxhlet, firesh solvent is 

cycled through the sample. In PFE, this is not the case. In order to mirnic the cycling ot'solvent, 

-flush cycles in any sin -action, allow -T to the PFE can perform up to three static gle exti Ing tile III I 

mimic the action of Soxhlet extraction. Popp et al. ' 2 have extracted chlorinated pesticides froin 

soill. They investigated the number ofstatic flush cycles require for quantitative extraction (figure 

3.7). 
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Figure 3.7 HE Cycle Study 
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The EPA method suggests one 5 minute static extraction cycle. II Popp et al. 12 compared the 

EPA method with a static extraction time of 10 and 15 minutes, as well as two static steps of 

5minutes. They concluded that there was no significant diffierence between the 10 and 15 minute 

extraction steps, but two successive 5 minute cycles extracted more than either of the longer 

cycles. Bjorklund et al. 24 have seen that one static step is not always able to quantitatively extract 

the analyte from a matfix. In this study, a harbour sediment (CRM 536) contaminated with 

PCB's was extracted by PFF. Initial investigation showed that analytes were present in the 

second extract. Two cycles were superior to two separate extractions. Figure 3.8 summarises the 

data. 
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Figure 3.8 Effect of Cycles on PCB Extraction 
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3.2.3 Optimisation of PFE Extraction Solvent. 
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Optimisation of solvent for an extraction procedure is very oflen time consuming, and many 

traditional extraction techniques, such as Soxhlet extraction requires large volumes of organic 

solvent. The current trend is to reduce the consumption of organic solvents used in chemistry, as 

these have detrimental environmental effects. Legislation has effectively banned the use of' 

chlorinated solvent in the EU. The costs of proper waste disposal are also high, prompting the 

search for alternative solvents. 25 PFE allows solvent optimisation to occur with smaller volumes 

of solvent, However even this advantage does not completely compensate for the time required 

for the extractions. Usually, comparison of several solvent systems is necessary to optimise the 

extraction solvent. There are copious examples of this approach in the literature. A few 

examples include Popp et al., 12 
who have used three different solvent systems for the extraction of 

spiked soil contaminated with DDT and its metabolites, DDD and DDE. They determined that 

acetone: hexane was the optimum solvent for the extraction (figure 3.9) 
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Figure 3.9 Comparison of Solvent for OCP Extraction 
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Obana and co workers 13 have compared six solvent systems for the extraction of 

organophosphorus pesticides, acephate and methamidophos from orange juice (figure 3.10). 

They determined that ethyl acetate was the optimum solvent for this extraction. 

Figure 3.10 Comparison of Solvent Systems for 0CP Extraction 
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Poster et al 14 has compared three solvent systems for the extraction of PCB's from a standard 

reference material, an urban dust. The solvent systems used were acetonitrile, DCM and 
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hexaneýacetone I -. I (v/v). A better way of solvent optimisation is to predict the solvent required 

that would give quantitative extraction of the analyte. Recently, a model based oil tile I fildebrand 

solubility parameter has been developed by this lab. 20 

The solubility parameter, 6, is defined as the square root ofthe cohesive energy density or 

8= (AEV/V) 1/2 

Where 

6= the solubility parameter 

AEV -- the energy of vaporisation at a given temperatUre 

Vý molar volume of the molecule. 27 

is used as a measure of the solubility of compounds in various solvents Prediction ofthe 

solubility of polymers and resins in various solvents utifised this approach It has nialor 

applications in art conservation and polymer chemistry. 28 1 lansen 21) - III has divided the total 

solubility parameter into three cornponentsý hydrogen bonding ability 61, dispersion co eflicient 

65d, and polarity 61, Calculation ofeach component is achieved via group contribution data in the 

literature. A visual representation between the three components is via a tertiary plot, using, 

fractional parameters (see figure 3.1 1 ). The plot can be used to predict the best solvent tj)j- 

dissolving a compound. 'rhe optimum solvent should be in the same position as the target analyte. 

This thinking can be applied to extraction techniques. To quantitatively extract an analyte from a 

matrix, the solvent should have similar properties as the compound, i. e. non-polar solvents are 

better at extracting non-polar analytcs. Using this approach, an intlortned selection of the most 

suitable solvent for a particular analyte can then be made. 
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Figure 3.11 Ternary Plot 
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3.2.4 Effect of particle size. 

0 

Scant literature exists on the effect of particle size in PFF. 11jorkland et al. 24 have extracted 

marine sediment contaminated with PCB's. They completed a briet'StUdy on the effect. ol'particle 

size on PFE extraction. The conclusion of this short study was that smaller particle size increased 

extraction efficiency. Figure 3.12 compares the results ofthe extraction Of'CRM 536 (harbOUr 

sediment) with a particle size of -- 15l. u-n and a particle size between 75 and 1000 pni, 

The authors noted that greater extraction efficiency (versus the certitied values) Occurred wit Iha 

smaller particle size. Irrespective of particle size, both sediments yielded greater all)OLIMS 01' 

PCB's than the stated certified value. 
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Figure 3.12 Effect of Particle Size on PCB Extraction 
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3.2.5 PFE Method development procedure 

From these studies method development for PFE should follow the procedure laid out below - 

I Determine the identity of the analyte 

2 Sample preparation. 

Air dry sample for 24 hours. 

Grind sample to small particle size (< 15 ýtm), mix well to ensure homogeneity. 

Mix sample with a dispersing agent prior to extraction. 

3 Optimisation for time, temperature and pressure, via one of the t'()Ilowlng methods 

Central composite design, or other experimental design matrix e. g. factorial design. 

Simplex design 

4 Solvent selection via prediction model, or, experience 

5 Static cycle determination. 

72 

29 51 149 119 151 105 

PCB Congener 



3.2.6 Validation of method. 

Once all the extraction parameters have been optimised, recovery experiments from spiked inert 

matrices are required to determine the robustness of the proposed method. Caution should be 

exercised at this stage, as spiking rarely reflects what happens in real samples. Two methods of 

spiking are widely used. The first is called spot spiking and the second is called slurry spiking. 

The first method is where the analyte is introduced to the matrix in a small volume of solvent 

(typically ptL), The solvent is then allowed to evaporate and the matrix is extracted. Several 

studies, 
32-34 have shown that the former type of spiking gives quantitative recoveries, as the 

analyte does not have sufficient time to interact with the matrix. Ezzell et al. 32 have extracted 

organophosphorus pesticides (OPP's) and herbicides from spiked soil samples by PFE and 

compared it with conventional Soxhlet extraction, with good agreement between the two sets of 

results. This is not surprising as spiked sample rarely reflect real aged samples. To fully assess a 

new technique, a range of aged samples should be extracted and compared with alternative 

extraction techniques, such as Soxhlet extraction. The second, more realistic method of spiking is 

called slurry spiking where the analyte is introduced to the matrix in a large volume of solvent. 

The solvent is allowed to evaporate and the matrix is left for a significant length of time (ideal 

minimum I month) before extraction. This allows the analyte time to interact with the matrix. 

Dean et al. 
35 

and Frost et al. 
36 

performed two studles of note. These invest'gations showed that 

the longer the spiking time, the less of the target analyte was recovered. Once the recovery 

experiments are completed, application of the technique to various matrices and analytes and 

comparison with older established methods of extraction e. g. Soxhlet extraction is advisable. 
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3.3 PFE Instrumentation 

An automated ASEIm system is available from Dionex Corporation, and consists of a solvent 

delivery system, an oven; carousel and computer controlled software. Figure 3.13 shows a 

schematic for the system. 

vent 

Figure 3.13 PFE Schematic 
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Up to 24 samples can be sequentially extracted in stainless steel extraction cells. These consist of 

two end caps joined by a cylindfical cell body. Each end cap contains a stainless steel ffit to help 

prevent cell blockage. The cells are available in five volumes (I mL, 5 mL, II mL, 22 mL and 33 

ml-) to allow both wet and dry samples to be extracted efficiently. The sample to be extracted is 

mixed with an inert matrix to reduce solvent consumption. The sample is quantitatively 

transferred to the stainless steel extraction cell that has been fitted with a filter to prevent 

transport of particulate matter through the cell and into the solvent lines. The extraction solvent 
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is pumped into the cell, where it is heated to the temperature and pressure stated in the method 

(typically between 100 and 200 T, 6.9 - 20.7 MPa). The solvent is then kept in contact with the 

sample for a specified static extraction time, usually between 5 and 20 minutes. The analyte 

containing solvent is then flushed through the cell to a glass collection vial. A few mL (as a% of 

the cell volume) of solvent is the used to rinse the cell. The lines are then purged with high purity 

nitrogen to remove the last residues of the solvent and analyte. The extract is then ready for 

analysis. As the system is automated, advantages of this extraction procedure include high sample 

throughput, and as the sample and extract are kept separate from each other, very little sample 

cleanup is usually required. 

3.4 Applications of PFE 

3.4.1 Extraction of pesticides. 

Several laboratories have used PFE for the extraction of pesticides from soil and sediments. 

Conte" and colleagues have compared PFE with a shake flask extraction for the recovery of a 

herbicide (diflufenican) from freshly spiked soil. There was little difference between the amount 

extracted for the range of spike levels investigated (0.1 - 0.4 mg / kg). Figure 3.14 shows these 

results. 

Ezzell et al. 32 extracted organophosphorus pesticides (OPP's) and herbicides from three different 

spiked matrices (clay, loam and sand) at two different concentration levels. He compared the 

results by PFE with conventional Soxhlet extraction, with good agreement between the two sets 

of results. No matrix dependence on recovery seemed to exist. This is not surprising as spiked 

samples rarely reflect real aged samples. To fully assess a new technique, a range of aged samples 
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should be extracted and compared with alternative extraction techniques, such as Soxhlet 

extraction. 

Figure 3.14 Extraction of Diflufenican by PFE and Traditional Solvent Extraction 
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Fisher et aL 
37 and Brumley et aL, 38 explored this. The former group extracted soils contaminated 

with organochlorine pesticides (OCP's) by PFE, Soxhlet extraction, and sonication. The results, 

presented in figure 3.15, show that PFE is at least as good as Soxhlet extraction for the extraction 

of dieldfin and aldfin, but both methods give poorer recovefies when compared to sonication. 

The precision of HE and Soxhlet extraction were very good (0.04 %-0.38 % for HE compared 

with 0.03 to 0.34 % for Soxhlet). However, it was noted that variation in the amount extracted 

was probably due to the heterogeneity of the soil sample. The sonication method was optimised 

for OPP's, whereas the other two techniques were used as screening techniques, this could also 

account for the apparent reduced efficiency of OPP extraction by PFE and Soxhlet extraction. 
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Figure 3.15 Extraction of OCP's from Contaminated Soil 
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Note n=I for Sonication extraction. 

Brumley, 39 and colleagues have compared the extraction of chlordane from a spiked soil. 

Chlordane is a mixture of polychlorinated compounds, hence more than one peak is obtained in 

the chromatography. The total amount of chlordane is found by deter-mining the amount for each 

peak and then adding the results for each peak. The three techniques they chose to study were 

PFE, SFE and compared the results with Soxhlet. Three spiked levels were chosen, 2.0 gg / g, 

0.2 ýtg /g and 0.02 ýtg / g. This was done in order to determine the sensitivity of two GC 

detection techniques, GGECD and GC/EC NIMS. The recoveries using the 2 pg /g spike level, 

showed that both PFE and SFE were comparable to Soxhlet extraction. PFE gave average 

recoveries of 85 % for all the chlordane component peaks, Soxhlet gave a mean recovery of 82 % 

and SFE gave an average of 125 %. It was also noted that the PFE extracts did not require 

further treatment, a distinct advantage, as the other two techniques required SPE clean up before 

the analysis could be performed. Li et al., 39 have also extracted spiked and certified soil samples. 

They extracted soil contaminated with organochlorine pesticides by MAE and compared the 
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results with Soxhlet extraction. The spiked samples gave recoveries of between 95 % and 155 % 

for DDD and endrin, respectively. HE did have several advantages over traditional extraction, 

namely the reduced extraction time and decrease in solvent consumption. Richter et al. 15 studied 

the possible degradation of DDT to DDD and DDE, and endrin to endrin aldehyde and endrin 

ketone during the PFE extraction conditions. DDT and endrin were spiked on sand and extracted 

at 150 'C. There was no evidence of the presence of DDE or DDD in the experiments with DDT, 

and neither endrin aldehyde or endfin ketone was observed in the experiments with endrin. Popp 

et al., 12 have extracted chlorinated pesticides from two natively polluted soil samples, from 

floodplains in Germany. This group compared HE with Soxhlet and Soxtec. Figure 3.16 shows 

that HE was equivalent to Soxhlet for 18 hours, or Soxtec for 6 hours. 

Figure 3.16 Comparison of Extraction Techniques of OCP's from Soil 
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The number of extractions was varied to determine if the analytes were quantitatively removed 

with one step. They determined that the predominant part of the contaminants was extracted 

dufing the first extraction step. They also noted the yield of the second extraction was much 

lower but not negligible and that the yield of the third procedure was very low (see figure 3.7). 

They also completed a solvent study that showed, unlike microwave extraction, PFE does not 
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The number of extractions was varied to determine if the analytes were quantitatively removed 

with one step. They determined that the predominant part of the contaminants was extracted 

during the first extraction step. They also noted the yield of the second extraction was much 

lower but not negligible and that the yield of the third procedure was very low (see figure 3.7). 

They also completed a solvent study that showed, unlike microwave extraction, PFE does not 
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Pyle et al. 
4() have also extracted chlorinated pesticides, from the same marine sediment (SRM 

194 1), and a natively polluted soil sample using PFE. Additional clean up was required owing to 

the co-extraction of interfering compounds. Further preparation of the samplvýs w4s required in 
I 

the forrn of centrifugation, as solids precipitated out as the extract cooled. 

Frost et al '36 have compared PFE to three other extraction techniques, SFE, MAE and Soxhlet to 

remove weathered hexaconazole residues from two fully characterised soils. Extraction of the 

soil after 52 weeks application showed that the amount of extractable material had reduced 

significantly. SFE extraction time was not deemed significant on the recovery of hexaconazole. 

Differences between the soils were observed. The soil with the lower organic matter gave 

comparable recoveries for all four techniques, whereas the soil with the higher organic matter 

gave varied results. For the latter, recoveries by MAE and SIFF were half of the target Soxhlet 

value. PFE however gave comparable results to Soxhlet. Using these data, it was tentatively 

suggested that PFE is matrix independent to a certain extent. 

Gan et al. 41 have also investigated the effect of soil type and nature of extraction solvent for the 

recovery of atrazine and alachlor from spiked aged soil. Soil was spiked with the pesticides and 

extraction were performed 2 weeks, 8 weeks and 26 weeks after the initial application. Of the 

three solvents investigated (DCM: acetone I-I v/v, hexane and methanol), DCM- acetone 1.1 v/v 

consistently extracted more of the compounds from every soil than either of the other solvents. 

The results by PFE were compared with those obtained from Soxhlet extraction and solvent - 

shake extraction. After two weeks, PFE was comparable to the other techniques, however as the 

ageing period increased, PFE was able to extract more residues than either Soxhlet or sonication. 
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The only exceptions were the extraction of atrazine from Arlington soil, and the extraction of 

alachlor from Linne soil, where all three extraction methods performed comparably. 

In addition to more common environmental matrices, e. g. soil and sediment, PFE has also been 

applied to food stuffs and plant matter. Obana et a], 13 extracted organophosphorus pesticides in 

foods using PFE. Three different solvent mixtures (cyclohexane-acetone (I - 1, v/v), 

dichloromethane-acetone 0ý1, v/v) and ethyl acetate-acetone (I ý 1, v/v)) were evaluated for the 

extraction of organophosphorus pesticides from flour. The low water content of the matrix meant 

that no drying agent was required. The recoveries were good with the three solvent mixtures 

except for dichlorvos whose recovery was - 40 %. The low recoveries of dichlorvos were 

attributed to samples losses during the spiking procedure. Ethyl acetate-acetone (I - 1, v/v) 

mixture gave high RSD values (19 - 34 %). Wet samples, were mixed with a drying agent 

(diatomaceous earth, particle size 160-800 ltm), ground in a mortar with a pestle until the mixture 

became homogeneous pnor to extraction. The influence of extraction time, temperature and 

pressure were studied for the extraction of methamidophos and acephate from orange juice. 

Extraction time and temperature seemed to have no effect on extraction yields whereas higher 

pressures gave better recoveries (see figure 3.19). 
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Figure 3.19 Effect of Pressure on Extraction from Orange Juice. 
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Ethyl acetate, toluene-acetone (I - 1, v/v), cyclohexane-acetone (1: 1, v/v), dichloromethane- 

acetone (1: 1, v/v), ethyl acetate-acetone (I - 1, v/v) and acetonitrile were studied for the extraction 

of the same pesticides from orange juice. Ethyl acetate gave the best recoveries (56 and 47 

PFE was compared with hexane extraction of some of this pesticides in different foods and 

42 
although PFE gave slightly lower recoveries, precision was better. Okihashi et al, . 

determined 

N-methylcarbamate pesticides in foods using PFE. Recoveries of the majority of the pesticides 

ranged from 70 % to 100 %, with RSD values between 0.1 and II%. The N-methylcarbamate 

pesticides were found to be stable under the temperature and pressure conditions used in the PFE 

extractions. Nemoto et al. 43 extracted herbicides in soybeans using PFE. Due to the polar mature 

of the herbicide analytes and their high solubility in water, water was initially used as solvent. 

However, when 100 % water was used low and variable extraction volumes were obtained. The 

high viscosity of water coupled with the high levels of carbohydrates and proteins in soybeans 

made PFE difficult unless an organic solvent was added. The influence of pH on extraction 

efficiency was studied by adding hydrochloric acid (HCI) into the aqueous fraction of a 70 % 

acetonitrile extraction solution. 0.05 M and 0.01 M HCI gave good recoveries for all the 
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pesticides studied. Wenzel et al. 44 extracted chlorobenzenes, DDX and HCH isomers from pine 

needles and mosses. The best extraction conditions were at 120 'C with n-hexane as extraction 

solvent. Only DDE and y-HCH were better recovered at 170 'C. y-HCH was better recovered at 

higher temperatures because it possibly bonds strongly to plant tissues. However, under such 

high temperature, large quantities of non-target analytes were extracted and 120 T was 

concluded to be the optimum temperature. 

3.4.2 Extraction of Phenols 

The use of phenolic compounds in industry Is widespread and diverse. They are used in the 

manufacture of polymers and resins, and are by products in some dye manufacturing processes. 

Certain phenolic derivatives, such as chlorinated phenoxy acids, exhibit pesticidal properties and 

can readily degrade in the environment to yield nitro and chlorinated phenols. Some of the more 

persistent compounds, pentachlorophenol, for example, are included in the US EPA list of priority 

pollutants, as well as on the UK Red List (table 1.1). 25 Strict European regulations control their 

use and disposal. 35,45-48 

Dean et a]. has used central composite design (CCD) 35 to optimise the accelerated solvent 

extraction parameters of seven phenols from a slurry spiked soil. The lim1ts investigated were 

(pressure, 4- 20 MPa; temperature, 30 - 70 'C; and extraction time 5- 25 minutes). None of the 

investigated variables were found to be significant upon the recovery of the phenols, with the 

exception of 2-methylphenol. Intercept, pressure and extraction time, as well as the interaction 

between pressure and extraction time and temperature and extraction time was found to have a 

significant effect upon the recovery of this molecule. The results were compared with shake - 

flask extraction. Recoveries obtained by both PFE and shake flask extraction were comparable 
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for all the phenols studied (see figure 3.20). 2,4-Dimethylphenol, however was not recovered by 

shake flask extraction, and PFE only recovered 24 %. 

Figure 3.20 Extraction of Phenols from Soil by PFE and Shake Flask Extraction 
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Polycyclic aromatic hydrocarbons (PAH's) are a group of organic pollutants that exhibit 

carcinogenic and/or mutagenic properties. The US EPA Environmental Protection Agency and 

the European Community list them as priority pollutants. 2-5 PAH's are abundant in the ecosystem, 

largely due to incomplete combustion of fossil fuels. They also exist naturally due to forest 

fires. 49,50 As a result they enter the environment from a wide variety of sources, 51 and therefore 

are present in all compartments of the environment (atmosphere, soil, water). 52 Several studies in 

the literature discuss the extraction of these compounds from a vanety of solid matrices, such as 

soil, sludges and sediment. 

Saim et al. 23 studied the influence of accelerated solvent extraction variables (pressure, 

temperature, extraction time and extraction solvent) for the removal of PAH's from a native 
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contaminated soil. Central composite design was used to study the influence of pressure (1000 - 

2400 psi), temperature, (40 - 200 'Q and extraction time (2 - 16 minutes). This group found no 

significant influence on the recovery of the studied compounds within the limits of the design. 

The effect of various solvents and mixtures was found to be negligible, except in the case of 

hexane. The poor recoveries of the PAH's obtained by extraction with hexane were attributed to 

its lower polarity. The operating conditions were as recommended in EPA method 3545,11 i. e., 

temperature 100 'C, pressure 1400 MPa, and an extraction time of 5 minutes with 5 minutes 

equilibration time. Figure 3.21 shows the effect of solvent on the recovery of PAH's. 

Figure 3.21 Effect of Solvent on Total PAH Concentration 
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Companson of HE with other techniques is also prolific in the literature. Several studies have 

investigated the potential of PFE compared to Soxhlet extraction, SFE, MAE 12,20,53 - 55 as well 

as other less well used techniques such as methanolic saponification. 52,56 

Heemken et al. 
52 

extracted PAH's and alkanes from a reference marine sediment (HS-6,3 wt. % 

water content) and air - dried suspended particulate matter (SPM, 5.3 wt. % water content) from 
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the rivers Elbe and Weser. They compared PFE, SFE, methanolic saponification and Soxhlet. 

The results were not significantly different. In the same work, the influence of water on 

extraction efficiency was studied SPM samples containing 56 wt. % water. PFE and SFE of the 

wet SPM samples gave decreased recoveries. High water content seemed to impair the extraction 

efficiency. Wet SPM was mixed with anhydrous sodium sulphate (-4 wt. %) as a drying agent, 

and extracted. The recoveries of the PAH's and alkanes were aimost quantitative when compared 

to air - dried samples. The disadvantages of mixtures with sodium sulphate are reduction of the 

sample volume and risk of sample contamination. 

Sairn et al. 53 compared PFE extraction of PAH's from a natively contaminated soil with Soxhlet 

extraction, pressurised. and atmospheric microwave - assisted extraction and supercritical fluid 

extraction. Figure 3.22 shows the recoveries obtained in the different extraction techniques. 
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Figure 3.22 Comparison of extraction techniques of natively contaminated soil 
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Surprisingly, with the exception of benzo[alanthracene, PFE gave poorer extraction recoveries 

compared to Soxhlet extraction. This was also the case for SFE and MAE. Evaluation of new 

techniques should include an examination of all the operating parameter, for example, solvent 
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consumption, ease of use, speed of extraction etc. Although PFE on this occasion did not meet 

the extraction efficiency criteria, it does offer reduced solvent consumption, and a level of 

automation that allows completion of alternative tasks in the laboratory. Kenny et al., have 

extracted 54 from an aged bituminous coal fly ash. High carbon content ( 15.5 wt. %), and small 

particle size, 6- 16 ýtm, has the potential ability to strongly adsorb any organic analyte. 36ý 5T 58 

Three different solvents were assessed, methylene chloride, methanol and toluene. The influence 

of a static step and extraction temperature using PFE was also investigated. The results were 

compared with SFE (methanol modified C02 and unmodified C02), enhanced fluidity solvents 

(EFS) and Soxhlet extraction. Three PAH's with a range of molecular weight were used to assess 

the efficiency of each PFE extraction solvent. Fluorene, pyrene and indeno[1,2,3-c, dipyrene were 

spiked to the bituminous coal fly ash and extracted under the optimum PFE conditions. In each 

case, toluene gave the highest recovery from the spiked matrix. Comparison of PFE with Soxhlet 

concluded that the PFE procedure gave higher extraction than Soxhlet for all the PAH's studied, 

The low - molecular - weight species (up to fluoranthene) had low recoveries (0 - 70 %). 

Recovery of acenaphthylene and acenaphthene, however, were close to zero. This could be 

attributed to the decomposition of these compounds after adsorption to fly ash. Other researchers 

have also observed this behaviour. 59-61 The methylene chloride PFE with the static step showed 

the most consistent recoveries (53 - 57 %) of the PAH's, and the largest standard deviation was 

The low recoveries of benzo[alpyrene was associated with the explanati I 'on given above. 

Statistical analysis of the HE and Soxhlet results showed that PFE extraction yielded significantly 

higher extraction results for the larger mass PAH's. When the overall recovery means were 

compared using the Student's I-test at the 95 % confidence level, little difference between the 

PFE procedures was observed. Comparison of the recoveries from bituminous coal fly ash and a 
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lignite fly ash used in a previous study 62 showed that the recoveries obtained from the bituminous 

fly ash were poorer than the ones obtained from the lignite fly ash. Both fly ash matrices were 

similar in composition, apart from their carbon content (0.2 % and 15 % for the lignite and 

bituminous fly ash matrices, respectively). This highlights the inherent difficulty in applying a 

particular extraction method to different matrices. Richter et al. 15 have studied the effect of PFE 

extraction parameters (pressure, temperature and solvent volume) in the extraction of PAH's and 

TPH's from spiked silica's, and reference materials (SRM 1649 and HS-3). Pressure had no effect 

on the recovery of PAH's from spiked dry silica. However, higher pressures (1500 - 2500 psi) 

show improved recovery over the use of lower pressures when wet silica with 300 A pore 

material were extracted. This is shown in figure 3.23. 

Figure 3.23 Effect of Pressure on PAH Extraction 
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Elevated pressure and temperature can force the solvent into the pores, aiding extraction of 

adsorbed analytes. 1-5,16 Increased extraction temperature improved precision and recovery of 

TPH's from ERA certified soil. The volume of solvent required for the quantitative extraction of 

TPH's from the ERA certified soil was determined to be 1.2 - 1.5 times the sample volume, 

88 



PAH's were extracted from SRM 1649 (urban dust), HS-3 (Canadian marine sediment) and the 

ERA soil under the optimised extraction conditions. Good recoveries and RSD values were 

obtained for the reference urban dust (88.5 - 125 % recovery and 2.0 - 6.7 % RSD), and for the 

marine sediment (HS-3). Extraction of eighty five samples (4 -8 g) of ERA soil assessed the PFE 

reproducibility. The average recovery was 103 % with 2.7 % RSD. Popp et A 12 evaluated three 

different solvents or solvent mixtures (acetone-hexane, acetone-methylene chloride and toluene) 

to extract PAH's from two real soil samples. Toluene provided the best yields. Figure 3.24 

shows the results from one of the soil samples. PFE, with toluene as the solvent, was used to 

extract other natively polluted samples. In all cases, the yields obtained by PFE were better than 

those obtained by Soxhlet extraction. 

Figure 3.24 Effect of Solvent on PAH Extraction from Greppen Soil 
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Schantz et al. 20 extracted selected PAH's, the optimum extraction temperature was determined as 

100 OC. The effect of extraction solvent was studied at the optimised conditions, i. e. 100 'C and 

2000 psi on different certified reference materials. Three solvents were used to extract SRM 
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1649a (urban dust). The three solvents tested (methylene chloride, hexane-acetone (I i 1, v/v) and 

acetonitrile) gave comparable results to Soxhlet extraction values. For SRM 1650 and SRM 2975 

(diesel particulate material) methylene chloride, toluene and t ol uene-m ethanol were evaluated as 

extraction solvents. The results from the three different solvents were comparable. It was noted 

that PFE seemed to be more efficient than Soxhlet extraction at removing high molecular weight 

PAH's. such as (benzo[ghi]per-yiene, indeno[ 1,2,3 -c4pyrene, dibenz[atilanthracene, picene and 

benzo[bjchrysene) in SRM 2975. For SRM 1650, comparison of the PFE extraction results with 

the certified values yielded good agreement, the only exception being benzofghi]perylene. This 

seemingly anomalous result was checked by re-extracting a portion of the material by Soxhlet. 

The results obtained agreed with those obtained by PFE. The authors' explanation was that there 

was an error in the original certification results. SRM 1941 a was extracted by PFE using 

methylene chloride, acetonitrile and hexane-acetone. The results were in good agreement with 

the certified values and the Soxhlet values. Richter et al. 63 extracted PAH's from SRM 1649 

(Urban Dust) using PFE. Recoveries ranged from 83.5 % to 126.9 %. 

Mosi et al. 64 extracted PAH's from a sediment soil to then study the ion-molecule reactions 

between the cations CH3CHF+ and CH3CF2+ generated from 1,1 -difluoroethane and the gas 

chromatographic eluents from the sediment. Chen et al., 65 have recently interfaced PFE and 

HPLC for the extraction of PAH's from soil samples. The peaks of PAH's from the PFE-HPLC 

system were sharp and without significant loss of resolution. The chromatograms also showed 

similar retention times for loop injection and on-line injection. QCS 345, a certified standard soil 

was extracted and analysed using PFE-HPLC-FLU and the results obtained were within the limits 

of the certified values. Jensen et al. 55 extracted PAH's from several reference materials using 
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PFE. SRS 103-100 was extracted with both HE and Soxhlet and the results were expressed as a 

percentage of the Soxhlet value. The recoveries ranged from 93.4 to 142.3 %. Four of the 

PAH's extracted (anthracene, benzofblfluoranthene, benzo[k]fluoranthene and 

dibenz[a, h]anthracene) from HS-3 were different from the certified values. It was the authors' 

opinion, the higher recoveries obtained for the last compounds were due to co-elution with 

interfering analytes. 

56 1ý ,. - Berset et al. compared different drying, extraction and detection techniques for the ekir L-ijo, 0 

PAH's from natively contaminated soil samples. Soxhlet extraction, alkaline saponification, SFE, 

PFE, ultrasonic extraction and extraction by shaking. PFE extractions were performed at 13.8 

MPa and a temperature of 100 OC with a mixture hexane: acetone: toluene (10-. 5-. 1, v/v/v). All the 

extraction techniques studied were more effective at extracting the PAH's than extraction by 

sonication. The least variable extraction technique was found to be Soxhlet extraction. However, 

Soxhlet extraction implied long extraction times (18 hours) and large solvent volumes (160 mL), 

PFE was the quickest extraction method (0.25 h) and PFE and SFE consumed less solvent than 

the other extraction methods (30 and 9.3 mL, respectively). However, these latter techniques 

require more time for method development and higher costs. 

3.4.4 Extraction of VOC's 

Volatile organic compounds (VOC's) is a term that includes a wide range of naturally occurring 

and synthetic compounds which have the potential to enter the atmosphere under normal 

conditions of use. VOC's are found in everything from paint, fuel and coatings to underarm 
66 

deodorant and cleaning fluids. Many industries, Including printing, chemicals, pharmaceuticals, 

metal cleaning, and photographic supplies, rely on the use of solvents at intermediate points in 
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their production processes and these solvents end up as VOC's in the atmosphere. These 

chemicals often contribute to the production of low-level ozone, which is harmful to animal and 

plant life and is also a major constituent of photochemical smog, and some of them (benzene, e. g. ) 

are carcinogens. Benzene, toluene, ethylbenzene, xylene and cumene were extracted from a 

vapour-fortified clay soil (pH 5.3, OM 16 %) by Meney et al. 67 Methanol at elevated temperature 

(100 or 150 OC) and pressure (100 or 150 bar) for 5 or 30 minutes was used in a home-made 

system created from parts of RPLC and GC instruments. Analyte extraction increased at the 

lower temperature and pressure, however this advantage was offset by a loss in precision. 

Extraction time did not seem to have a significant effect upon extraction recovery. Using this 

information, the operating conditions were selected. An operating pressure of 150 bar, 

temperature, 150 'CI and an extraction time of 5 minutes. Due to the volatile nature of the 

analytes, cooling the collection vial in an ice-salt mixture (temperature --3 'C) reduced losses. 

Figure 3.25 shows how lower recoveries (up to 30 %) were obtained when the collection vial was 

not cooled. 

Figure 3.25 Comparison of Collection Efficiencies in 

High Pressure Solvent Extraction. 
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The developed "elevated temperature and pressure solvent extraction" (ETPSE) method was 

compared with a commercial ASE TM system working on the manufacturer's recommended 

conditions (2000 psi = 143 bar; 100 'C; 5 minutes). Similar levels of ethylbenzene, p-xylene and 

cumene were extracted with the two systems (see figure 3.26) but the recovefies and, in 

particular, the precision for more volatile analytes, namely benzene and toluene were significantly 

improved with ETPSE. The reduced performance of PFE for the volatile analytes was attributed 

to a lack of a cooling system for the collection vials. 

Figure 3.26 Comparison of Commercial and 'Home-Made' Extraction Systems 
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Richter et al. 15 performed the extractIon of BTEX's from a spiked clean sand with methylene 

chloride at 60'C at 2500 psi and 5 minutes equilibration and 5 minutes static heat. Good 

recoveries (97.1-100 %)and good RSD values (0.9-3.7 %)were obtained, 

3.4.5 Extraction of PCBs 

Chlorinated biphenyl's (CB's) were produced to use as dielectric fluids in transformers and 

capacitors, and as plasticisers in paint and rubber sealant from 1930 until 1983. The physical and 

chemical resistance to degradation, means they're persistent in the environment. 66,69 Several 
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studies have extracted these ubiquitous pollutants from several environmental matrices, including 

sludges, 
15 soils, 

63,69 and sediment, 14,20 as well as other biological matnces. 44 

Zuloaga et al. 69 optimised the PFE of PCB's from a natively contaminated soil. The optimised 

method was applied to the extraction of PCB's from certified industrial soil (CRM 48 1). The 

extraction yields were compared with those obtained by MAE and Soxhlet. A central composite 

design was built to optimise pressure ( 1000-2400 psi), temperature (70-180 'Q and extraction 

time (2-16 minutes), while a mixture of acetone-hexane (75-25, v/v) was used as extraction 

solvent. From the results obtained, the authors concluded that the three variables had an influence 

on the extraction yield. The optimum conditions were calculated by a modified Simplex method 70 

implemented in the MultiSimplex. Samples of CRM 481 were extracted under the optimum 

conditions and the results were in good agreement with the certified values, and the values 

obtained by MAE and Soxhlet extraction. Figure 3.27 shows the values obtained for four CB's. 

Figure 3.27 Comparison of Extraction Techniques for the Removal of Chlorobenzenes 
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Richter et al. 15 extracted PCB's from a sewage sludge sample. Recoveries based on the results by 

Soxhlet ranged from 86.3 % to 90 %. Schantz et al. 20 extracted PCB's from SRM 1649a (urban 
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dust), SRM 1941 a (marine sediment) and SRM 1944 (waterway sediment) using PFE and three 

different solvents (hexane-acetone, acetonitrile and methylene chloride). Figures 3.28a and 3.28b 

shows the results obtained for SRM 1649a are in good agreement with the Soxhlet values. 

Figure 3.28a Extraction of CB's by PFE and Soxhlet from SRM 1649a 
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Figure 3.28b Extraction of CB's by PFE and Soxhlet from SRM 1649a 
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Richter et al. 63 extracted Aroclor 1254 from a standard reference material (CRM 911-050). 

Average recovenes of 99.1% and RSD of 3.71% were obtained. Posteretal. 14 
used PFE for the 

certification of PCB's and chlorinated pesticides in SRM 1649a. 
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M1 
Bjokiund et al. used PFE to extract PCB's t'rom marine sediment (SPM 1944). Mean recovery 

for all investigated congeners was 99 % compared to certified values after a5 minute static step 

at 100 OC. The average concentration of PC B's found in the second static step was 0.8 % and 

therefore negligible. PCB's were also extracted from sewage sludge (BCR 392), with an average 

recovery for the six congeners investigated of 101 %. In the second static step, only 1.4 % of the 

concentration in the first step was detected. Another reference material studied by this group, 

was harbour sediment, CRM 536. The average recovery of the congeners studied was of 107 % 

but in this case, 7% of the concentrations in the first step were extracted in the second step. 

When the concentrations in the two extraction steps were added, an average recovery of 114 % 

and RSD values around 5% were obtained. The lower recoveries and large RSD values were 

attributed to differences in particle size. The particle size distribution for this reference material 

is; 75- 1000 [im for 80 % of the material, ý>] 000 ýtm for 10 % of the material and <75 ýtm for the 

remaining 10 % of the material. This could lead to a more inhomogeneous diffusion path 

distribution and consequently different degree of entrapment of the analytes. The results 

suggested that a single 5 minute extraction might not always be enough to ensure exhaustive 

extraction, especially for very inhomogeneous samples. In cases like these, it might be 

advantageous to perform a2x5 minute extractions. When extracting CRM 536 with a particle 

size <15 ltrn, the average recovery was 122 %and RSD values close to 2 %. Higher recoveries 

obtained were probably an indication that the PCB's in the small particle material were more 

accessible. HE was also compared to SFE and higher recoveries were obtained for PFE. The 

authors noted that the extracts from SFE were cleaner than those from PFE. The higher 

recoveries found by PFE could be due to interference's. 
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Wenzel et al. 
44 have extracted PCB's ftom pine needles and mosses. When applying the 

conditions suggested by the EPA method 3545,11 (n-hexane-acetone IýI v/v, as solvent 100 'C as 

extraction temperature, Ix5 minute extraction time), lower recoveries than those obtained by 

ultrasonic extraction were obtained. The solvent was changed to n-hexane, and an investigation 

into the effect of temperature on recovery determined that the best recoveries were obtained at 40 

'C. Under these conditions, PCB's that could not be detected by ultrasonic extraction were 

measured. Similar results were obtained with toluene. However, the long blow down time of 

toluene prompted use of n-hexane as the extraction solvent. Placing a mixture of Florisil / A1203 

into the extraction vessel also had a positive effect since it served as a preliminary clean-up. 

3.4.6 Extraction of PCDD's and PCDF's 

Polychlorinated dibenzo-p-dioxins (PCDD's) and dibenzofurans (PCDF's) are well known 

environmental pollutants of high toxic potential. 2 They are by-products of the synthesis of some 

pesticides (e. g. pentachorophenol) and PCB's and they also appear in incineration processes. 

Popp et al., 12 tested the PFE for the extraction of PCDD's / PCDF's from a fly ash originating 

from a municipal incineration plant. Extraction times of two x5 minutes and two x 10 minutes 

were investigated using toluene at 200 'C. Extraction yields increased with extraction times but 

were still lower than the recoveries obtained by Soxhlet extraction, especially when the degree of 

chlorination increased. HCI pre-treatment prior to extraction by Soxhlet or PFE increased the 

recovery. Comparison of this data showed that PFE removed more of the target analytes than 

Soxhlet extraction (see figure 3.29). 
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Figure 3.29 Comparison of PFE and Soxhlet for PCDD / PCDF extraction 
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Bautz et al. 
2 used dynamic high pressure solvent extraction (DHPSE) to extract PCDD's / 

PC DIF's from fly ashes from several municipal waste incinerators, from particles from a dust 

collector of metal mills and from a soil sample from an industrial area. DHPSE continuously 

cycles fresh solvent under elevated temperatures and pressures through the sample. Generally, the 

concentration of PCDD's / PCDF's determined by DHPSE exceeded that of Soxhlet extraction. 

To exclude the possibility of PCDD's / PCDF's formation potential precursors present in the 

sample at high temperatures and pressures chlorophenols, chlorobenzenes, and PCB's were 

spiked on a clean sample free of PCDD's / PCDF1s. The spiked sample was extracted by 

DHPSE. Formation of dibenzodioxins or furans was not observed. From this investigation, it 

could be concluded that the DHPSE gave better recoveries than the Soxhlet extraction procedure. 

The results from acid pre-treated samples and untreated sample were comparable. Inconsistent 

results were obtained when toluene-glacial acetic mixture suggested by Richter 15 was used. In 

the authors' opinion, for screening of unknown samples, DHPSE may be employed without time- 

consuming acid pre-treatment. Static and dynamic extractions were also compared in this work. 

Static extraction required several cycles to achieve satisfactory recoveries. Richter et al. 71 

extracted PCDD's / PCDF's from chimney brick, urban dust, fly ash, one soil and three sediment 
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samples. As an altemative to acid pretreatment, glacial acetic acid at 5% (v/v) was added to the 

toluene used for the PFE extraction. The data obtained indicated that PFE gave essentially 

equivalent data to Soxhlet extraction in less time and with less solvent. Richter et al. 72 extracted 

PCDD's and PCDF's chimney brick, urban dust and fly ash. Equivalent data to Soxhlet extraction 

was obtained in all cases. 

3.4.7 Other Molecules 

Other molecules extracted by PFE include semi volatile organic chemicals (SVOC's), non 

pesticidal organophosphorus and organosulphur compounds, as well as surface active 

compounds, from soils and biological matrices. Fisher et al. 37 extracted some SVOC's (o-xylene, 

phenol, 2,4-dichlorophenol, naphthalene, diethyl phthalate, heptadecane, pyrene, endrin and DDT) 

from soil samples using PFE and Soxhlet extraction. Blanks contained interf, ering peaks that co- 

eluted with certain target analytes. Some of these interferences could not be avoided using SIM 

mode since the target analyte and the interfering compound had major fragment ions in common, 

PFE blanks contained some peaks that were absent in the Soxhlet blanks. This suggested that 

reactions involving the soil organic matter were more important under the high temperature and 

pressure conditions of PFE. It has been suggested 73 that dissolved oxygen in the system might be 

responsible for some of the reactions and that the HE blank might be reduced if the extraction 

solvent were degassed just prior to use. Tomkins et a] 74 organosulphur analytes and phosphorus 

containing analytes from spiked soil and concrete samples. The recovery of organosulphur 

compounds was good (95 %), whereas lower recoveries were obtained for organophosphonates 

(60-80 %). The authors suggested that organophosphonates were either more difficult to extract 

from both matrices than organosulphur species or they were partially degraded on sample surface. 
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David et al. 16 studied the influence of temperature (25-200 'Q, pressure (700-2500 psi) in the 

PFE extraction of non-pesticidal organophosphorus hydraulic fluids from soil samples, and 

compared it with Soxhlet extraction and SFE. Temperature had a minor effect on the extraction 

yields and best recoveries were obtained at 100 OC. In the authors opinion high values of density 

and diffusivity improved recoveries, better repeatability was obtained at lower temperatures and 

since higher temperatures required several minutes between runs to allow the system to cool, 

100 'C was chosen as extraction temperature. They concluded that higher pressures increased 

extraction yields. At higher pressure, the solvent is able to invade better the solid matrix and 

diffusivities and densities are higher. These three facts are supposed to improve extraction 

efficiencies. Both SFE and PFE provided recoveries similar to those obtained by Soxhlet; shorter 

extraction times and smaller solvent volumes were needed with PFE and SFE, although better 

precision was obtained with Soxhlet extraction. 
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Section A 

Method Development 

This section concentrates on the optimisation of PFE extraction parameters for a range of 

pesticide molecules from soils, Hyde Farm, 18 Acres, Chalgrove Farm and Chamberlain 

soils were supplied by Zeneca AgroChemicals, Jealott's Hill Research Station, Berkshire, 

UK. Garden soil was collected from a local garden. Compost was purchased from a local 

garden centre (John Innes compost No. 2). Mixes I to 3 were prepared in-house by 

mixing compost with three other soils in varying proportions, as shown in table 1. The 

soils were mixed thoroughly. Garden soil, Compost and the three mixed soils were 

analysed by National Resources Management (NRM, Berkshire, UK) for part61cle 

distribution, organic matter content, pH, and cation exchange capacity. 

Table I 

Soil Mixture Amount Compost (kg) Amount Hpd-e -Farm 
Soil (kg) 

Mix 1 0.50 0.50 
Mix 2 0.25 0.7 5 
Mix 3 0.75 0.25_ 

Chapter 4 concentrates on the evaluation of extraction techniques for the extraction of two 

pyrimidine pesticides, buplrimate and ethirimol from spiked inert hydromatrix. Four 

techniques are compared; Shake Flask, sonication, Soxhlet and PFE. The influence of 

PFE temperature and pressure are assessed, and the optimum extraction parameters are 

chosen using this data. The resultsof this study are applied to three spiked standard soljý 
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(supplied by Zeneca AgroChemicals). The influence of soil matrix for these compounds 

is briefly investigated. 

Chapter 5 optimises extraction parameters for pentachlorophenol, using both inert 

matrices, spiked soils and a certified reference material, The influence of extraction 

solvent is investigated, as is the influence of soil matrix on the efficiency of 

pentachlorophenol extraction. 

Chapter 6 investigates the optimum extraction parameters and solvents for the extraction 

of three closely related organochlorine pesticides, DDT, DDD and DDE from a natively 

contaminated soil supplied by AstraZeneca. The results of PFE are compared with 

Soxhlet extraction. 
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Bupirimate and Ethirimol 

4.0 Introduction 

This chapter assesses the effect of PFE extraction pressure and temperature, and 

compares PFE with other extraction techniques. The optimised PFE extraction 

parameters were applied to the extraction of bupirimate and ethirimol to soils of 

various compositions. The influences of both extraction solvent type and soil 

composition were investigated. Bupirimate and ethirimol are manufactured by Zeneca 

AgroChemicals and are marketed under the trade names Nimrod and Milgo, 

respectively. 

4.1 Experimental 

4.1.1 Instrumentation. 

An ASETm 200 Accelerated Solvent Extractor (Dionex (UK) Ltd., Camberley, Surrey) 

with II mL extraction cells was used to perform the extractions. The derivatised 

extracts were analysed on a GC-MSD (Hewlett-Packard, Palo Alto, USA) in selected 

ion monitoring mode. 

4.1.2 Soil 

Various standard soils were provided by Zeneca AgroChemicals, Jealott's Hill, 

Berkshire. They were spiked in-house with bupirimate and ethirimol pesticides. After 

spiking, the soil was stored in the dark at room temperature. 

4.1.3 Chemicals 

The solvents used in this study were certified analytical reagents (Fisher Scientific, 

Loughborough, Leicestershire). Hydromatrix (Varian Ltd., Surrey, UK) was used to 

fill the head space of the PFE extraction cells (Dionex), and as an inert matrix for the 
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spike recovery experiments. Anhydrous sodium sulphate (Merck, Poole, UK) was 

mixed with the soil sample during Soxhlet extraction. Bupirimate and ethirimol 

standards were supplied by Zeneca AgroChemicals. 

4.1.4 GC-MSD Analysis 

The GC-MSD (HP G1800A GCD system, Hewlett Packard, Palo Alto, USA) was 

operated in selected ion monitoring mode with a splitless injection volume of 1.0 pL. 

The column used was a DB-5ms (J &W Scientific, Folsom, California, USA), with 

dimensions of length 30 mx0.25 mm i. d, x 0.25 ýtrn film thickness. The temperatUre 

program used for the analysis was 120 T, held for 2 minutes to 290'C at a rate of 5 

"Cl minute, with a final hold time of 2.5 minutes. The injection port and detector 

temperatures were set at 250 T and 280 'C, respectively. 

4.1.5 Fortification Procedures 

Slu rry spike procedure. 

Hydromatrix, (45 g) was slurry spiked with bupirimate and ethirimol (10 [ig / mL of 

2000 [tg / mL stock) in DCM (25.00 mL). The solvent was allowed to evaporate and 

the soil was left to age in the dark for a period of one month. Hydromatrix (1.00 g 

accurately weighed) was extracted under the conditions stated in the experimental 

section. Six replicates were performed by each extraction method. 

Spotspike procedure 

Hydromatrix, (1.00 g) was spot spiked with bupirimate and ethirimol (10 ýtg / ml- of 

2000 [tg / mL stock) in DCM. The solvent was allowed to evaporate and the soil was 
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extracted under the conditions stated in the experimental section. Six replicates were 

performed by each extraction method. 

4.1.6 Extraction procedures of fortified matrices 

PFE Extraction 

Hydromatrix or soil (I g, accurately weighed) was placed in a stainless steel PFE 

extraction cell (I I mL capacity) on top of a filter to prevent cell frit blockage. 

Hydromatix was used to fill the head space to reduce solvent consumption, The cell 

was placed in the carousel and eXtFacted used the following conditions: pressure, 2000 

psi (I psi = 6894.76 Pa), temperature, 100 'C, with a static extraction time of 5 

minutes. Three static / flush cycles were used. The total extraction time was 35 

minutes per sample. 

Sonication 

Hydromatrix or soil (I g accurately weighed) was sonicated (10 minutes) with DCM (2 

x 5.00 mL) and quantitatively transferred to avolumetric flask (10.00 mL). Analiquot 

(1.00 mL) was removed and placed in a tapered tube (10 mL). BSA derivatising agent 

(100 ýiL) was added and the mixture was mixed (10 seconds) using a vortex mixer. 

internal standard (50 [tL) was added and the derivatised extract was analysed on the 

GC-MSD. 

Shakeflask 

Hydromatrix or soil (I g accurately weighed) was shaken (10 minutes) with DCM (2 x 

5.00 mL) and quantitatively transferred to a volumetric flask (10.00 mL). Analiquot 

(1.00 mL) was removed and placed in a tapered tube (10 mL). BSA derivati sing agent 

(100 ýiL) was added and the mixture was mixed (10 seconds) using a vortex mixer. 
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internal standard (50 ýtl-) was added and the derivatised extract was analysed on the 

G, C-MSD. 

Saxh let extraction. 
Hydromatrix or soil (2 g accurately weighed) was Soxhlet extracted (24 hours) with 

DCM (20 ml-) and quantitatively transferred to avolumetric flask (25.00 mL). An 

aliquot (1.00 ml-) was removed and placed in a tapered tube (10 mL), BSA 

derivatising agent (100 pL) was added and the mixture was mixed (10 seconds) using a 

vortex mixer. Internal standard (50 ýtl-) was added and the derivatised extract was 

analysed on the GC-MSD. 

4.1.7 Effect of PFE temperature and pressure 

EffeCt of pressure 
I 

Hydromatrix, (I g accurately weighed) was extracted by PFE (40 T, 5 minutes) with 

at 1000,2000 and 3000 psi. The extract was quantitatively transferred to a volumetric 

flask(25. OOmL). An aliquot (1.00 ml-) was removed and placed in a tapered tube (10 

mL). BSA derivatising agent (100 pL) was added and the mixture was mixed (10 

seconds) using a vortex mixer. Internal standard (50 [il-) was added and the 

derivatised extract was analysed on the GC-MSD. 

Effed of Temperature 
I- 

Hydromatrix, (I g accurately weighed) was extracted by PFE (2000 psi, 5 minutes) at 

the following temperatures 40 T, 70'C, 100 'C and 15 OIC, The extract was 

quantitatively transferred to a volumetric flask (25.00 mL). An aliquot (1 
. 
00 mL) was 

removed and placed in a tapered tube (10 mL). BSA derivatIsIng agent (100 ý&) was 

added and the mixture was mixed (10 seconds) using a vortex mixer. Internal standard 

(50 ýtf, ) was added and the derivatised extract was analysed on the GC-MSD. 
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4.2 Results and Discussion. 

4.2.1 Chromatography and analyte identification 

Figure 4.1 Pyrimidine Chromatogram 
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Figure 4.1 shows a chromatogram of the pyrimidine pesticides used in this chapter. 

The internal standard was hexadecane (rt. = 10.17 minutes). The retention times of 

bupirimate and derivatised ethirimol were 24.5 minutes and 15.7 minutes, respectively, 

The mass spectrum for bupirimate is shown in figure 4-2. Using the mass spectrum, 

the ions chosen for SIM for bupirimate were m/z 316, m/z 273, and m/z 208, 

Figure 4.2 Mass Spectrum for bupirimate 
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Figure 4.3 shows the mass spectrum for underivatised ethirimol, The SIM ions chosen 

for derivatised ethirimol were m/z 266 and m/z 238 
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Figure 4.3 Mass Spectrum for underivatised ethirimol 
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Table 4.1 shows the calibration data for bupirimate and ethirimol. Both correlation 

coefficients are excellent, indicating linear behaviour over the calibration range 

ýig mUl to 4 ýtg niL-1). 

Table 4.1 Calibration data 

Compound Calibration range Number of Equation Correlation 
data coefficient, 

points R2 
bupirimate 0 [tg mL to ýtg mL 9 y=0.3475x + 0.0503 Oý9924 

ethirimol ýtg mU I to 4 ýtg mU 9 y=0.3201 x40.0057 961 

4.2.2 initial studies on bupirimate and ethirimol. 

The chromatographic process required derivatisation of the ethirimol, to a silyl ether. 

Hydroxyl molecules disrupt the derivatisation process-, hence, careful selection of the 

solvent is essential. A study was undertaken to ascertain the losses incurred to 

bupirimate and ethirimol during acetone removal and subsequent dissolution in DCM. 

Table 4.2 clearly shows that the blowdown procedure does not effect the recovery of 
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bupirimate. Quantitative recovery was achieved for all the solvents. However, the 

blowdown procedure required for acetone removal caused a 40 % loss for ethirimol. 

An alternative solvent mixture was suggested. This was acetonitrile: dichloromethatie 

1, v/v). A study into the effect of ACN on the derivatisation process was 

undertaken and proved that the presence of ACN did not have a detrimental effect on 

the derivatisation process. Table 4.2 summarises the results of the derivatisation study. 

Table 4.2 derivatisation study 

% Recov ry (% RSD) 

_bupirimate 
ethirimol 

Acetone 92.2(9.2) 46.5(10.5) 
Dichloromethane 90.0(4.1) 92.5(6.6) 

Acetonitrile 91,0(2.4) 80.1 (7.4) 
Acetonitrile 

dichloromethane 1: 1 v/v 
90.0(8.9) 89.4(5.6) 

Effect of pressure and temperature on pyrimidine extraction 
11 

In order to assess the effect of pressure and temperature on the recovery of bupirimate 

and ethirimol, an extraction study on spiked hydromatrix was performed. To remove 

the effect of pressure and temperature, spot and slurry spiked hydromatrix was 

extracted with DCM by sonication and shake flask. To remove the etlect of pressure, 

but to determine the effect of temperature, the hydromatrix was also extracted using 

Soxhlet extraction. To determine the effect of pressure, the PFE was used at 40 OC 

and a pressure study was performed. 

4.2.3 PFE pressure Study 

Table 4.3 and figures 4.4 and 4.5 shows the effect of pressure on the PFE extraction of 

slurry and spot spiked Hydromatrix. 
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Table 4.3 Effect of pressure on the extraction from spiked Hydromatrix, n=6. 

Spot Spike Slurry Spike I S 
(%Re very) V46 Recovery) 

bupirimate ethirimol bupirimnate I up 1 ethirimol 
PFE 1000 101.8 93.3 8 3. 2 81.7 

psi 
PFE 2000 98.9 90.3 83.2 80.7 

psi 
PFE 3000 93.9 86.7 79.5 78.0 

psi I I II 
-i 

Figures 4.4 and 4.5, and table 4.4 show that quantitative recovery was achieved from 

spot spiked hydromatrix, and near quantitative recovery was achieved ftom slurry 

spiked hydromatfix. Analysis of variance, ANOVA, showed that the results for each 

pressure were statistically similar, and hence pressure did not have a detrimental effect 

on the recovery of either molecule. For convenience, 2000 psi was used in subsequent 

extractions. 

Figure 4.4 Effect of pressure on pyrimidine 

extraction from spot spiked Hydromatrix 
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Figure 4.5 Effect of pressure on pyrimidine 

extraction from slurry spiked Hydromatrix 
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4.2.4 PFE temperature Study 

Figure 4.6 shows the effect of temperature on the recovery of the two molecules from 

spiked hydromatrix by PFE. 

Figure 4.6 Effect of PFE extraction temperature on pyrimidine pesticide 

extraction from spiked hydromatrix 
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Relatively high recovenes (> 70 %) of both bupirimate and ethirimol were achieved 

from both spot spiked and slurry spiked hydromatrix up to a temperature of 100 OC. 

Only when the extraction temperature was above 100 'C, was a significant di t1erence 

in the percentage recovery observed for both molecules. Based on these data, the 

extraction temperature was chosen as 100 OC. 

4.2.5 Optimisation of static flush cycles 

An investigation into the number of static flush cycles required to quantitatively extract 

both bupirimate and ethinmol from slurry spiked hydromatrix was performed. The 

results shown in table 4.5 demonstrate that two static / flush cycles are necessary for 

the maximum extraction of bupirimate and ethirimol from slurry spiked hydromatrix. 

Table 4.5 Cumulative total of the cycle study 

(extraction from slurry spiked hydromatrix) 

Number of cycles bupirimate 
(% recovery) 

ethirimol 
(% recovery) 

1 47.6 43.0 
2 18.7 21.0 
3 0.4 0.3 

Cumulative 
% recovery 

66.7 64.3 I 

After the PFE optimisation, an evaluation of four commonly used extraction 

techniques was performed. The slurry spiked hydromatrix was extracted by Soxhlet, 

Sonication, Shake flask and PFE. Table 4.6 shows that for both bupirimate and 

ethirimol PFE gave superior recovery compared to the other techniques. PFE also 

achieved near quantitative recovery in the shortest time (17 minutes). Sonicationand 

shake flask performed poorly compared to PFE and Soxhlet extraction, irrespective ot' 

the analyte. 
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Table 4.6 Comparison of extraction techniques 

Technique 
___ __Extraction 

Time % Recovery (% RSD) 
bupirimate ethirimol 

Soxhlet 24 hours 76.6(8.1) 75.9(g. 5) 
Sonication- 

-2 
x-I 0 minutes 70.1 (5.3) 69.2(4.4) 

Shake Flask 2x 10 minutes 71.3 (3.2) 69.9(3.4) 
PFE 17 minutes 83.2(4.9) 80.7(4.9) 

Application to sluny spiked soil 

To determine the efficiency of PFE on soil samples, three soils were slurry spiked with 

both bupirimate and ethifimol at the 20 ýtg /g level. The soil composition is shown in 

table 4.7. Tables 4.8 and 4.9 compare PFE extraction with the three other techniques 

used in the hydromatrix spiking study. 

Table 4.7 Soil composition 

Soil %Silt %Clay %Sand pH CEC % OM 

Hyde farm 23 19 58 6.7 17.4 3.2 
Chamberlain 4 9 87 7.3 11.0 4.5 

18 Acres 24 20 56 6.3 14.0 4.7 
Chalgrove 

Farm 
29 37 34 7.4 29.7 5.8 

Garden 18 11 71 7.2 16.5 9.8 
Mix 2 3 11 86 5.9 12.7 17.5 
Mix 1 22 25 53 5.3 32.1 31.3 
Mix 3 21 30 49 5.2 41.7 59.4 
Comp 22 48 30 5.0 17.6 82.7 

Table 4.8 Comparison of extraction techniques for bupirimate (0/6 recovery). 
Chamberlain 
Spot Slurry 

18 Acres 
Spot Slurry 

Hyde Farm 
Spot Slurry 

Soxhlet 77.6 72.1 78.6 74.4 81.8 
Sonication 65.0 58.0 66.2 57.6 73.0 

.0 
Shake flask 67.0 60.0 68.1 56.0 75.0 67.8 

PFE 79.0 73.5 7 81.3 75.5 1 82.0 
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Table 4.9 Comparison of extraction techniques for ethirimol (% recovery). 

Cham 
Spot I 

berlain 
Slurry 

18 Acres 
Spot Slurry 

Hyde Farm 
Spot Slurry 

Soxhlet 68.7 63.8 69.6 65.8 80.0 74.4 
Sonication 57.5 51.3 58.6 51.0 66.4 64,5 
Shake flask 59.3 53.1 60.3 49.6 68,2 61.6 

PFE 69.9 65.0 71.9 66.8 1 81.0 74.5 

These data show that extraction recovery from spot spiked soil is higher than the 

extraction of slurry spiked soil. This is due to analyte-matrix interactions that form 

upon aging. Again, this data shows that PFE and Soxhlet are comparable techniques, 

whilst sonication and shake flask are consistently poorer. The extraction of bupirimate 

and ethirimol are highest on Hyde Farm soil, and comparable on both 18 acres and 

Chamberlain soil. The common factor is organic matter content of the soil (table 4.7). 

Hyde Farm soil has the lowest organic matter (3.2 %), whilst 18 Acres soil and 

Chamberlain soil have similar organic matter contents, 4.7 % and 4.5 %, respectively. 

This indicates that soil composition has a direct influence on the extraction efficiency. 

To investigate this further a study into the influence of the soil matrix and effect of the 

extraction solvent was performed. 

4.2.6 Soil and solvent study 

To investigate the effect of soil composition nine soils of various compositions (table 

4.7) were spiked with bupirimate and ethirimol. The soils extracted with six diflerent 

solvents covering a range of polarities and classes, to determine the influence of 

solvent type. The soils were extracted by PFE under the optimum conditions stated 

above. 

The results of this study are shown in tables 4.10 and 4.11 
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Table 4.10 Soil / solvent study results for bupirimate extraction (as O/o recovery, 

(%RSD)) 

Soil DCM Iso-hexane ACN ACN: DCM 
1: 1 V/v 

ACN: DCM 
1: 4 v/v 

Iso-hexane: 
(ACN: DCM 1: 1 

v/v) 2: 1 vv 
Hyde farm 67.4(4.1) 55.3 (4.3) 54.8(5.2) 79.4 (3 

ý 
3) 75.4(3.3) 61.2(5.1) 

Chamberlain 65.7 (3.8) 51.8(3.2) 53.3 (4.4) 77.7(3.2) 73.8(3.7) 60.0(5.0) 
18 Acres 65.2(4.5) 53.0(3.5) 52.6(4.3) 75.8(4.5) 72.0(4.5) 59.4(4.7) 

Chalgrove 
Fq rm 

64.1 (5.0) 50.9(3.3) 51.4(3.7) 73.6(4.2) 69.9(4.4) 58.6(4.9) 

Garden 63.8(3.7) 45.8(4.2) 49.8(3.6) 70.1(3.9) 67.6(5.3) 53.8(4.2) 
Mix 2 63.3(4.2) 49.0(4,4) 47.4(3.2) 69.8(4.0) 67.0(4.7) 51.0(3.7) 
Mix 1 62.8(2.9) 49.2(3.3) 45.4(5.4) 69.5(3,6) 66.3(4.5) 49.0(3.3) 
Mix 3 
ý 

62.3 (3.1) 38.9(3.9) 
, 

43.2(5.2) 69.0(4.7) 
. 

65.50 (3.4) 47.6(4.7) 
(Cý qmýýOsj:: 

L6 ý. (3.4) 1 36.8(5.1) j 38.6 (4.8) 1 68.7(5.2) 1 65.2(4.7) 1 45.4(3.9) 

Table 4.10 shows that a mixture of acetonitrile. dichloromethane 1.1 v/v gives the 

highest extraction results, with nearly 80 % recovery for Hyde Farm soil, and 69 % 

recovery for compost soil. The results also show that three other solvents, 

acetonitrile-dichloromethane 1: 1 v/v and Iso-hexane-(acetonitrile. dichloromethane Iý1, 

v/v) 2: 1 v/v, and dichloromethane also gave relatively high extraction recovery. Iso- 

hexane gave the lowest extraction recoveries, 37 % on compost, and 55 % on Hyde 

Farm soil. This implies that both extraction solvent and soil type influence the 

recovery of bupirimate. 

Table 4.11 Soil/solvent study results for ethirimol extraction, 
% recoverv. MRSMI 

Soil DCM Iso-hexane ACN ACN: DCM 
1: 1 V/v 

ACN: DCM 
1: 4 v/v 

Iso-hexane: 
(ACN: DCM 1: 1 

v/v) 2: 1 v/v 
Hyde farm 63.8(5.4) 48.5(4.8) 51,5(5.4) 76.6(3.4) 67.3(4.3) 58.9(3.7) 

Chamberlain 64.0(4.7) 50.9(3.7) 54.6(4.3) 77.1(4.2) 71.4(4.4) 58.3 (4.5) 
18 Acres 62.8(4.30 46.8(5.4) 50.1(4.2) 76.5(3.2) 68.1(5.1) 58.0(4,7) 

Chalgrove 
Farm 

61.9(4.7) 49,1(4.4) 52.4(5.1) 76.2(5.1) 65.0(5.2) 61.9(4.1) 

Garden 60.7(3.9) 45.9(3.2) 
_48.4 

(4.0) 76.0(3.5) 64.1 (5.5) 55.6(5.0) 
Mix 2 60.2(4.1) 45,0(4.0) 47.0(3.4) 75.9(4.1) 62.1 (3.9) 45.0(4.1) 
Mix 1 59.6(5.0) 43.5 (4. ý) 

_45.0 
(3.8) 75.7(4.0) 60,7(4.8) 43.5 (3.2) 

Mix 3 59.4(4.0) 40,8(4.2) 41.7(4.4) 75.5 (5.1) 59.4(4.3) 40.8(4.4) 
--&-mpost 

, 
59.0(3.5) 

, 
39.8(3.6) 40.9(3.2) 

, 
75.4(4.8) 

, 
59.2(4.7) 47.5 (13.1) 
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With regard to ethirimol extraction, table 4.11 clearly shows that a mixture of 

acetonitrileidichloromethane IýI v/v is the optimum extraction solvent, and iso-hexane 

gives the poorest extraction recoveries, extracting between 40 % and 49 % recovery, 

depending on soil type. To determine which soil parameters have a direct influence on 

the extraction, multiple linear regression was performed on the data. Multiple linear 

regression is a technique that assesses the significance of the individual soil 

constituents to the overall extraction recovery. Equation 4.1 shows the general 

multiple linear regression equation. 

YýOo+ OIXI + 02X2 +03X3 
---- 

+ 01.2XI. 2 + 013XI. 3. . -.. 
OiXi Eqn 4.1 

Where P. is the value of the intercept 

xi are the individual soil parameters, and 

Pi are the regression coefficients for the parameters 

Due to the high degree of correlation between the soil parameters (table 4.12), only 

three soil parameters are can be investigated at any one time. 

Table 4.12 Correlation data. 

Sand Silt Clay pH % OM CEC 
Sand 1.00 
Silt -0.87 1.00 
Clay -0.94 0.66 1.00 
pH 0.35 -0.09 -0.48 1.00 
% om -0.53 0.16 0.71 -0.83 1.00 
CEC -0.54 0.52 0.48 -0.40 0.41 1.00 

These combinations are 

1. % silt, % OM and CEC 

2. % clay, pH and CEC 

3. % OM, % sand and CEC, and 

4. % sand, pH and CEC 
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Each of these combinations were regressed for both compounds against each solvent. 

The results of the multiple linear regression determined that the organic matter content 

of the soil had a direct influence on bupirimate extraction when using either 

acetonitrile, iso-hexane, or iso-hexane: (acetonitrile-dichloromethane 1: 1, v/v) 2: 1 v/v. 

Table 4.13 shows an example of the multiple linear regression of % OM, % sand and 

CEC for the extraction of bupirimate from compost soil using Iso-hexane as the 

extraction solvent. Components with a p-value of < 0.05, are considered to have a 

significant effect on the recovery of bupirimate at the 95 % confidence level. 

Table 4.13 Multiple Linear regression result for bupirimate extraction 

from compost soil using Iso-hexane 

Intercent % OM % Sand -ýc 
Regression 
Coefficient 

56,6 -0.21 -0.04 -005 

Standard 
error 

6.02 0.04 0.07 0.12 

P-value 4 2.3 10- 0.01 0.55 0.71 

2 N. B, R=0.86 for the analysis. 

The influence of organic matter decreased for solvents that gave good extraction 

recoveries, i. e., acetonitrile: dichloromethane 1: 1 v/v, acetonitrile: dichloromethane 1A 

v/v and dichloromethane. Organic matter content and pH of the soil influenced 

ethirimol extraction when acetonitrile, iso-hexane, or iso- 

hexane: (acetonitrile. dichloromethane 1: 1, v/v) 2.1 v/v were used for the extraction. 

The influence of these soil parameters decreased when acetonitrile. dichloromethane 

1: 1 v/v, dichloromethane and acetonitfile: dichloromethane 1: 4 v/v were used as the 

extraction solvent (table 4.14) 
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Table 4.14 Comparison of % OM P-values for various 

extraction solvents used for ethirimol Extraction. 

_Solvent 
P-value for % OM P-value ýorpH 

DCM 0.05 0-06 
- Iso-hexane 0.02 

ACN 0ý01 0-03 
ACNMCM 1*1 v/v 007 0.09 
ACN DCM IA)dv E05.. 

Iso-hexane: 
(ACN: DCM ]: I v/v) 2: 1 v/v 

0.03 0.04 

4.3 Summary. 

PFE has shown the ability to quantitatively extract both pyrimidine and organochlorine 

pesticides from both inert matrices and real matrices (various soils), with a minimal 

volume of solvent and operator interaction. Optimisation of the extraction parameters 

temperature, time and pressure was achieved in a relatively small amount of time (c. f 

Soxhlet). The only significant extraction parameter was temperature of extraction in 

the bupirimate and ethirimol study. Pressure was not deemed to have any effect in 

either study. The number of static flush cycles that are required for quantitative 

recovery of pyrimidines from aged spiked soil is two. PFE was shown not to degrade 

any of the investigated analytes within the extraction parameters that were chosen. 

Reference 

1, The Pesticide Manual, C. Tomlin (Ed. ), 10" edition, The Royal Society of 
Chemistry, Cambridge (1994). 
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Chapter 5 

Pentachlorophenol Extraction 

from Soil 



Pentachloro phenol extraction from soil. 

5.0 Introduction 

The extraction and analysis of organic contaminants currently on the US EPA 'Red List' I 

of high priority pollutants is important. Pentachlorophenol, for example, has high toxicity 

and persistence in the environment. 
2 hence levels need to be monitored carefully. 

Pentachlorophenol is deposited in the environment through several channels: from the 

petroleum industry, 3 
as a by-product of the dye manufacturing process, 

2 
as a means of' 

termite control; 
2 and, as a herbicide. 2 Derivatives of pentachlorophenol are also used as 

fungicides to protect against fungal rot of wood, 

The aim of this chapter is to determine the optimum PFE extraction parameters, using 

spiked hydromatrix. The optimised parameters were then applied to a certified reference 

material (CRM 524), and the influence of extraction solvent was investigated. The 

influence of soil composition and extraction solvent was applied to a range of spiked, 

aged soils. 

5.1 Experimental 

5.1.1 Instrumentation 

An ASE Tm 200 Accelerated solvent extractor (Dionex (UK) Ltd., Camberley, Surrey) was 

used to perform the extractions. II mL cells were used for all the extractions. The 

system is automated and capable of 24 sequential extractions. Typical extraction 
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conditions are based on a pressure of 2000 psi (I psi = 6894.76 Pa), a temperature of 100 

'C and a total extraction time of 10 minutes. 

5.1.2 GC-MSD Analysis 

The GC-MSD (HP GI 800A GCD system, Hewlett Packard, Palo Alto, USA) was 

operated in selected ion monitoring mode with a splitless injection volume of 0.5 pl- 

The column used was a DB-5 (J &W Scientific, Folsom, California, USA), with 

dimensions of length 30 mx0.25 mm i. d. x 0.25 [tm film thickness. The temperature 

program used for the analysis was: 90 T for 2 minutes to 250 T at 10 'C / minute with a 

final hold time of 12 minutes. The injection port temperature was set at 250 'C, and the 

detector temperature was set at 280 T. GC-MSD in selected ion monitoring mode was 

used to determine the presence of derivatised pentachlorophenol. The ions monitored 

were m/z = 323 and m/z = 321. Selected standards were run on a daily basis to assess 

analytical performance. 

5.1.3 Soil 

The certified reference material (CRM 524), an industrial site soil, contaminated with 

PCP was supplied from the Laboratory of the Government Chemist (LGC, Teddington, 

London). Nine soils of various compositions were supplied by Zeneca AgroChemicals, 

Jealott's Hill, Berkshire. 

5.1.4 Chemicals 

Solvents were obtained from Fisher Scientific (Loughborough, Leicestershire), and were 

certified analytical grade. The head space of the extraction cells were filled with 
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Hydromatrix (Varian Ltd., Surrey, UK). Anhydrous sodium sulphate (BDH, Poole, UK) 

was mixed with the soil sample during Soxhlet extraction- PCP was purchased firom 

Aldrich Chemical Co., Gillingham. Derivatising agent, N, O-Bis- 

(trim ethyl si I yl)acetarm de (BSA) was purchased from Aldrich Chemical Company. 

5.1.5 Fortification procedures 

Spot spike procedure 

Hydromatrix (5 xI g), was spiked with pentachlorophenol in 25 [tL dichloromethane at 

the 20 ýtg mL- I level. The solvent was allowed to evaporate and the hydromatrix was 

extracted immediately. 

Slurry spike prtwedure 

Hydromatrix (3 x5 g), was spiked with pentachlorophenol in 25 ml-, of dichloromethane 

I 
to give a final concentration of 20 ýtg mL- . 

The solvent was allowed to evaporate 

overnight and then left for approximately four days before extraction to allow some 

interaction of the pentachlorophenol with the matrix. Portions (I g) ol'the hydromatrix 

were extracted each time. 

5.1.6 Extraction procedures of fortified matrices 

Procedurefor pressu rivedfluid extracti()n 

Soil (0.5 -2g, accurately weighed) was placed in a stainless steel extraction cell on top of 

a filter to prevent cell frit blockage. Hydromatrix was used to fill the head space to 

reduce solvent consumption. The cell was placed in the carousel and extracted using the 

conditions outlined by the EPA, namely 100 'C, 2000 psi with a static extraction time of 
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5 minutes. Hexachlorobenzene at the 5 ýtg mL- 
I level was used as the Internal standard, 

In the case of PCP, an aliquot of the extract (1.00 ml-) was placed in a tapered tube (10 

mL), and derivatising agent (BSA, 150 ýtl-), and internal standard (hexachlorobenzetie, 

10 ýiL of 1000 [ig mL-l stock) was added. The mixture was vortex mixed for 15 seconds 

prior to chromatographic analysis. 

Soxh let extraction. 

CRM soil (I g accurately weighed) was mixed with anhydrous sodium sulphate (I g) and 

Soxhlet extracted (24 hours) with DCM (20 mL) and quantitatively transferred to a 

volumetric flask (25.00 mL). An aliquot (1.00 ml-) was removed and placed in a tapered 

tube (10 mL). BSA derivatising agent (100 ýiL) was added and the mixture was mixed 

( 10 seconds) using a vortex mixer, Internai standard (50 [tL) was added and the 

derivatised extract was analysed on the GC-MSD. 

5.2 Results and discussion 

5.2.1 Chromatography and analyte identification 

Figure 5.1 shows the chromatography used in this study, the internal standard, 

hexachlorobenzene has a retention time of 15.7 minutes, and PCP has a retention time of 

17.5 minutes. Figure 5.2 shows the mass spectrum for underivatised PCP. 
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Figure 5.1 PCP chromatography 

Abundance 

24000 
22000 
20000 
18000 
16000 
14000 
12000 
10000 
8000 
6000 
4000 
2000 

Time-->o 
Minutes 

PCP 

Figure 5.2 PCP mass spectrum 
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The SIM ions chosen for derivatised PCP quantification were m/z 321 and rn/z 323. 

Table 5.1 shows the calibration data, Using this chromatography, a finear calibration was 

achieved between 0 ýtg /mL and 2 [tg / mL, with excellent linearity. 
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Table 5.1 PCP calibration data 

Compound Calibration 
range 

Number of 
data points 

Equation Correlation 
coefficient, R2 

PCP 0-2 ýtg mL-1 8 y=0.2640x + 0.0301 0.9980 

5.2.2 Recovery experiments 

The recovery experiments (table 5.2) from the hydromatrix demonstrated that near 

quantitative recovery occurred irrespective of the spike level and method (spot and 

slurry) investigated. The spot spike gave average reeoveries of 92.6 % (n = 3) from 

hydromatrix, while the slurry spike gave average recoveries of 89.3 % (n ý 3). Good 

precision was achieved by both methods (RSD < 3.8 %). This showed that the analytical 

procedure was robust, and that hydromatrix did not influence the extraction of PCP. 

Table 5.2 PFE of Pentachlorophenol from 
Inert Hydromatrix at the 20 gg /g level (n = 6). 

PFE Sox hlet 
Spot Slurry Spot Slurry 

Mean 
([Ig / g) 

18.7 

I 

18.4 18.5 18.0 

% RSD 1 3.5 1.5 4.2 5A 

5.2.3 PCP extraction (CRM 524) 

As with bupirimate and ethirimol optimisation, an investigation into the influence of 

static flush cycles was performed. Table 5.3 shows the results. To assess the efTect (it' 

any) of solvent on the extraction, the study incorporated three single extraction solvents, 

and one mixture. Three static flush cycles were required irrespective of the solvent used. 
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Table 5.3 Cycle study 

Number of 
cycles 

Toluene 
(gg/gpercycle) 

DCM 
(gg/gpercycle) 

ACN 
(gg/gpercycle) 

ACN: DCM 1: 1 
V/v 

cycle) 
1 11.0 15.6 12.4 19.2 
2 8.0 7.5 8.1 10.6 
3 1.0 2.0 1.3 2.2 

Cumulative 
total (gg / g) I 

20.1 

I 

25.2 

I 

21.8 

I 

32.0 

The results of the solvent study, based on the mean concentration of six replicate 

extractions per solvent, are shown in Figure 5.3. 

Figure 5.3 PCP solvent graph 
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Typical % RSD's range from 3.1 - 8. The results show that acetonitrileAichloromethane 

(1: 1, v/v) gave the highest recovery (32 +/- I pg / kg), and this was in good agreement 

with the certificate value (34 +/- 5 pg / kg). The PFE data implies that solvent has an 

effect on the quantity of PCP extracted from the CRM, 

5.2.4 Soil and solvent study 

The study of the CRM showed that solvent was an important factor to consider in PCP 

extraction. To determine if soil composition also affects the extraction Of PCP, an 
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investigation into the effect of soil composition was performed. Nine soils ot'varying 

composition (table 5.4) were slurry spiked at the 20 pg /g level with PCP and left to age 

for 2 weeks in the dark. Table 5.4 shows the results of the soil / solvent study. The 

results in table 5.4 confirm that the extraction solvent used has a large influence on the 

recovery of PCP obtained. For example, for compost soil, the recovery ranges fironi 38 % 

when using iso-hexane, to 73 % with a mixture of acetonitrileAichloromethane IýI v/v. 

It is also clear that soil composition has an influence on PCP extraction, When using iso- 

hexane, the recovery of PCP ranges from 38 % recovery from compost soil, to 57 % firom 

Hyde Farm soil. The major difference between these two soils is their organic matter 

content. Hyde farm contains only 3.2 % organic matter, whereas compost soil contains 

over 80 % organic matter (table 5.4). There are differences in the pH ofthe soils, which 

can also influence the extraction of PCP. The pH range of the soils from pi 15 to pli 7.4, 

whilst this is a relatively small range, the presence of the hydroxyl group on PCIII 

indicates that it will be influenced by pH. To elucidate the effect ot'soil composition 

further, multiple linear regression was performed on the data using the same method 

stated in chapter 4 for bupirimate and ethirimol extraction. 
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, nificant Multiple linear regression showed that soil organic matter and pH have a sig 

effect on the extraction. Tables 5.5a and 5.5b show an example ol'the multiple linear 

regression of % OM, % sand and CEC (table 5.5a) and p1l, % sand, and CFC (table 5.5b) 

for the extraction of PCP from compost soil using Iso-hexane as the extraction solvent. 

Components with a p-value of < 0.05, are considered to have a significant effect oil the 

recovery of PCP at the 95 % confidence level. 

Table 5.5a Multiple Linear regression result for compost soil using Iso-hexane 

Intercept % OM 
- 

%-Sand-. 
-. --CEC Regression 

Coefficient 
62.7 -0.25 -0.04 -0.06 

Standard 
error 

6.25 0.07 0.10 0.13 

P-value 3.4x 10-4 1 0.02ý ý5 5 0.71 
2 N. B. R=0.84 for the analysis 

Table 5.5b Multiple Linear regression result for compost soil using Iso-hexane 

Intercept pH 
Regression 
Coefficient 

23.7 3.78 

Standard 
error 

8.45 0.05 

P-value 0.28 0.0_4 
2 N. B. R 0.76 for the analysis 

, MO Sand 
-ýýE 

_O. ( 

ý 

-0.06 

0.07 

0.57 0,85 

P-values of <0.05 indicate a component is > 95 % significant, 

The influence is more apparent when extraction solvents giving poor recovery are used, 

i. e. acetonitrile, iso-hexane, and i so-hexane- (acetonit rile ýdi ch loroniet lia tic IýI v/v) 11 

v/v, than when solvents yielding greater quantities of PCP were used (table 5.6). 
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Table 5.6 Comparison of 'Yo OM and ptl P-values for 

various solvents used for PCP Extraction. 

Solvent P-value for 
% Om 

P-value for 

DCM 0.05 

Iso-hexane 0.02 0.04 
ACN 0.01 0.05 

ACN: DCM 1: 1 v/v 0,09 0.09 
ACN: DCM 1: 4 v/v 0.07 0.07 

Iso-hexane-. 
(ACN: DCM 1: 1 v/v) 2: 1 

V/V 

0.03 0.06 

5.3 Summary. 

PCP has been successfully extracted from spiked matrices (soil and hydromatrix), as well 

as a certified reference material (CRM 524) using PFE. Optimisation ofthe IIFF, 

45 
extraction procedure determined that the EPA method '' extraction parameters were 

adequate to quantitatively extract PCP. An investigation into the number of static flusill 

cycles required determined that three cycles were necessary. Application ofthe 

optimised method to the CRM showed it robust. Various solvents were used in tile 

extraction, and showed that solvent selection is an important pail of the extraction 

process Soil composition was also found to influence the recovery ol'P('11', with organic 

matter and pH having a significant influence on the recovery. 
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Chapter 6 

DDT. DDD. and DDE 

Extraction from Soil 



DDT, DDD and DDE extraction from soil. 

6.0 Introduction 

This chapter concentrates on the optimisation of PFE extraction parameters for OCP 

extraction from a natively contaminated soil. The influence of solvent was briefly 

investigated, and showed that contrary to the EPA recommended method, 

dichloromethane gave a greater extraction that a mixture of acetone. dichloromethane IýI 

V/V. 

6.1 Experimental 

6.1.1 Instrumentation. 

An ASE Tm 200 Accelerated Solvent Extractor (Dionex (UK) Ltd., Camberley, Surrev) 

with II mL extraction cells was used to perform the extractions. The extracts were 

analysed on a GC-MSD (Hewlett-Packard) in selected ion monitoring mode. 

6.1.2 Soil 

Zeneca Environmental Laboratories, Brixham, provided soil contaminated with DDT and 

its metabolites (DDE and DDD). After being air-dried and sieved (, -. 2 mm) it was 

characterised as follows: pH 2.5, organic matter content 7.2 % and cation exchange 

capacity, 12 mequiv. per 100 g. It was shipped and stored at - 18 T. 

6.1.3 Chemicals 

The solvents used in this study were certified analytical reagents (Fisher Scientific, 

Loughborough, Leicestershire). Hydromatrix (Varian 1A., Surrey, UK) was used to till 
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the head space of the PFE extraction cells (Dionex), and as an inert matrix for the spike 

recovery experiments. Anhydrous sodium sulphate (BDH, Poole, UK) was mixed with 

the soil sample during Soxhlet extraction. A pesticide standard comprising of twenty 

organochlorine pesticides was purchased from Supelco, Walton-on-Thames, UK. 

6.1.4 GC-MSD Analysis 

The GC-MSD (HP GI 800A GCD system, Hewlett Packard, Palo Alto, USA) was 

operated in selected ion monitoring mode with a splitless injection volume of 0.5 [il,. The 

column used was a DB-5ms (J &W Scientific, Folsom, California, USA), with dimensions 

of length 30 mx0.25 mm i. d. x 0.25 lim film thickness. The temperature program used 

for the analysis was 120 'C, held for 2 minutes up to 290'C at a rate of 5 'C / minute, 

with a final hold time of two minutes. The injection port and detector temperatures were 

set at 280 'C. 

6.1.5 Fortirication Procedures 

,, Yp, ot, Vpike 

Hydromatrix (I -2g, accurately weighed) was placed in a stainless steel extraction cell 

(I I mt- capacity). Stock solution (100 ýtl, of a 2000 l. ig / mt. standard) was added 

directly to the Hydromatrix to give a final concentration of 8 ýtg / tnl,. The solvent 

(dichloromethane) was allowed to evaporate beflore additional I lydromatrix was Used to 

fill the head space of the cell. The cell was capped and placed in the carousel prior to 

extraction. The spiked Hydromatrix was extracted as follows. temperature, 100 11c, 

pressure, 2000 psi-, and a static extraction time of 10 minutes with one static flush cycle. 
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SlunySpike 

Hydromatrix (6 g, accurately weighed) was placed in a glass beaker. Stock solution (600 

ýtl of 2000 ýtg / mL) of the target analytes were added to a 25 ml, volumetric flask, and 

made up to the mark with dichloromethane. This was added to the Hydromatrix. The 

slurry was stirred and the solvent was allowed to evaporate. Forty-eight hours atler 

solvent evaporation, portions of the spiked Hydromatrix (- I g) were placed in the 

stainless steel extraction cell and the head space was filled with Hydromatrix. The cell 

was placed in the carousel and extracted under the same conditions as the spot spiked 

samples. 

6.1.6 Extraction Procedures of fortified matrices 

pFE Extraction 

Soil (I g-2g, accurately weighed) was placed in a stainless steel extraction cell (II ml-, 

capacity) on top of a filter to prevent cell frit blockage. llydromatrix was used to till the 

head space to reduce solvent consumption. The cell was placed in the carousel and 

extracted using the following conditions- pressure, 2000 psi (I psi - 6994.76 Pa], 

temperature, 100 T, with a static extraction time of 10 minutes (preceded by a5 minutes 

heat-up time). initial work was done with a single static flush cycle. With additional time 

required for rinsing with fresh solvent and N2, the total extraction time was approximately 

17 minutes per sample. 
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Soxhlet Extraction 

Soil (I -2g, accurately weighed) was placed in a cellulose extraction thimble with an 

equivalent quantity of anhydrous sodium sulphate, which had been previously dried at 60 

'C for 48 hours. A round-bottomed flask was filled with 40 mL, of solvent 

(dichloromethane). The extraction was performed for either six or 24 hours. The liquid 

extract was quantitatively transferred to a volumetric flask. DDF content was determined 

prior to dilution using the GC-MSD. A 1/20 dilution of the extract was prepared for 

determination of DDD and DDT content by GC-MSD. In addition, the soil was also 

extracted, according to the above scheme, with aIýI v/v mixture of 

djchlorornethaneý acetone in accordance with solvent choice as recommended in UTA 

Method 3540 - 

6.2. Results and Discussion. 

6.2.1 Chromatography and analyte identirication 

Figure 6.1 shows a chromatograrn for DDX separation on a D13-5 column. 'Fable 6.1 

shows the retention times of the analytes and the internal standard. 

Table 6.1 Retention times for the chosen analytes 

Analyte Retent 
- 
ion 

-t- 
imetminutes)_ 

HexacNorobenzene 
(internal 

10.07 

DDE 14.8 
DDD j 5.3 
DDT 15.8_ 

The separation of all the analytes was achieved in approximately 16 minutes 
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Figure 6.1 OCP Chromatogram 
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Abundance 

Figure 6.2 Mass spectrum for DDT 
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The SIM ions chosen for DDT quantification were m/z 235 and m1z 237. They were 

chosen from the mass spectrum of DDT shown in figure 6.2. 
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Figure 6.3 Mass spectrum for DDD 
P P-DDD 

The SIM ions from the mass spectrum of DDD (figure 6.3), chosen for DDI) 

quantification were m/z 235 and m/z 237. Figure 6.4 shows the mass spectrum for DDF. 

The SIM ions chosen from the mass spectrum for DDF quantification were m/z 246 and 

m/z 318. 
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Figure 6.4 Mass spectrum for DDE 
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Table 6.2 Calibration Data 

Compound Calibration 
range 

Number of 
data points 

Equation (- 'orrelation 
ýoefficient, R2 

--6-DT 0-5 ýtg mL-' 7 y-0.2309x - 0.0417 0.9945 
DDD 0-5 ýtg mU 7 y 0.7480x - 0.0733 0.9957 

rRDE 0-5 ýtg mUl 7 y 0.2505x ý 0.0 127 Oý9974 

Table 6.2 shows the calibration data gained from this chromatography, All the calibration 

had excellent linearity over the chosen range, 0 ltg / ml to 5 i. tg / ml, with correlation 

coefficlents greater than 0.99. 

6.2.2 Recovery experiments 

initial experiments were based on recoveries firom spiked (spot and Skirry spiked) 

Hydromatrix, an inert support material. This was done to investigate the efTectiveness of 

PFE and to assess the sample work-up procedure. Results from recovery experiments 

from spot and slurry-spiked Hydromatrix are shown in 'Fable 6.3. Average recoveries of 
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91 % for spot spiking and 85 % for slurry spiked for the three analytes, coupled with 

precisions of < 5.1 % RSD indicated appropriate extraction / sample work-up based on a 

single static flush cycle. 

Table 6.3 Results of PFE recovery Extractions (n = 6). 

DDE D DD DDT 
Spot Slurry Spot Slurry Spot Slurry 

Mean gg /g 6.7 (84) 7.1(88) 7.4(93) 7A (92) 7.3 (91) 7.3 (91) 
(% Rec. 
% RSD 3 1.7 4.3 4.8 5.1 2.5 

6.2.3 Optimisation of Pressurised liquid Extraction 

Initial studies were undertaken to assess the influence of temperature on the recovery of 

DDT, DDD and DDE from aged, contaminated soil. Seven temperatures were chosen to 

investigate in the range 80-200 'C in 20 'C increments. Pressure was maintained at 2000 

psi and a static extraction time of 10 minutes. Duplicate extraction/analyses were 

performed at each temperature. The results are shown in Figure 6.5. 

Figure 6.5 Effect of temperature on DDT, DDD and DDE 
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The average extraction efficiencies (n = 14) for DDT, DDD and DDE were 205 (8.6 % 

RSD), 42.9 (10.2 % RSD) and 10.8 (14.9 % RSD) lig g-1, respectively over the 

temperature range. It was concluded that an increase in temperature does not significantly 

alter the amount of analyte extracted. A temperature of 100 OC was chosen as the 

extraction temperature for further work. 

Another important variable in PFE is solvent choice. The ability to select an appropriate 

solvent for extraction is often neglected, in favour of instrumental variables. Little attempt 

is often made to select the most appropriate solvent for the analyte. Acetone-DCM (Iýi 

v/v) is recommended in EPA method 3545A I for the extraction of organochlorme 

pesticides by PFE. Companson of acetone, DCM, and acetone: DCM, 1: 1 v/v, was 

performed. Figures 6.6 (a-c) [Each determinant was extracted six times with each solvent 

or solvent combination, error bars represent one standard deviation of the mean. ] It is 

observed (Figure 6.6 a and b) that dichloromethane gave the highest recovery for DDT 

and its major metabolite DDD. This situation was not as clear with the recovery of DDF, 

however (figure 6.6 c). Based on these experimental data, dichloromethane was selected 

as the solvent of choice for further work. 
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Figure 6.6c Influence of solvent on DDE 
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6.2.4 Soil Extractions: Soxhlet versus PFE. 

it is common, in this type of work to compare the traditional approach of Soxhlet 

extraction with the newer extraction technique. Using dichloromethane as the extraction 

solvent, Soxhlet was performed over two different extraction times, six and 24 hours. The 

nature of the Soxhlet extraction process allows 'clean' solvent to pass through the sample 

at a rate of four times per hour. Thus for extraction of DDT, DDD and DDE it would be 

expected that the solvent passed through the aged, contaminated soil sample either 24 or 

192 times at a temperature less than that of the solvent (dichloromethane, b. p. 40 T). 

The results are shown in Table 6.4. 

Table 6.4 Six hour Soxhlet vs. 24 hours Soxhlet 

DDE DDD DDT 
6 hours 1 24 hours 6 hours 24 hours 6 hours 24 hours 

Mean (gg / 9) 4.8 13.1 79.5 96.1 196.6 468.4 
SD 0.5 0.8 18.7 3.7 50.2 14.5 

% RSD 9.7 5.9 23.5 3.9 25.5 3.1 
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The data shows that 24 hours with dichloromethane is required for maximum extraction of 

DDT, DDD and DDE from aged soil. By way of a comparison, the results are also 

compared with a 24 hour Soxhlet extraction using a solvent mixture ( I. I v/v 

dichloromethane: acetone), ' comparable results are obtained. The results for the 24 hours 

Soxhlet extraction are compared to the results obtained by HE (both using 

dichloromethane) in Table 6.5. 

Table 6.5 Comparison of Soxhlet for 24 hours with PFE 
(I static flush) of aged contaminated soil using dichloromethane. 

DDE DDD DDT 
PFE Soxhlet PFE Soxhlet PFE Soxhlet 

Mean 
(lig / g) 

10.9 13.1 40,0 96 226 421 

% RSD 5.7 5.9 5.0 3.9 8.1 10.7 

The surprising results show that Soxhlet for 24 hours is more efficient at removing DDT, 

DDD and DDE from the aged, contaminated soil. Further investigation of PFF was 

required. 

The fundamental difference between Soxhlet extraction and PFE is the fact that In Soxhlet, 

a large volume of fresh organic solvent is re-cycled through the sample. However, this is 

not the case in PFE. The volume of fresh solvent cycled through the sample is minimal (-- 

5 mL). During the heat-up period in PFE, solvent in the extraction cell expands causing 

the pressure to increase. To prevent over pressurisation of the cell, the static valve opens 

and closes automatically allowing a small volume of solvent to vent. To maintain pressure 

fresh solvent is pumped in to the cell. It is estimated that the volume of solvent vented is 
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of the order of 0.1-0.2 mL / cycle of the static valve. 3 In order to determine if solvent re- 

cycling was the reason for the apparent poorer recovery of DDT, DDD and DDE from the 

aged, contaminated soil in PFE, an assessment of the static flush cycles was undertaken. 

The results of this study are shown in Table 6.6. In each case a new soil sub-sample was 

extracted and analysed. 

Table 6.6 Static flusb study 

No Cycles DDE pg /g 
(% RSD) 

DDD gg/g 
(% RSD) 

DDT gg/g 
(% RSD) 

1 10.9(5.7) 40.0(5.0) 226(8.1) 
2 12(5.2) 59.2(7.2) 336(2.6) 
3 13.2(5.2) 

, 
79.9(3.4) 405( 

The data shows that three static flushes are required to quantitatively remove DDT, DDD 

and DDE from aged, contaminated soil using a chlorinated solvent. Results from the 

cumulative total via PFE are compared with 24 hour Soxhlet extraction in figure 6.7. 

Figure 6.7 Comparison of PFE and Soxhlet 
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Good agreement is achievable between the two techniques. It has clearly been shown that 

the number of static flush cycles required for quantitative recovery from aged, 

contaminated soil samples is three. A similar study, with similar findings, was reported by 

Popp et al. 4 for a series of chlorinated pesticides from contaminated soil. 

6.3 Summary. 

PFE has shown the ability to quantitatively extract organochlorine pestl Ides firom both 

inert matrices and real matrices (natively contaminated soil), with a minimal volume of 

solvent and operator interaction. Optimisation of the extraction parameters temperature, 

time and pressure was achieved in a relatively small amount of time (c. f Soxhlet. ). It has 

clearly been shown that the number of static flush cycles required for quantitative recovery 

from aged, contaminated soil samples is three. A similar study, with similar findings. was 

reported by Popp et A4 for a series of chlorinated pesticides from contaminated soil. 
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Section B 

Solvent selection. 

This section concentrates on the development of a model to predict the OptirnLIM 

extraction solvent in environmental analysis. Several methods are discussed, along, with 

their inherent problems. The model is applied to work carried out in the previous section 

i. e. to bupirimate, ethirimol, PCP, DDT, DDD and DDE, before examples are taken 1roni 

the literature. 

The two examples chosen are those that apply to real samples. The first is the extraction 

I 
of PCDD / F's from fly ash. This work was carried out by Bautz et a, The second 

example is the extraction of PCB's from a certified reference material. This was 

performed by Hawthorne et al. 

Examples in the literature are scarce, due to the lack of real samples that are extracted 

using several solvents, one or more of which give poor recovery of the target analyte. 

References 
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2. S. B. Hawthorne, J. J. Langenfeld, D. J. Miller, and M. D. Burflord-1. 

Chromalogra. A, 64,1992,1614. 
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Extraction Solvent Selection in Environmental Analysis 

7.0 Introduction. 

In order to determine the level of contamination of industrial contaminated land sites 

requires, after appropriate sampling, extraction of the pollutants from the soil. A 

variety of techniques are available for extraction of organic pollutants from solid 

environmental matrices. I Techniques available, range from the traditional (e. g. Soxhlet 

extraction, shake-flask and sonication), through to instrumental extraction techniques 

(e. g. supercritical fluid extraction, microwave-assisted extraction and pressurised fluid 

extraction). However, irrespective of the sophistication of the technique, each 

approach has a common feature i. e. choice of solvent. The choice of solvent is largely 

dependent upon past experience, manufacturers guidelines or recommendations in 

standard methods (e. g. EPA methods). Typically, as is the case with Soxhlet 

extraction, a large volume of organic solvent is required, Often the solvents 

recommended are chlorinated as in the use of dichloromethane. Prediction of the 

optimum solvent would therefore be advantageous. 

There are a few approaches used to try to predict the best solvent for chromatography. 

Rohrschneider 2 has classed gas chromatography column stationary phase on the basis 

of the retention time of a similar n-alkane in the system. This retention index is 

independent of flow rate and the physical dimensions of the column. Snyder 3,4 

extended the work of Rohrschneider and developed a polarity index (P') where P' is 

used to describe the properties of the solvent. This technique involves the 

experimental determination of the distribution coefficient, Kg, for the test solutes, 

ethanol (e), n-octane (o), dioxane (d) and nitromethane (n) in various solvent systems. 

Correction for the solvent and solute molecular weight gives Kg' and log Kg" 
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respectively. The polarity index (P') is then calculated by adding the log Kg" values 

for ethanol, dioxane and nitromethane. The contribution to proton acceptor ability, the 

extent of dipole moment, and the proton donation ability (Xe, Xn and xd, respectively) 

are calculated from the ratio log Kg" / P' for each solute. The approach attempts to 

mirror the particular interaction properties that are peculiar to that solvent. Other 

approaches to describe solvent properties include: the use of E. Iý(30) values, a measure 

of the ability of a solvent to ionise a molecule at a set temperature 5, Z values which are 

similar to E, I-(30) values, but use a different analyteý', and, Acity (A) and Bascity (B) of 

the solvent. 
5 However none of these methods (to date) have been applied to 

extraction solvent systems. 

The solvent prediction scheme used in this paper is based on the Hildebrand solubility 

parameter (60.6,7 This quantity has been applied to the dissolution of polymeric 

substances in various solvents, and is commonly used by art conservators in the 

restoration of old paintings. 9 The solubility parameter is a measure of the internal 

energy of cohesion in the solvent / solute. Solvents with similar solubility parameters 

form mixtures, 
7 hence an analyte and a solvent that have similar solubility parameters, 

should also form mixtures. 

6t is defined as the square root of the cohesive energy density 6,7 or 

6t = (AEV / V) 1/2 (Fqn 7. 
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6t = the total Hildebrand solubility parameter 

AEV = the energy of vaporisation at a given temperature 

V= molar volume of the molecule. 

Calculations of this sort require knowledge of the heat of vaporisation at various 

temperatures as well as the molar volume of the substance. However, these values are 

not widely available for pesticides. Several groups have also developed comparable 

quantities as the Hildebrand solubility parameter including the addition of group 

contributions. Fedors 9 and others have used this approach to calculate the total 

Hildebrand solubility parameter. Blanks and Prausnitz 6 have used a homomorph 

concept to describe the total solubility parameter. The method is based on the 

assumption that the polar heat of vaporisation of a molecule can be calculated from the 

difference in the total energy of vaporisation and the energy of vaporisation of a non- 

polar liquid that has molecules of nearly the same size and shape as those of the liquid 

under investigation. Procedures such as this do not give the contribution of each type 

of interaction commonly found in matter e. g. the polarity, dispersion and hydrogen 

bonding ability of the solvent; each of which can be vital in the extraction of pesticides. 

The total solubility parameter has been divided by Small, van Arkel and Prausnitz" into 

two portions, a polar contribution and a non-polar contribution. This procedure does 

not address the induced and hydrogen bonding ability of the liquid. Hansen 7, io has 

taken this work further and assumes the total cohesive energy is a linear addition of 

three components'. 6h, hydrogen bonding ability contribution, 6d, dispersion co- 
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efficient contribution, and, 6p, polarity contribution. They are linked by the following 

equation. 

6t 2= 6h 2+6 
p2+ 6d 2 (Eqn 7.2) 

Hansen based this work on semi empirical equations describing the entropy and 

enthalpy of mixing of polymers and solvents in solution. I () Null and Palmer have also 

used this approach, 
II although their work was based on the findings of Wiehe and 

Bagley 12 who investigated the magnitude of activity coefficient of alcohol in various 

inert solvent solutions and developed equations that described the entropy and enthalpy 

of associations within the solution. 

Hoy 6 determined the individual components of the solubility parameter using the 

following methodology: 

Determination of the total solubility parameter using the Clausl us-Clapeyron 

equation, which is a measure of the change in vapour pressure of a substance at 

various temperatures. 

2 Regression analysis of molar volume as a function of temperature, molecular 

weight and density, allowing the calculation of an aggregation number that is an 

estimate Of 6h. 

3.8p is then calculated by a group molar attraction method, using equation 7.3, where 

Fp is the individual group contribution. 
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61z 
p=(zY- Fp)/V (Fqn 7.3) 

4. Determination of 6h is then achieved by rearranging equation 7.1, and solving 

for 6h. 

van Krevelen and Hoftzyer 13 have also determined the individual components using a 

group eontribution additive method, not unlike that of Fedors. 1) This ehapter outlines a 

procedure for predicting the optimum extraction solvent for the removal of analytes 

from aged soils. Matfix-analyte interactions are not taken into account, although they 

will influence the extraction procedure. 

7.1 Experimental 

All the experimental used in the chapter has been described earlier in chapters 4 6. 

Experimental procedures for bupirimate and ethirimol are detailed in chapter 4, details 

of PCP are in chapter 5, and details of DDX are in chapter 6. 

7.2 Results and Discussion 

7.2.1 Limitations of Solvent Prediction. 

There are limitations predicting the extraction solvent. The major limitations ofthe 

Hansen and Teas systems have been highlighted by Michalski, 16 Blanks and 

Stavroudis, 17 and Huyskens. is It was noted that although Teas was the first to visually 

represent the solvent selection parameters via a ternary plot, he also manipulated his 
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data to fit experimental observations. 17 This is shown by the non linear relationship 

between Hansen's data and Tea's data (figures 7.1 - 7.3). 

Figure 7.1 Hansen vs. Teas dispersion contribution values. 
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Figure 7.2 Hansen vs. Teas polarity contribution values. 
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Figure 7.3 Hansen vs. Teas hydrogen bonding contribution values. 
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Several methods for the calculations of the individual and total solubility parameter 

exist, each giving slightly different results. This is represented in figure 7.4. (' 

Figure 7.4 Variation in total solubility parameter. 
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Values for the common extraction solvents have been included. However, there is a 

large discrepancy between the values for water. This has been attributed to the various 
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adjustments made by Hoy 6 and Teas, 8,16 and the actual calculation of the individual 

values for water. Water can be taken as two hydroxyl groups, or one hydroxyl group 

and a hydrogen atom, or any combination of the two. This gives a range of solubility 

1/2 
parameter from 33 - 70 MPa 

. 
There are also differences between chlorinated 

solvents and aromatic solvents, but not to the same extent as water, as undue weight is 

given to the dispersion component. 17 Michalski has also pointed out that the 2 

dimensional ternary plot omits the total solubility parameter. 16 This obviously has 

implications for the development of a prediction model. As well as variation in the 

literature values, the model does not allow for the incorporation of the matrix. 

7.2.2 Calculations of parameters 

The van Krevelen and Hoftzyer 6,13 approach was selected for calculation of the 

individual Hansen parameters for the following two main reasons: 

1. Data for numerous groups are available. 

2. The method can easily be applied to a range of analytes and solvents. 

van Krevelen and Hoftzyer 6,13 have used thermodynamic data to develop equations fior 

the calculation of the individual parameters of the total solubility parameter. The 

method they used was addition of group contributions. Tables of data were set up 

containing each group's contribution to polarity, dispersion and hydrogen bonding (Fp, 

Fd, and Uh, respectively). In order to demonstrate the ease of calculation ofthe 

individual group contributions a solvent (methanol) and an analyte (DDT) have been 
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selected, tables 71 and 7.2. Using the following equations (7.4 -- 7.7) Sp, 61,, and 8d 

can be calculated. 

6dý (zEZ Fd) IV (7.4) 

6p= (z Y- zFp )/ V* (7.5) 

6p= (zE zF 
p2 )1/2 /V (7.6) 

6hý (( zIZ Uh )I V)1/2 (7.7) 

* for molecules with more than I polar group present, then equation 7.6 must be used 

instead of equation 7.5, to take into account the interactions between the polar 

13 
groups 

Table 7.1. Calculation of individual group contributions for Methanol 

Group Group Group Group Molar 
contribution contribution contribution to volume 
to dispersion to polarity hydrogen (V) 

(Fd) (Fp) bonding CH13 mol-I 
j1/2 CM3/2 Mol-I j1/2 CM2 mol-I WO 

J MOO 
420 0 0 33.5 

OH 210 500 20000 10.0 
Total 630 500 20000 43.5 

Appendix A] shows the calculation of the individual parameters for methanol while 

appendix A2 shows the calculation for the individual parameters for DDT. The values 

for the group contributions were taken from reference 15. 

Note: 1 MPa= IJcm-; IJ=l Nm 
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Table 7.2. Calculation of individual group contributions for the analyte, DDT. 

Group Group Group Group Molar 
contribution to contribution contribution volume 
dispersion (Fd) to polarity to hydrogen (V) 
j1/2 cm3/2 morl (Fp) bonding CM3 Mol-I 

j1/2 Cm2 Mol-I (Uh) 

J MOO 
2x -Ph- 2540 48400 0 104.8 

2x CI-CH= goo 1210000 800 48 
3x Cl 1350 2722500 1200 72 
I xCH 80 0 0 -1.0 

>C< -70 0 0 -19.2 
Total 4800 3980900 2000 

The total Hildebrand solubility parameter, 6t, was calculated for methanol and found to 

1/2 
be 28.31 MPa using equation 7.1. This compared favourably with the literature value 

1/2 6 
of 29.6 MPa . 

Table 7.3 shows the individual calculated parameters for each of the 

solvents used in the experimental study. 

Table 7.3. Total Hildebrand Solubility Parameter and its 

individual components used in the extraction study 

Dispersion 
coefficient, 8d 

(M pa 1/2) 

Polarity, 
8p 

(M pa 1/2) 

Hydrogen 
bonding, 8h 

(M Pa 1/2) 

Total Hildebrand 
Solubility 

Parameter, 8t 

(M pa 1/2) 
Methanol 14.48 11.49 21.44 29.31 
Toluene 17.64 1.05 0.00 17.67 

Acetonitrile 14.78 19.13 6.59 25.06 
Acetone 14.52 9.90 5.07 19.29 

Dichloromethane 18.25 8.58 3.53 20.48 
Iso-Hexane 14.27 0.00 0.00 14.27 

Acetonitrile: dichloromethane 
(1: 1, V/v) 

16.52 13.86 5.06 22.77 

A comparison between the total Hildebrand solubility parameter(' and the total 

calculated solubility parameter, using the approach described above, for ten common 

extraction solvents (methanol, acetone, dichloromethane, aceton'trile, iso-hexane, 
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toluene, xylene, chloroform, carbon tetrachlofide and ethyl acetate) is shown in Figure 

2 7.5- A good correlation (correlation coefficient, R=0.9425) is observed between the 

values. 

Figure 7.5 correlation between calculate and literature values 
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Fractional parameters of the Hildebrand solubility parameter can be calculated using 

equations 7.8 - 7.10 and plotted on a triangular graph in order to give a visual 

representation of the extent of contribution from the three components (polarity, 

dispersion and hydrogen bonding). 

(6d 2/ 6t2 )X 100 = Frd (8) 

(6 p2/ 
6t2 )X 100 ý Frp (9) 

(6h2 / 6t2 )X 100 = Frh (10) 

Table 7.4 shows the calculated (van Krevelen and Hoftzyer data) and literature values 6 

of these fractional (Fr) parameters, The numbers have been multiplied by 100 for ease 

of plotting. Figure 7.6 compares the literature values with the calculated values. 

Where no literature value is given, the calculated value and the literature value overlap. 
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Figure 7.6 Comparison of literature and calculated values 
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Table 7.4. Literature and Calculated Values of Fractional Parameters for 

dispersion, polarity and hydrogen bonding of selected solvents. 

10OFrd 100 rp 100 Frh 

Calculated 
value 

Literature 
value 

Calculated 
value 

Literature 
value 

Calculated 
value 

Literature 
value 

Methanol 26.2 26.0 16.5 17.3 57.4 56.7 
Acetone 63.0 60.5 29.3 2T2 7.7 123 

ffic h loro, methane 79.5 81.2 17.6 9.7 3.0 9.1 
Acetonitrile 34.8 39.3 58.3 54.4 6,9 6.3 
Iso-hexane 100.0 100.0 0.0 0.0 0.0 0.0 

Toluene 99.6 98.2 0.4 0.6 0.0 1.2 
Xylene 99.7 96.8 0.3 0.3 0.0 2.9 

C Iloroform 96.0 88.3 0.0 2.7 4.0 9.1 
Carbon 

tetrachloride 
95.2 

, 

99.9 0.0 0.0 4.8 

I 

0,1 

Ethyl acetate 1 69.4 75.7 4.5 8.5 1 26.1 

There are some variations, especially for chlorinated and aromatic solvents. This is 

due to multiplication factors that need to be included in the calculation of 6p 
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chloroform, carbon tetrachloride and dichloromethane in order to take into account 

identical groups (chlorine) in symmetrical positions. 

7.2.3 DDT and metabolites (DDD and DDE) from natively contaminated soil. 

Table 7.5 shows the calculated fractional parameters for the analytes. 

Table 7.5. Calculated Values of Fractional Parameters for 

Dispersion, Polarity and Hydrogen Bonding of DDT, DDD and DDE. 

Analyte 10OFrd 10OFrp 10OFrh 

DDT 84.0 14.5 1.5 
DDD 87.1 11.4 1.5 
DDE 89.0 9.8 1.2 

Figure 7.7 shows the position of the analytes, DDT, DDD and DDE compared to 

various solvents. Using this plot, DCM is predicted to be the optimum solvent Ior 

extraction. 

Figure 7.7 Prediction of optimum solvent for DDT, DDD and DDE 
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Experimental results, based on the mean concentration of six extractions per solvent, 

for the HE of DDT, DDD and DDE from a contaminated soil using a selection of 

organic solvents (five) are shown in figures 7.8 (a-c). Typical percentage relative 

standard deviations (% RSD) for the PFE of DDT ranged from 3.7 - 11.3,4.1 - 13.0 

for DDD, and, 0.4 - 3.9 for DDE. The PFE extraction results confirm that DCM 

removes the largest amount of the target analytes from the aged soil matrix. it is 

observed that the highest recoveries of DDT, DDD and DDE are obtained with DCM. 

From figure 7.7 however it would also be expected that both iso-hexane and acetone 

would remove significantly more of the DDT and its metabolites than methanol and 

acetonitrile. Experimental data (Figures 7.8a-c) also confirms this finding. 

Figure 7.8a DDT solvent graph 
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Figure 7.8b DDD solvent graph 
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Figure 7.8c DDE solvent graph 
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7.2.4 PCP from CRM 524 

A similar strategy was applied to the extraction of pentachlorophenol from a certified 

reference material (CRM 524). It is predicted (Figure 7.9) that acetone would be the 
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optimum extraction solvent. However, to obtain a separation and analysis of PCII by 

GC-MSD, denvatisation of the PCP at the hydroxyl group is required. This 

derivatisation process is disrupted by the presence of oxygen containing molecules. 

Thus an alternative solvent, acetonitrile: dichloromethane (1: 1, v/v), was used. The 

position of the solvent mixture is similar to that of acetone, hence should be the 

optimum extraction solvent. The results, based on the mean concentration of'six 

replicate extractions per solvent, are shown in Figure 7.10. 

Figure 7.9 Prediction of the optimum solvent for PCP 
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Typical % RSD's range from 3.1 - 8. The results confirm that 

acetonitrile: dichloromethane (I -. 1, v/v) gave the highest recovery (32 1-/- 1 ýtg / kg), 

and this was in good agreement with the certificate value (34 +/- 5 pg / kg), The 

model also predicts that toluene would give significantly lower extraction recovery 

than any of the other solvents, figure 7.10 confirms this. 
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Figure 7.10 PCP solvent graph 
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7.2.5 Literature examples. 

To validate the model further, two examples of extraction from real samples were 

taken from the literature and incorporated into the model. The first example is the 

extraction of polychlorinated dibenzo dioxins from fly ash. 14 

Figure 7.11 shows the relative positions of solvents and analytes for PCDD extraction. 

From the data it can be seen that the analytes and the solvent used for their extraction 

are all in the same area on the ternary plot. Therefore, the two solvents should yield 

similar extraction results. Table 7.6 and figure 7.12 shows that this is the case. 

Neither solvent appears to give a superior extraction of these analytes. 
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Figure 7.11 Prediction of optimum solvent for PCDD's. 
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Table 7.6 PCDD Extraction from Fly Ash 

2,3,7,8 1,2,3,7,8 1,2,3,4,6,7,8 OctaCDD 
tetraCDD pentaCDD heptaCDD (ng/ g) 

(ng / g) (ng / g) (ng / g) 

Toluene: 0.25 2 59.7 158 
Methanol 3: 1 

Toluene: 0.28 2.7 71 154 
Acetic Acid 

.- 
95: 5 
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Figure 7.12 Recovery of PCDD's 
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The second example is the extraction of polychlorinated biphenyls from a certified 

reference material. 15 The ternary plot (figure 7.13) predicts that CHCIF2 should give 

significantly better extraction results that carbon dioxide. 

Figure 7.13 Prediction of the optimum solvent for PCB's 
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Table 7.7 PCB extraction results 

CHCIF2 Carbon Dioxide 

PCB NIST 

conc. 
Wg / g) 

Mean %. SD Mean %. SD 

2,4,4' 2.21 63 3 36 3 

2,2', 5,5' 4.48 83 4 38 1 

2,2', 4,4', 5 0.11 128 7 66 7 

Figure 7.14 PCB extraction results 
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7.2.6 Extraction of spiked soil, 

0 

As the model had been validated, it was then applied to spiked soil. Soils of various 

compositions were spiked with bupirimate and ethirimol pesticides, and left in the dark 

at room temperature for two weeks- After the aging period was complete, samples of 

the soil were extracted with vanous solvents. As stated in chapter 6, certain solvents 

are unsuitable for the extraction procedure, due to the derivatisation process. 

Alternative solvents were suggested for acetone, acetone. dichloromethane I-I v/v, and 
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acetone: iso-hexane 1: 1 v/v. Figure 7.15 shows a two dimensional representation of the 

relative positions of the solvents and analytes. 

Replicate extractions showed that the predicted solvent was the experimental optimum 

for these analytes. Figure 7.16 shows the results of the extraction of bupirimate from 

compost. Analogous situations were found on all nine soils. 

Figure 7.15 Prediction of optimum solvent for bupirimate and ethirimol 
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Figure 7.16 Extraction of bupirimate 
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Figure 7.17 shows the extraction results for ethirimol from compost soil, again, 

analogous situations were found for all nine soils. 

Figure 7.17 Extraction of ethirimol 
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Tabulated data of these experiments is shown in tables 7.8 and 7.9, along with 

precision data. 

Table 7.8 Influence of Solvent for the Recovery of bupirimate on compost (n = 6) 

Soil DCM Iso-hexane ACN ACN: DCM ACN: DCM Iso-hexane: 
1: 4 (ACN: DCM 1: 1, 

v/v) 2: 1 v/v 
compost 

. 
61.8 (3.4) 

.36.8 
(5.1 38.6 (4.8) 68.7 (5.2) 65.2(4.7) 45.4 (3.9) 

Table 7.9 Influence of Solvent for the Recovery of ethirimol on compost (n = 6) 

Soil DCM Iso-hexane ACN ACN: DCM ACN: DCM ]so-hexane: 
1: 1 1: 4 (ACN: DCM 1: 1, 

v/v) 2: 1 v/v 
ompost 59.0 (3.5) 39.8(3.6) 

1 
40.9(3.2) 75.4(4,8) - 

1 
59,2(47) 4T5 (3.1) 

Clearly, both tables (7.8 and 7.9) and figures (7.16 and 7.17) show the optimum 

solvent is acetonitrileAichloromethane 1: 1, v/v, and gives the highest extraction 

recovery for both bupirimate and ethinmol. Figure 7.15 also implies that both toluene 
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and acetonitrile should give poorer extraction recoveries than the optimum. Tables 7.8 

and 7.9 show this is the situation. 

7.3 Summary. 

A model for the extraction of analytes from environmental matrices has been 

developed based on the ability to describe an extraction solvent in terms of its 

hydrogen bonding, dispersion and polarity contributions. The model was applied to the 

extraction of DDT, DDE and DDD from aged, contaminated soil, and the extraction of 

PCP from a certified reference material. Application of literature data to the model 

showed it to be robust. Subsequent application to spiked aged soil, also showed good 

correlation. In principle the model could be applied to a range of analytes from 

environmental matrices based on solvent selection. While prediction of the optimum 

organic solvent is desirable it is only one part of the extraction process. The extraction 

of an organic compound is a more complicated process, a process that is dependent 

upon the interaction of the analyte with the soil matrix. While a particular extraction 

technique may be able to remove the "easily extractable" fraction in a short time period 

with any organic solvent there may remain a "non-extractable" fraction. This latter 

fraction relates to the chemical interactions that may occur between an analyte and the 

matrix. For example, an organic compound may become chemically altered, undergo 

polymerisation or covalent binding with humic substances present in the soil. 19 An 

appreciation of the complexity of the problem should not be ignored. In fact, knowing 

if, why and how a pollutant associates itself within the soil matrix is an important 

development in understanding the extraction process. 
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Section C 

Pesticide degradation on soil 

This section discusses the photolysis of two UV light sensitive pesticides, bupiriniate and 

pentachlorophenol on soils of varying composition. All the soils used are described in 

Section A; Method Development. The soils were slurry spiked with the analytes and 

subjected to UV light. As a control, samples were kept in the dark. No inicrobial action 

was apparent. Samples of the exposed soil were taken at different time intervals, 

extracted under the optimised PFE conditions, and analysed on the GC-NISD. Both 

molecules showed evidence of photolysis, with evidence of soil composition dependency 

i. e. the rate and quantity of photolysis was soil dependent. Partial least squares imiltiple 

regression was used as a tool to elucidate the soil components that were H111LICIlCing tile 

photolysis of the two molecules. 
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Chapter 8 

Pesticide Photolysis 
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Pesticide photolysis on soil. 

8.0 Introduction 

The extraction and analysis of organic contaminants currently on the US EPA 'Red List' I 

of high priority pollutants is important. However, also essential is the determination of 

the fate of these molecules in the environment. There are numerous routes that pesticides 

can take once in the environment. Figure 8.1 summarises the most common pathways. 2 

Figure 8.1 pesticide routes to the environment 

Volatilisation 
Surface run-off 

Plant Uptake II/ Erosion 

Soil 

cal-I Adsorption by clay minerals Dt-+ýphiem; vnl Biological Photoch m---- 
Degradation and organic matter Decomposition 

Chemical -I Leaching 

Transformation 

I 

Extensive literature exists on the degradation of pesticide molecules on soil and in water. 

Several mechanisms have been postulated for the degradation of molecules on soil. 

These include chemical, 
3,4 microbial and photo induced degradation. 5 Nearly all of the 

mechanisms that do not involve microbial action, rely on the presence of oxygen, usually 

in the form of water as a source of hydroxyl radicals. 3 -5 In particular, this chapter 

focuses on the photolysis of pentachlorophenol and bupirimate on soil. 
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Pentachlorophenol is highly toxic and persistent in the environment 
6 hence levels need to 

be monitored carefully. Pentachlorophenol is deposited in the environment through 

several channels- from the petroleum industry; 7 as a by-product of the dye manufacturing 

process; 
6 

as a means of termite control; 
6 

and, as a herbicide. 6 Derivatives of 

pentachlorophenol are also used as fungicides to protect against fungal rot of wood. 6 

As with most aromatic compounds, PCP is readily biodegraded 9- 10 
and sequestered 

(incorporated) into the actual soil matrix. 
11 - 13 However, PCP is also subject to chemical 

degradation, and photolysis. photolysis of PCP has been widely investigated in aqueous 

systems. 
14- 16 Limited literature exists on the photolysis of PCP on soil compared to the 

vast amount on photolysis in water. The literature that does exists is contradictoryl 

Combrisson and Monrozier state in their work that photolysis of PCP on soil is negligible 

when compared to biodegradation, 17 
whilst Goshal states that photolys's accounts for 40 

% of the degradation of PCP on thin soil films. 19 Work by Wong and Crosby, 19 Hwang 

et al., 20 and Donaldson and Miller 21 also support the finding that PCP is readily degraded 

by UV light. 

Bupirimate is degraded to ethirimol in soil both microbially and photochemically. (' 

Adsorption and degradation of ethirimol has been studied by Cancela et a]., on various 

soil components, in particular peat and various types of montmorillonite clay. 22 Scant 

literature studying the degradation of bupirimate exists. The aim of this chapter is to 
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determine if photolysis of PCP and bupirimate occurs in the absence of biologically 

active species on soil, and if the soil composition has an effect on the rate of photolysis. 

8.1 Experimental 

8.1.1. Instrumentation 

An ASE Tm 200 Accelerated solvent extractor (Dionex (UK) Ltd., Camberley, Surrey) was 

used to perform the extractions. II ml, cells were used for all the extractions. 

A hand built light box, dimensions 158 cm x 30 cm x 38 cm, fitted with two Bellarium-S 

UV tubes (80 watts power each) was used for the photolysis experiments. 

8.1.2. Soil 

Zeneca AgroChemicals, Jealott's Hill Research Station, Berkshire supplied standard soils 

covering a range of compositions (table 8.1) as discussed at the beginning of section A. 

Table 8.1 Soil Composition 

Soil % Silt % Clay % Sand % OM pH CEC 

Chamberlain 4 9 87 4.5 7.3 11.0 
Hyde Farm 23 19 58 3.2 6.7 17.4 

18 Acres 24 20 56 4.7 6.3 14.0 
Chalgrove Farm 29 37 34 5.6 7.4 29.7 

Garden 18 11 71 9.8 7.2 16.49 
Mix 2 3.0 11 86 17.5 5.9 12.7- 
Mix 1 22 25 53 31.3 5.3 32.1 
Mix 3 21.0 30 49 59.4 5.2 41.7 
ompost 22 48 30 82.7 17.62 

8.1.3. Software 

TableCurve 2D (version 4, SPSS, Inc., Chicago, USA) was used to determine the 

equations of the degradation curves. Statistica was used to perform partial least squares 
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multiple regression (CSS Statistica/W, Release 5.0 with Industrial units, Statsoft UK, 

Letchworth, UK). ACD/Chemsketch (version 4.55, Advanced Chemistry Development 

Inc., Ontario Canada) was used to produce the 3-dimensional structures, and degradation 

schemes. 

8.1.4. Chemicals 

The solvents used in this study were certified analytical reagents (Fisher Scientific, 

Loughborough, Leicestershire). Hydromatrix (Vanan Ltd., Surrey, UK) was used to fill 

the head space of the PFE extraction cells (Dionex). Anhydrous sodium sulphate (Merck, 

Poole, UK) was mixed with the soil sample during Soxhlet extraction. Bupirimate was 

supplied by Zeneca AgroChemicals. Hexachlorobenzene, pentachlorophenol and NO- 

bis(tfimethylsilyl)acetamide derivatising agent was purchased from Aldrich Chemical 

Company, Gillingham, Dorset, UK. 

8.1.5. GC-MSD Analysis 

8.1.5.1 Pentachlorophenol 

The GC-M SD (HP GI 800A GCD system, Hewlett Packard, Palo Alto, USA) was 

operated in selected ion monitoring mode with a splitless injection volume of 0.5 ýLL. 

The column used was a DB-5 (J &W Scientific, Folsom, California, USA), with 

dimensions of length 30 mx0.25 mm i. d. x 0.25 pm film thickness. The temperature 

program used for the analysis was 90 OC for 2 minutes to 250 T at 10 'C / minute with a 

final hold time of 12 minutes. The injection port temperature was set at 250 'C, and the 

detector temperature was set at 280 'C. GC-MSD in selected ion monitoring mode was 

used to determine the presence of derivatised pentachlorophenol. The ions monitored 
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were m/z = 323 and m/z = 321. Quantification was achieved by use of a ten point 

calibration curve from 0 ýtg mL-1 to 5 ýtg mUl with a regression coefficient in excess of 

0.97. Selected standards were run on a daily basis to assess analytical performance. 

Figure 8.2 shows the structures of possible degradation products of PCP. The relevant 

ions used for their determination are shown in table 8.2. Diphenols are formed during 

microbial and aqueous degradation. 23 

Figure 8.2 Degradation products of PCP 
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The GC-MSD (HP G1800A GCD system, Hewlett Packard, Palo Alto, USA) was 

operated in selected ion monitoring mode with a splitless injection volume of 1.0 ýtl-. 
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The column used was a DB-5ms (J &W Scientific, Folsom, California, USA), with 

dimensions of length 30 mx0.25 mm i. d. x 0.25 ýim film thickness. The temperature 

program used for the analysis was 120 'C, held for 2 minutes to 290'C at a rate of 5 OC / 

minute, with a final hold time of 2.5 minutes. The injection port and detector 

temperatures were set at 250 IC and 280 'C respectively. 

GC-MSD in selected ion monitoring mode was used to determine the presence of each of 

the analytes. Table 8.2 shows the ions of the derivaised species that were selected for 

monitoring. Quantification was achieved by the use of an eight-point calibration curve 

from 0 pg mL- 
I to 

10ýtgmL-I, R2 values for each of the analytes were in excess of 0.99. Aselected 

standard (5 pg / mL) was run every day to assess analytical performance. 

Table 8.2 Ions used in identifying derivatised degradation products 

Compound Quantifying 
Ion 

(M/Z) 

Qualifying 
Ion 

(M/Z) 
Bupirimate 273 208 
Ethirimol 266 238 

Pentachlorophenol 323 321 
Tetrachlorophenol 289 287 
Trichlorophenol 255 253 
Dichlorophenol 221 219 

Monochlorophenol 185 187 
Tetrachlororesorcinol 322 307 
Tetrachlorocatechol 392 304 

Tetrachlorohydroquinone 246 228 

8.1.6 Fortification Procedure 

Soil (9 x 200 g), was subjected to UV light for 24 hours as a sterilisation process- The 

sterifised soil was then spiked with either pentachlorophenol or bupirimate in 100 mL of 
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dichloromethane to give a final concentration of 20 ýtg g- The solvent was allowed to 

evaporate overnight and then left for two weeks in the dark prior to extracton. Each 200 

g of spiked soil was then halved, and 100 g was left in the dark, and the other 100 g was 

used in the photolysis experiments. 

8.1.7 PFE Extractions 

8.1.7.1 PCP 

Using the results of the solvent selection (see chapter 5), and due to the derivatisation 

process, the solvent used for the extractions was acetomtrile-dichloromethane I-I v/v. 

The extraction parameters are as follows; temperature, 100 'C, at a pressure of 2000 psi 

with a static extraction time of 5 minutes (3 cycles), giving a total extraction time of 18 

minutes per sample. Six samples per soil were extracted at various time intervals. 

8.1.7.2 Bupirimate 

Using the solvent selection information (see chapter 4), the optimum solvent was 

determined to be acetonitrile: dichloromethane 1: 1 v/v. The extraction parameters were 

temperature, 100 'C, at a pressure of 2000 psi, with a static extraction time of five 

minutes (2 cycles), giving a total extraction time of 14 minutes per sample. Six samples 

per soil were extracted at various time intervals. 

8.1.8 Photolysis procedure 

Samples of soil (1.0000 g), were placed on a watch glass (6 cm diameter), and placed in 

the light box. Six samples per time interval were prepared. The samples were at constant 

temperature and 8 ern from the source. At set time intervals, six replicate soil samples 

were extracted by PFE, under the optimum conditions. 
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8.2 Results and discussion 

8.2.1 PCP 

Six samples per soil per time interval were extracted by PFE and analysed on the GC- 

MSD. Figure 8.3 shows the exponential disappearance of PCP on compost over the 

course of the study. 

Figure 8.3 Disappearance of PCP on compost 
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After approximately 0.5 days, half of the PCP has gone. Table 8.3 shows the measured 

half lives for PCP degradation. The half lives were determined by interpolation of the 

graph at 50 % loss. 

Table 8.3 Measured half lives for PCP 

Soil Time (days) 
Hyde Farm 1.25 

Chamberlain 3.0 
18 Acres 1.25 

Chalgrove Farm 0.75 
Garden 2.4 
Mix 2 2.25 
Mix 1 1.25 
Mix 3 1.0 

Compost 0.5 
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Soil sterilised under UV for 24 hours is deemed to be free of microbes. 25 The dip occurs 

in the first 24 hours, and therefore could be evidence of microbial activity. Soil samples 

taken after 24 hours were spiked onto a nutrient agar plate. Minimal soil flora / fauna 

were found. 

Analysis of the extract on the GC-MSD in total ion mode, showed the presence of other 

chlorinated aromatic compounds. Table 8.2 shows the ions used to determine the 

derivatised chloro-aromatic compounds. No resorcinols were found in the extract. 

Resorcinol formation is indicative of microbial degradation, 23 and aqueous photolysis in 

the presence of T102,24 however, the initial dip in the total indicates that other 

compounds may be formed. This could include resorcinol formation, but at too low a 

level to detect by a quadrupole instrument. Figure 8.4 shows the disappearance of PCP 

and the appearance of less chlorinated phenolic species over a period of 30 days in a 

compost SOIL 

Figure 8.4 PCP degradation 
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Analogous situations were found in the other eight soils. The amount of degradation 

products varies between the soils, implying soil composition has a significant effect on 

the degradation of PCP. Appendix A3 shows the loss of PCP for the other eight soils. It 

is clear from the data in appendix A3, that more degradation occurs on soils containing 

high organic matter content, e. g. compost, mix 3, mix 2 and mix 1. Soils such as 

Chamberlain and Hyde Farm which have a lower organic matter content, have less PCP 

degradation. 

Appendix A4 shows a series of chromatograms for PCP degradation on compost. After 6 

hours, the quantity of PCP has decreased, and there is clear evidence of the presence of 

tetrachlorophenol and trichlorophenol. After a further six hours, there is evidence of 

dichlorophenol and monochlorophenol. At eight days under UV light, the quantity of 

PCP has been reduced so much that it is near the limit of detection of the GC-MSD. 

After a further three days under UV light, tetrachlorophenol has disappeared, and the 

quantity of trichlorophenol has been significantly reduced, with a corresponding increase 

in both dichlorophenol and monochlorophenol. 

The rate disappearance of PCP in the first 24 hours of on each soil is different (figure 

8.5). Generally, the more clay is present in the soil the greater the rate of degradation. 

Previous studies in the literature show that PCP degradation follows first order kinetics 

with respect to PCP. 26-28 
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Figure 8.5 Rate of PCP photolysis 
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For a first order reaction, the rate of reaction is directly proportional to the concentration 

of the reactant (equation 8,1) 

k 
A --> products Eqn. 8.1 

Where k is the rate constant for the reaction. 

Hence, 

-d[Al = k[a] Eqn. 9.2 
dt 

This equation (8.2) can be integrated to give equation 8.3 

In [A] = ln[A],, - kt Eqn. 8.3 

Where [A] is the concentration of A at time t, and [A]. is the initial concentration of A. 

A plot of ln[PCP] vs. time will give a linear plot, with a gradient equal to the rate 

constant, -k, and intercept equal to the initial concentration of PCP. The smaller the rate 
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constant, the slower the degradation. Table 8.4 compares the values of the rate constants 

for the nine soils. 

Table 8.4 rate constants for the degradation of 

PCP on different soils. 

Soil k (40 -6 S-1 

Hyde Farm -4.76 
Chamberlain -2.25 

18 acres -5.86 
Chalgrove Farm -7.36 

Garden -4.00 
Mix 2 -2.35 
Mix 1 -5.20 
Mix 3 -5.35 

compost -8.69 

The rate of degradation is greatest on compost soil (k = -8.69 x 10 4) 
s- 

I ), and very low on 

Chamberlain soil (k = -2.25 x 10 --() s- I ). The general trend follows the percentage organic 

matter in the soil, the more organic matter, the greater the degradation. These data imply 

that soil composition has an effect on the degradation rate of PCP. 

Further investigation into the effect of soil components was performed. Multiple linear 

regression can determine the soil components that are involved in PCP degradation. 

Table 8.5 shows the extent of correlation between the six measured soil components. 
Table 8.5 Correlation data 
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Non-correlated variables are in bold. Due to the high degree of correlation, multiple 

linear regression (as discussed in section 4.2.5) would not give an overall impression of 

which soil components are important. The equation of the degradation curve was 

determined in TableCurve, using an equation of the form y=a+b exp (-X/c). Where a is 

the intercept on the y axis, b is the pre-exponential constant and the value of c indicates 

the amount of degradation of bupirimate (or PCP) on the soil matrix. Partial least squares 

multiple regression is a mathematical technique that allows elucidation of significant 

parameters despite high correlation. PLS can take into account the variability of the 

replicates. Partial least squares regression was performed to determine of any of the 

measured components had an influence on the rate of degradation. Partial least squares 

regression examines both X and Y data and extracts components which are directly 

relevant to the variables. These are extracted in decreasing order of relevance. So, to 

form a model, the correct numbers of components are extracted to model relevant 

underlying effects. 

The general equation for multiple partial least squares regression is 

yý XI -COMPI 
+ X2-COMP2 + X3-COMP3 + X4-COMP4 ....... XI-COMPI Eqn 8.4 

Where y is the dependent variable, compi is component in and X, is the weight of 

component i. Each component is comprised of a multi linear regression equation of the 

form 

PLScompl = 00 + PINI + 02-V2 + 03-V3 + 04-V4 
...... 

Piv 
I Eqn 8.5 

Where V, to V, are the independent variables, and Po to 01 are the variable coefficients. 

Initially, PLS extracts the same number of components as there are variables, however a 
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plot of correlation coefficient vs. number of components can be used to reduce the 

number of components, A figure 8.6 show that two components are required to model 

the data, as the variation in the R2 value is minimal. 

Figure 8.6 Determination of PLS components 
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There are seven variables, intercept, % silt, % clay, pH, % sand, % organic matter (% 

OM), and cation exchange capacity (CEC). Examination of the loadings (figure 8.7) of 

the two components, which determines which variables are the most influential on each 

component, it can be seen that variables 4 and 5 (i. e. pH and % sand) are the most 

influential variables that define component 1, and variables 5 and 6 (i. e. % sand and % 

OM) define component 2. 

Y ave. 
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C-Y- 
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Figure 8.7 Loadings of the two components 
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X weights (figure 8.8) show how important each variable Is to the component. In this 

case for component one, variable 5 is the most important, (sand) and variables 5 and 6 are 

the most important for component 2, (sand and percentage OM). 

Figure 8.8 X weights of the two components 
X weights vs. columin nwnbLrs 
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The distances of x weights (figure 8.9), is the Euclidean distances of the variables from 

the origin computed from the x weights divided by the number of components i. e. 2. 

Each distance is the square root of the sum of squared x weights divided by the number of 

components. The largest distances are the major contributors to the overall conceptual 

variable i. e. rate of degradation. In this case, variables 5, and 6, i. e. sand and OM have a 

direct influence on the extraction of PCP from the various soils. 

Figure 8.9 Distances of X weights 
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The components of the soil matrix that are significant upon extraction are percentage 

sand, percentage organic matter content, and to a lesser extent, percentage clay. 

Organic matter has been implicated by Goshal 19 and Donaldson and Miller 21 in the 

photolysis of PCP- They found that the higher the amount of organic matter, the greater 

the degradation. Comparison of Hyde farm soil (3.2 % OM) with compost (80 % OM) 

(figure 8.5 and table 8.1) shows that as the proportion of organic matter increases, the less 

191 



phenol is extracted. Sand is mainly comprised of silicates, which contain silanol 

groups. 
29 These are able to interact with the hydroxyl groups of the chlorophenols, 

holding them on the silica surface, 29 As stated in chapter 2, certain forms of clay are able 

to swell in the presence of suitable solvents, those capable of hydrogen bonding. As the 

clay dries, there is potential for some of the PCP to be trapped irreversibly in the soil 

matrix. 
29-32 

8.2.2 Bupirimate and Ethirimol 

Slurry spiked soil were subjected to UV light and samples were taken at various time 

intervals. The samples were extracted by PFE and the extracts were analysed by GC- 

MSD. Figure 8.10 shows the exponential disappearance of bupirimate on compost soil 

over the course of the study. 

Figure 8.10 Disappearance of bupirimate on compost soil 
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Interpolation of figure 8.10 shows that after 4 days, less than half the applied 

concentration of bupirimate is extracted from compost. The solvent selection study 
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(chapter 9) shows that the decrease in bupirimate cannot be attributed to adsorption alone. 

This is also confirmed by the presence of ethirimol, the major degradation product of 

bupirimate (figure 8.11). 6 

Figure 8.11 Appearance of ethirimol 
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Appendix A5 shows similar data for the other eight soils included in the study. The 

results clearly show a correlation between the organic matter content of the soil and the 

degradation of bupirimate. The higher the organic matter content of the soil, the greater 

the photolysis of bupirimate. As in the case of PCP, degradation was different on each of 

the soils. Figure 8.12 compares the degradation of bupirimate on the various soil types. 

Appendix A6 shows a series of chromatograms for bupirimate photolysis on compost. 

After 3 days, the quantity of bupirimate has decreased slightly, and there is clear evidence 

of the presence of ethirimol. Two days later (day 5), the photolysis of bupirimate has 

significantly increased. This decrease in bupirimate with a corresponding increase in 

ethirimol continues until 22 day of UV exposure, when the loss in bupirimate is 
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statistically insignificant. The rate of increase of ethirimol has also slowed to a constant 

rate. 
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Table 8.6 shows the time required to decrease bupirimate to half its applied concentration 

on all nine soils. 

Figure 8.12 Photolysis of bupirimate on various soils 

Table 8.6 Measured half lives for bupirimate on various soils 

Soil Time required to 
reduced concentration by 

50% (days) 
Hyde Farm 12.5 

Chamberlain 12.5 
18 Acres 12 

Chalgrove Farm 9.5 
Garden 8 
Mix 2 7.25 
Mix 1 4.25 
Mix 3 4 

Compost 3.25 
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It is clear from the combined data that soil type has an influence on the degradation of 

bupirimate to ethirlmol. To determine which soil parameters are important in the 

degradation of bupirimate, PLS was also performed on the data, using the same equation, 

y=a+b exp (-x/c). TableCurve gave the values of c, the factor that determines the rate 

of degradation. Figure 8.13 shows that three components are required to fully explain the 

data. There are seven variables, intercept, % silt, % clay, pH, % sand, % organic matter 

(% OM), and cation exchange capacity (CEC). 

Figure 8.13 Number of components 
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The loadings for the analysis (figure 8.14) show that columns 4 and 6 (i. e. pH and % 

OM) are the most influential variables that define component 1, columns 5 and 6 (i. e. % 

sand and % OM) define component 2, and columns 2 and 5 (i. e. % silt and % sand) 

define component 

195 



Figure 8.14 Loadings for two components 

Loadings vs. Column numbers 
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X weights (figure 8.15) show how important each variable is to the component. In this 

case for component 1, variable 5 is the most important, (sand). Variables 5 and 6 are the 

most important for component 2, (sand and % OM), and variables 3 and 6 (% clay and % 

OM) are the most important for component 

Figure 8.15 Importance of soil variables 

X weights vs. column numbers 
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The distances of x weights (figure 8.16), is the Euclidean distances of the variables from 

the origin computed from the x weights divided by the number of components i. e. 3. 

Each distance is the square root of the sum of squared x weights divided by the number of 

components. The largest distances are the major contributors to the overall conceptual 

variable i. e. rate of degradation. In this case, variables 5, and 6, i. e. sand and OM, and to 

a lesser extent, variables 3, % clay, and 2, % silt, have a direct influence on the extraction 

of bupirimate from the various soils. 

Figure 8.16 Distances of X weights of the variables 
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33 - Organic matter has been implicated by Landgraf et al. - - in the degradation of nitrogen 

heterocycles, for example, the triazine metribuzin on compost within a pH range of 5.8 - 

8.12. Figures 8.17 and 8.18 show the 3-dimensional arrangement of bupirimate and 

ethirimol. 
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Figure 8.17 3-Dimensional arrangement of bupirimate 

Bupirimate 

Figure 8.18 3-Dimensional optimisation of ethirimol 

Ethirimol 

As can be seen both molecules are relatively planar and hence could be incorporated into 

the clay mineral structure. Small particle size is often associated with a high surface area 

I 
and hence a large potential for adsorption, as well as degradation. 34 , rhe results of PLS 

show that both these factors contribute to the degradation of bupirimate on soil. 
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8.3 Summary. 

Both PCP and bupirimate have been successfully degraded on various soil types in the 

presence of ultraviolet light. Analysis of the data showed that the time taken to reduce 

PCP to half its applied quantity was between 0.5 and 2.25 days. This is consistent with 

previously published data. Kinetic data showed that the rate of PCP followed first order 

kinetics, and was fastest on soils with a high organic matter content. PLS determined that 

sand and organic matter content of the soil has a significant effect on the degradation rate 

of PCP. An analogous situation was found for bupirimate degradation. Photolysis of 

bupirimate reduced the concentration to half its initial concentration between 3.25 and 

12.5 days. This value is also soil composition dependent. PLS determined that two 

major factors influenced the degree of degradation, sand and organic matter content, and 

that the silt and clay content of the soil play a minor role. These observations are 

consistent with literature published on other nitrogen heterocycle pesticides. 
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Chapter 9 

Conclusions and 

Furture Work 



Conclusions and future work. 
9.0 Conclusions 

9.0.1 PFE optimisation. 

Using three classes of molecules, the PFE extraction parameters were optimised. The 

only significant extraction parameter was temperature of extraction in the bupirimate and 

ethirimol study. Pressure was not deemed to have any effect in the study. The extraction 

of bupirimate and ethirimol showed that PFE was superior in both the quantity extracted 

and the precision when compared to sonication and shake flask extraction techniques. 

PFE was found comparable to Soxhlet extraction. Sonication and shake flask extractions 

were not used in subsequent investigations. The initial studies on bupirimate and 

ethirimol were performed using spiked inert matrix, hydromatrix. Application of the 

optimised parameters to the extraction of these molecules from spiked soil showed that 

the soil matrix influenced the recovery of the molecules. An investigation into the 

extraction solvent also showed that certain solvents gave better extraction recoveries than 

others did. An analogous situation was found when pentachlorophenol was extracted 

from a certified reference material (CRM 524), and spiked aged soils. Both solvent and 

soil matrix have a significant effect on the recovery of the extraction. A third class of 

pesticides were also investigated, the organochlorine pesticides DDT, and its degradation 

products, DDD and DDE. The extraction of this natively contaminated soil showed that 

ASE did not degrade any of the analytes of interest, and highlighted the need for a 

method of solvent prediction. 

9.0.2 Solvent selection model. 

The initial experimentation showed that a robust and quantitative method of solvent 

selection was required. Investigation into this area of extraction showed that solvent 
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selection models were not readily available, or easy to understand. A method based on 

the Hildebrand solubility parameter was developed. The basis of the solubility parameter 

is that molecules with similar solubility parameters form mixtures. Hence, a method of 

calculating the solubility parameter for common environmental analytes and extraction 

solvents was required. Fedor's reported a method of predicting the solubility parameter 

using a group addition method, where the molecule of interest is broken down into its 

constituents, and each group is given a value for the influence of hydrogen bonding, 

dispersion and polarity. Comparison of literature values and calculated values showed 
2 

excellent correlation (R = 0.92). Individual parameters representing the magnitude of 

hydrogen bonding, polarity and dispersion were calculated for the analytes of interest, 

bupirimate, ethirimol, PCP, DDT, DDD and DDE. A ternary plot was used to visually 

represent the positions of the analytes in relation to the different extraction solvents 

investigated. The predicted optimum extraction solvent for DDT, DDD and DDE was 

dichloromethane, and for bupirimate, ethirimol and PCP, a mixture of 

acetontrile: dichloromethane 1: 1. PFE extraction of these molecules from spiked soil 

(bupirimate and ethirimol), natively contaminated soil (DDT, DDD and DDE) and a 

certified reference material (PCP) confirmed the predicted solvent was the optimum for 

the extraction. The model was applied to examples of extraction of analytes from real 

(not spiked) soil in the literature. There was good agreement between the predicted 

solvent and the experimental optimum. 

9.0.3 Photolysis of PCP on soil. 

PCP was spiked to nine different soils and subjected to UV light. Samples were removed 

and extracted at different time intervals. Six replicates were extracted per time interval. 
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other chlorinated compounds were identified, indicating photolysis was occurring and 

the reduction in PCP extraction was not simply a result of adsorption to the soil matrix. 

The rate of PCP degradation followed first order kinetics, with rate constants from 

-6 -I _6 -I 
-8.69xlO s and-2.00x]O s. The time required for reducing the amount of PCP to 

half its applied quantity varied between 12 hours and 3 days. These data implied that soil 

composition had a direct effect on PCP degradation. Further investigation into the effect 

of soil composition showed that due to the high degree of correlation between the soil 

variables, multilinear regression would not give an accurate overview of the effect of soil 

variables. Hence, partial least squares regression was performed to determine the soil 

variables that influenced the rate of degradation. Partial least squares multiple regression 

determined that the quantity of sand and organic matter had a significant effect on the rate 

of degradation. Percentage clay was also implicated, but to a lesser extent. 

9.0.4 Bupirimate photolysis on soil. 

Bupirimate was spiked to nine different soils and subjected to UV light. Samples were 

removed and extracted at different time intervals. Six replicates were extracted per time 

interval. The presence of ethirimol, the major degradation product of bupirimate 

confirmed that photolysis was occurring and the reduction for bupirimate extracted was 

not simply a result of adsorption to the soil matrix. The time required to reduce the 

amount of Bupirimate to half its applied value ranged from 3.25 days on Compost soil, to 

12.5 days on both Chamberlain and Hyde Farm soil. As in the case of PCP, the highly 

correlated soil variables precluded the use of multiple linear regression to elucidate the 

significant soil parameters. Partial least squares multiple regression determined that the 
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quantity of sand and organic matter had a direct effect on the rate of bupirimate 

photolysis. Percentage silt and percentage clay also played a minor role on the rate of 

Bupirimate degradation. 

11.2 Future work 

This work has shown that ASE is capable of extracting a wide range of analytes from 

soil, quickly and efficiently. It has also produced a robust method for the prediction of 

the optimum extraction solvent. Two molecules have been successfully degraded under 

UV light and their degradation products have been identified and quantified. Future work 

arising from these studies could include, 

0 Investigation of the kinetics of bupirimate degradation. 

o Investigation of mechanism for PCP and bupirimate photolysis. 

0 incorporation of the effect of the matrix into the solvent selection model 

a Application of the model to matrices other than soil - spiked and aged samples, as 

well as literature examples. 
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Appendix Al. Calculation of parameters for methanol 

Dispersion contribution, 8d 

Equatlon 7.4 6d (L-! 
-ý-Fd) 
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Polarity contribution, 6p 

Equation 7.5 
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Hydrogen bonding contribution, 8h 
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Appendix A2. Calculation of parameters for DDT 

Dispersion contribution, 6d 

Equation 7.4 6d ý Cz-ýFd 

V 

Total Fd (table 7.2) = 4800 

divide by V (table 7.2) = 4800 

= 204.6 

= 23.46 
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Polarity contribution, 8p 

Equation 7.6 51) = Cz 2; z2 1/2 
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Hydrogen bonding contribution, 8h 
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Appendix A7 Publications 

"Microwave-assisted solvent extraction", J. R. Dean, L. J. Fitzpatrick and C. Heslop, in 
"Extraction Methods in Organic Analysis", A. Handley (Ed), Sheffield Academic Press, 

Sheffield (1999) Chapter 7, pp. 166-193. 

"Accelerated solvent extraction of pentachlorophenol from industrially relevant 

matrices", L. J. Fitzpatrick, J. R. Dean, M. H. 1. Comber, K. Harradine, K. P. Fvans and 

S. Pearson, J. Chromatogr., 873 (2000) 287-291. 

"Extraction of DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] and its metabolites 

(DDE [ 1,1 -dichloro-2,2-bis(p-chlorophenyl)ethylene] and DDD [ 1,1 -dichloro-2,2-bi s(p- 

chlorophenyi)ethane] from aged, contaminated soil", L. J. Fitzpatrick, J. R. Dean, M. H. 1. 

Comber, K. Harradme, K. P. Evans and S. Pearson, J. Chromatogr., in /wess. 

"Pesticides defined by matrix", J. R. Dean and L. J. Fitzpatrick, in "Handbook of 

Analytical Separations", R. M. Smith (Series Editor). Volume 7, "Environmental 

Analysis", W. Kleibohmer, (Ed), Elsevier Science, Amsterdam (due 2001), 

"Extraction solvent selection in environmental analysis", L. J. Fitzpatrick and J. R. Dean, 

Analyst, submilled. 

"Environmental Applications of Pressurised Fluid Extraction", L. J. Fitzpatrick, 0. 

Zuloaga, N. Etxebarria, and J. R. Dean, Reviews in Analytical Chemistry, hipre, %, v, 

"Pressurised Fluid Extraction of PAH's from Soil- Influence of Soil Type", 0. Zuloaga, 

L. J. Fitzpatrick, N. Etxebarria, and J. R. Dean, submilled. 

"Photochemical Degradation of Organic Pollutants on Soil", L. J. Fitzpatrick, and IR 

Dean, inpreparation. 
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