Abstract

Many algorithms for graph layout have been devised over the last 30 years spanning both the graph drawing and information visualisation communities. This article first reviews the advances made in the field of graph drawing that have then often been applied by the information visualisation community. There then follows a discussion of a range of techniques developed specifically for graph visualisations. Graph drawing algorithms are categorised into the followings approaches: force-directed layouts, the use of dimension reduction in graph layout and computational improvements including multi-level techniques. Methods developed specifically for graph visualisation often make use of node-attributes and are categorised based on whether the attributes are used to introduce constraints to the layout, provide a clustered view or used to define an explicit representation in 2D space. The similarities and distinctions between these techniques are examined and the aim is to provide a detailed assessment of currently available graph layout techniques, specifically how they can be used by visualisation practitioners and to motivate further research in the area.
1 Introduction

A graph can be defined as a set of nodes and a set of edges such that an edge describes the existence of a relationship between two nodes. Drawing a graph can help make better sense of the structure of those relationships than simply looking at the data in tabular form. Simply drawing the graph is not enough as how the graph is drawn has a significant impact on how the graph is understood. Due to the gestalt principle of proximity, developers of layout algorithms should be aware that nodes placed close to one another will be interpreted by the user as a true relationship whether or not this relationship exists1. This means the layout and the arrangement of the nodes strongly influences how the user perceives the relationships in the graph. Therefore, finding a layout which can emphasise relationships, and which does so without misleading the user, is crucial even if further interaction, filtering and analysis may be necessary to discover why those relationships exist.

Even though it is nearly fifty years since Tutte2,3 proposed his barycenter method (see Section 2.1), how best to lay out a graph remains a current problem, one that is still attracting attention. In fact, Blythe et al.4 asserted that there is no best way to draw a graph and that layout simply depends on which features of the graph we wish to highlight. These may be certain aspects of the structure of the graph itself, particular measures of centrality or prominence, or important attributes of the nodes or edges.

Graph drawing has evolved in two different directions: the heavily algorithmic side drawing from mathematical graph theory and the more interactive and application focused side from information visualisation, often termed network or graph visualisation5.

Graph drawing has accumulated a large body of research and its own symposium ‘Graph Drawing’6 running annually for the past 20 years with articles continuously appearing in Journal of Graph Algorithms and Applications (JGAA). Published in 1999, and building on their 1994 annotated bibliography, Di Battista et al.’s book on graph drawing7 is regarded as the key reference for an introduction to the algorithmic approach to graph drawing.

This review furthers their research by focusing on the use of graphs in information visualisation through the inclusion of computational improvements to previous methods and, by exploring what
makes the key difference between graph drawing and network visualisation, the use of attributes for layout. The work is restricted to two-dimensional graph layout because techniques that are suitable for two-dimensions are not always generalizable to three dimensions; for example, edge crossing is less of a problem in 3D than 2D but many 2D layouts consider reducing edge crossings to be of central importance. Other problems include node occlusion, having difficulties in finding the best ‘view’ in space and that users still find it hard to adapt to actions and interactions in 3D space.

Di Battista et al. credit Knuth with the first application for automatic graph layout. Knuth’s algorithm visualised flowcharts with the aim of improving computer program documentation and since then network visualisation has been applied to many application areas. These include technological areas such as the structure of the internet and the hyper-link structure of the web as well as social networks, bibliographic networks and biological networks.

Visualisation of networks should not just be for the sake of it; it should aid the analysis and understanding of the graph. In areas of network analysis, and particularly social network analysis, interpretation and understanding of a graph’s structure can come from the calculation of metrics associated with each node of the graph and the graph as a whole, but the idea of drawing a graph is to represent the structure of a graph visually. Reasons to do this are given by Bezerianos et al. who suggest that visualisation can help with “detecting, understanding and identifying unexpected patterns” in social networks and, in fact, this could be applied to all graphs. Henry and Fekete go even further by suggesting that “computing a layout of a graph is necessary to find insights”. This is why visualisation can be useful: it can allow users to see relationships, such as patterns and outliers, that would not be apparent through a metrics-based analysis alone. For example, a metrics based analysis can tell the user which are the most connected nodes or detect communities but a visualisation allows the user to see whether the most connected nodes influence different areas of the graph or if there are outliers to a clustering (see Figure 1). Graph layout algorithms serve to represent a graph subject to some rules or guidelines that should enable this more effective analysis through visualisation.

In information visualisation particularly, drawing the graph can enable both hypothesis gen-
Figure 1. The three labelled nodes (A, B, C) appear separated in the layout from other nodes detected as being in their community.

eration and confirmation from the data. Much of the research into what can be learnt from studying the properties of a graph either concentrates on network analysis statistics or study of the topological, static display of the network13. Layout that can also stem from interaction with the network, integration of node-attributes (additional data we know about the node) and node metrics (computed statistics that measure properties of the node) encourages further exploration and understanding of the network. The more information we have about the graph the greater the emphasis on good layout algorithms to convey the information in the graph in a way which is informative, accessible and comprehensible to instigate interaction and engagement with the graph by the user.

In this survey Section 2 covers the major graph drawing techniques that have been devised and used over the past 30 years; these are divided into three categories: force-directed, those based on dimension-reduction, and computational improvements such as multi-level techniques. In Section 3 techniques developed for using node-attributes more specific to graph visualisation are presented and discussed. Conclusions and scope for further research is discussed in Section 4.
2 Family of Force-Directed and Related Graph Drawing Algorithms

Most algorithmic graph drawing is based on the force-directed paradigm of modelling a graph as a physical system where nodes are attracted and repelled according to some force. The various forms of force-directed graph drawing are among the most frequently used and modified meaning they can be applied to graphs with many thousands of nodes. While force-directed and dimension reduction based algorithms are dimension independent they are most commonly used to produce layouts in two-dimensions. The presentation and evaluation of these layouts in this paper are given in a two-dimensional context.

The original algorithm for force-directed graph drawing and its multiple variations are explained in Section 2.1. The use of dimension reduction for graph layout shares a lot of similarities with force-directed methods and these similarities and some extensions are discussed in Section 2.2. More recently, it has become necessary to visualise much larger graphs, thus many suggestions, including multi-level methods, have been proposed as computational improvements to the layouts in Sections 2.1 and 2.2 along with some spectral methods, and these are mentioned in Section 2.3. There are a number of criteria that are used to evaluate the effectiveness of a graph layout. These include computational complexity or running time for the algorithm to execute, the size of graph they are realistically able to produce a layout for, their ability to comply with certain layout principles or aesthetics, the user’s visual assessment and other potentially desirable visual features such as clustering. Section 2.4 discusses how the algorithms compare in terms of these criteria and Table 2 gives a summary of this discussion.

2.1 Force-directed layouts

Force-directed algorithms were amongst the first to be developed for automatic graph layout and are some of the most commonly used methods today. Based on a physical model of attraction and repulsion the aim is to lay out the graph optimally. This optimality agreed with criteria put forward as graph drawing aesthetics, as discussed in Section 2.1.1. A forerunner to force-directed
methods was Tutte’s barycenter method. The barycenter between two objects is the point at which the gravitational forces exerted by those two object cancel. The method was developed for drawing tri-connected and planar graphs where at least three nodes had a fixed initial position on the external face of a polygon, the unfixed nodes are placed at the barycenter of their neighbours with optimisation through Newton-Raphson iteration. Quinn and Breuer also proposed a force method for placing components on a printed circuit board. It was Eades’ spring-embedded force-directed layout that became accepted and inspired many other layout algorithms. Force-directed techniques remain so popular because, in their simplest form, they are not difficult to understand and are easily implemented in code.

2.1.1 Graph drawing aesthetics.

Classical force-directed placement approaches apply a set of rules that are said to produce aesthetic graphs. In this context, aesthetics are associated with improving the readability (causing Dunne and Shneiderman to rename them readability metrics) of the drawing on the premise that if the layout makes the relationships in the graph more readable then it is more comprehensible to the user. Good aesthetic properties should ensure that a graph is displayed more effectively and allow the user to easily perceive the topological structure of a graph. This is different from analysing the structure computationally. For example, a user may determine that the connectivity of the nodes follow a power-law distribution or form a small-world network but visualisation can give greater insight into their structure such as seeing which clusters in a small-world network are linked or placed close to one another in the layout. Table 1 shows the aesthetic criteria most commonly used in force-directed graph layout with explanations as to why they are considered to produce a good graph layout. However, these criteria are considered intuitive rather than being derived from experimental data.

Incorporating all of these aesthetics into one optimal layout is infeasible due to their competitive nature as achieving one often requires breaking another. Additionally, there is a distinction between what is shown to be computationally aesthetic and what is subjectively ‘aesthetically pleasing’ to each user; in order to distinguish between these two meanings, from now on the aes-
Minimise Edge Crossings

Symmetry

Uniform Edge Lengths

Uniform Node Distribution

Separate Non-Adjacent Nodes

Node-Edge Overlap

Table 1. A list of aesthetic considerations often used in graph layout and the motivation behind their use.

Aesthetic	Reason
Minimise Edge Crossings | Improves readability and aids the user in following paths. Edge crossings can also conceal important information and make a graph appear less approachable to the user \(^{22}\).
Symmetry | Symmetry aids in the understanding of the structure of a graph.
Uniform Edge Lengths | For a regular structure that prevents the graph becoming distorted.
Uniform Node Distribution | For a regular structure, visual appeal and to prevent the graph feeling cluttered \(^{21}\).
Separate Non-Adjacent Nodes | Proximity implies a relationship and so adjacent nodes should appear more related than non-adjacent nodes.
Node-Edge Overlap | Avoids visual elements appearing too clustered together and ambiguity as to where the edge ends \(^{21}\).

The designers of the graph drawing software tool Nicheworks \(^{25}\) noted that trying to follow these graph drawing principles does not always create a better graph layout. Their software was designed to reflect edge weights, avoid the high computational cost of dealing with edge crossings and show clustering. However, most force-directed algorithms are popular because of their adherence to these principles and are generally evaluated on that basis.

There are two approaches to force-directed layouts: those based on Eades’ spring-embedder and those which are solutions to optimisation problems. Eades’ spring-embedded approach uses a spring-electrical system to find an equilibrium in the system so that the total force on each node

\(^{17}\) Purchase conducted a user study on the effect of these principles on the understanding (with graph-theoretic type tasks) of the graph and found that minimising edge crossing was the most important criterion while symmetry was less so. This shows one of the problems with trying to use these principles for layout: no one is really sure which criteria are the most useful or in which situations they are most applicable.

\(^{23}\) The two graphs in Figure 2 provide an example where symmetry is more important than the avoidance of edge crossings. Conversely, Purchase conducted a user study on the effect of these principles on the understanding (with graph-theoretic type tasks) of the graph and found that minimising edge crossing was the most important criterion while symmetry was less so. This shows one of the problems with trying to use these principles for layout: no one is really sure which criteria are the most useful or in which situations they are most applicable.

\(^{24}\) There are two approaches to force-directed layouts: those based on Eades’ spring-embedder and those which are solutions to optimisation problems. Eades’ spring-embedded approach uses a spring-electrical system to find an equilibrium in the system so that the total force on each node
is zero. The other approach, still inspired by Eades, treats the layout problem as an optimisation problem which minimises an energy function (also known as the cost or objective function) designed with respect to the properties of the graph to be displayed.

2.1.2 Spring-electrical based approaches.

Eades’ spring-embedder\(^{16}\) is the basis for almost all force-directed techniques. Nodes are modelled as steel rings and edges as springs; the system is put into some random initial configuration and released, leaving the system to reach a stable state where the force on each node is zero. The force on each node is the sum of attractive, \(f_a = c_1 \log \frac{d}{c_2}\), and repulsive, \(f_r = \frac{c_3}{d^2}\), forces on each node, where \(d\) is the length of the spring and \(c_1, c_2, c_3\) are constants. From experimentation, Eades made the decision to use springs of logarithmic strength claiming that linear strength springs were too strong. Connected nodes are attracted to one another whilst all other nodes, modelled as electrical charges, repel. The resulting layout should have edges of uniform length and symmetry. An example of spring-embedded layout is shown in Figure 3.

Despite its wide use, Eades\(^{16}\) stressed his method’s suitability only for graphs with fewer than 50 nodes with underlying structures such as grids, trees and sparse graphs rather than those with

Figure 2. Two layouts of one graph. Both layouts are symmetric, but users find the layout on the left easier to understand than the one on the right despite the fact that it breaks the principle of having no edge crossings. (Reproduced from Kamada and Kawai\(^{24}\)).
a dense structure. Therefore, it often produces poor layouts for large graphs and these problems are replicated in algorithms that build on Eades' approach.

The first adaptation, which was for speed and simplicity, of the spring-embedder algorithm was by Fruchterman and Reingold26. This was subject to the properties of connected nodes appearing close to one another (but not too close), aiming for a layout which conformed to the principles of even node distribution, few edge crossings, uniform edge length, symmetry and fitting the drawing to the frame. As with Eades, connected nodes attract while all nodes repel through a three step process. The attractive, \(f_a = \frac{d^2}{k} \), then repulsive, \(f_r = -\frac{k^2}{d^2} \), forces are calculated, followed by the ‘temperature’ governing the distance each node can move during an iteration. \(d \) is the distance between the two nodes and \(k = C\sqrt{\frac{\text{area}}{\text{number of nodes}}} \) is the optimal distance between the two nodes where area is the space available and \(C \) an experimentally determined constant.

The algorithm is not guaranteed to converge, so Fruchterman and Reingold suggest that 50 iterations of the algorithm is sufficient for an optimum layout. Their goal was for the algorithm to work well without requiring the user to tune various parameters to produce a satisfactory layout. They considered it to be fast, laying out most graphs in less than one second but restricted to
graphs with at most 100 nodes. An example of a graph laid out using Fruchterman and Reingold’s algorithm is shown in Figure 4(a).

Fruchterman and Reingold sped up their layout through a modification known as the Grid Variant Algorithm (GVA). The graph frame is divided into a grid and for each node the repulsive forces are calculated only between nodes which are in the same or neighbouring grid squares; this was later altered to just being inside a specified radius. Repulsive forces are now

\[f_r = \frac{k^2}{d} u(2k - 1) \]

where \(u(x) = \begin{cases} 1 & x > 0 \\ 0 & \text{otherwise} \end{cases} \)

This speeds up the algorithm without affecting the quality of the graph and in some cases may improve the quality of the layout according to the graph drawing principles by preventing the nodes from becoming too widely spread, although Fruchterman and Reingold only expected this modification to be useful for larger graphs.

The algorithm is still used for graph layout with Genc and Dogrusoz\(^27\) basing their model for laying out biological pathways in PATIKA\(^28\) on it, and Garcia et al.\(^29\) extending it to use as a basis for their layout for displaying Gene Ontology class structure of nodes in a protein-interaction network.

The final example of a spring-electrical-based system is the graph-embedder (GEM) algorithm. Frick et al.\(^30\) wanted to produce a layout that conforms to the graph drawing principles for larger and more complex graphs but with ‘interactive speed’. The exact principles are not explicitly defined but are just said to be similar to the concepts for other spring layouts and the system is evaluated on edge crossings, edge lengths and node distribution.

GEM uses forces similar to those of Fruchterman and Reingold plus gravitational forces which pull nodes towards the barycenter of their neighbours. Fruchterman and Reingold believed that a better cooling schedule could have significantly improved their algorithm and so Frick et al. implemented an adaptive schedule with local and global temperatures. The lower the local temperature of a node the closer it should be to its final position in the layout and the shorter the distance it can
move in each iteration. A node’s local temperature is dependent on its temperature in the previous iteration and whether the node is oscillating between positions or part of a rotating sub-graph. The global temperature is the mean of all local temperatures and the iterations stop when global temperature reaches a specified value or a fixed number of iterations have passed. The temperature is therefore adaptive to the state of the graph and, because of this, differs from cooling schedules such as those in simulated annealing31. The quality of the layout should be similar to those of Fruchterman and Reingold and Kamada and Kawai (Section 2.1.3). This includes minimising edge crossings despite not being explicitly designed to do so. An example of the layout produced by GEM is shown in Figure 4(b).

2.1.3 Energy-based approaches.

Energy-based approaches consider layout to be the minima of an optimisation problem in which an energy function encodes the desired properties of the graph. Solutions which result in local rather than global minima are not the optimal solution, and in this case, will not produce the optimal layout. Like the spring GEM algorithm, some energy-based layouts can temporarily move to higher energy configurations to reach the global minimum. The two main methods using this approach
are from Kamada and Kawai\cite{24} and Davidson and Harel’s\cite{31} simulated annealing algorithm.

Kamada and Kawai\cite{24} use a spring approach with the key concept that Euclidean distance in the layout should approximate the graph-theoretic distance, i.e., the shortest path length between two nodes. The principle of symmetry is most important in this layout (see Figure 2) and the cost function represents the ‘degree of imbalance’ (lack of symmetry) in the layout and is based on Hooke’s Law (where the force exerted by a spring is linear and proportional to its displacement from its natural length). Optimisation requires solving partial differential equations based on the sum of squares of the difference between the Euclidean and graph-theoretic distances of pairs of nodes. In each iteration only one node is moved and minimisation is carried out through Newton-Raphson iteration and the resulting layouts are symmetric with few edge crossings. An example of a layout produced with Kamada and Kawai’s algorithm is shown in Figure 5. There are similarities between this approach and those of multidimensional scaling and these are further discussed in Section 2.2.

Davidson and Harel’s\cite{31} simulated annealing also uses an energy-based approach. Annealing is the process of cooling a liquid slowly so that it forms a minimal energy crystalline structure. Their approach is for drawing graphs that comply with the graph drawing principles of evenly distributed nodes, uniform edge lengths and minimised edge crossings. They created an explicit
cost function comprising parts which govern node distribution, borderlines (distance from the edge of the available layout area), edge lengths, edge crossings and near node-edge crossings, which can be weighted to prioritise specific aesthetics. The algorithm begins from an initial configuration and global temperature. In each iteration only one node is moved. The distance a node can move decreases with each iteration, and the temperature is recalculated at each step. The process continues until a termination condition, such as iterating through fixed a number of stages, is satisfied. Fine tuning of the graph can then follow.

Davidson and Harel admit the algorithm does not perform well for graphs with over 60 nodes but performance is similar to Fruchterman and Reingold, Kamada and Kawai, and GEM. They also concede that the algorithm was coded for functionality rather than performance; consequently the algorithm is often not used practically because it is too slow to be deemed useful. Exceptions to this are from Li and Kurata who implemented it in their CADLIVE system for laying out biochemical networks, the jGraph layouts of Cytoscape and its use in OpenOrd.

Three other notable energy-based techniques are from Tunkelang, Noack’s LinLog layouts and ForceAtlas from Gephi. Tunkelang’s initial approach is distinctive in that it requires computation of a minimum spanning tree (a tree which connects all nodes of the graph) to decide the order in which nodes are placed. Optimisation of node position is based on what he calls the aesthetic cost function encoding the principles of uniform edge lengths, even distribution of nodes and minimal number of edge crossings. It follows the approach of Fruchterman and Reingold in using a grid to speed up computation of repulsive forces. It also outperformed simulated annealing and Fruchterman and Reingold in terms of minimising edge crossings for all graphs, while for edge lengths and node distribution Tunkelang’s approach performs better on sparse graphs with Fruchterman and Reingold’s better for denser graphs.

Noack takes an alternative to the principles-based approach as his main aim is to highlight clustering in a graph. Other force-directed algorithms usually miss this by striving for uniform edge lengths but longer edges are required to separate clusters. The weak connection between using graph-theoretic distance and identifying low coupling between parts of the graph also hinders clustering.
Noack proposes two models, both with linear attractive forces between adjacent nodes and logarithmic repulsive forces. In the node repulsion model repulsive forces are calculated between all nodes in the graph again using their Euclidean distances while in the edge repulsion model repulsive forces act on edges by weighting the calculation according to the degree (number of edges connected to the node) of each node. The edge model removes the node model’s bias towards attraction by ensuring that nodes which are strongly attracting are also strongly repelling, similarly for those nodes with weak attraction. Therefore, nodes with high degree are less likely to be clumped in the centre of the graph and in comparison with Fruchterman and Reingold’s layout it is much more clearly able to show any underlying clustered structure in the graph.

![Figure 6](image)

(a) ForceAtlas (Gephi).
(b) ForceAtlas with Noack’s Edge LinLog Adjustment (Gephi).

Figure 6. The protein interaction network laid out using the ForceAtlas layout. The layout on the left is the ForceAtlas style only while on the right the layout uses Noack’s LinLog algorithm to aid the clustering of nodes. Both algorithms produce layouts with a similar shape with the LinLog adjustment resulting in a layout that requires a greater area.

The final energy layout has strong associations with Noack’s. ForceAtlas³⁹ was developed for use in Gephi⁴⁰ as their users were dissatisfied with given layout algorithms. Rather than a layout, Jacomy et al. call their method a ‘spatialization’ which is defined as the act of projecting data onto space. The method aims to optimise the speed versus precision approximation. The forces in the algorithm are between Noack’s edge repulsion model (logarithmic attractive force, linear repulsive
force) and Fruchterman and Reingold’s layout (quadratic attractive, linear repulsive force) with both linear attractive and repulsive forces. Attractive forces are again distances between nodes and repulsive forces are based on distances and node degree plus one. This ensures all nodes have at least some repulsive force, unlike Noack’s model, and so poorly connected nodes are brought closer to well connected ones reducing visual clutter. The algorithm maximises speed until it is clear that some nodes are unstable at which point it slows and emphasises precision. Jacomy et al. also particularly wanted the layout to be interactive for the user and so there are many options that can be configured even while the layout is running which may alter the layout but also give users a better understanding of how the algorithm can be manipulated by the user to produce a layout that is most suitable for them.

In general, ForceAtlas produces better quality (in terms of a normalised edge length metric proposed by Noack41 based on size and graph density) with fewer iterations for most graphs than Fruchterman and Reingold and Yifan Hu (see Section 2.3) and the results were even more convincing when the technique was combined with Noack’s edge repulsion model; a comparison of the ForceAtlas layout with and without the LinLog adjustment can be seen in Figure 6. Performance improvements have also been made by utilising the Barnes-Hut algorithm42 (explained further in Section 2.3) and multi-threading.

2.2 Dimension reduction for layout

Dimension reduction is the process of taking data expressed in high-dimensional space and projecting it onto a lower-dimensional space. The challenge is to try to retain the information that is in the high-dimensional space and capture it in the lower-dimensional representation. Most dimension reduction techniques currently used for graph layout use the graph-theoretic distance between a pair of nodes as the information that is to be preserved. This section provides an overview of dimension reduction techniques in graph drawing, in particular multidimensional scaling (MDS), linear dimension reduction and self-organising graphs.

MDS involves minimising the difference between the Euclidean and graph-theoretic distances. There are two approaches of MDS to solve this problem: distance scaling and classical scaling.
Distance scaling is more common and the idea is to directly compute an approximation of the difference (the dissimilarity) between the graph-theoretic and the Euclidean distance for each pair of nodes in the layout. The sum of squares of the difference is called the ‘stress’ of the layout and the aim is to minimise this stress through an optimisation procedure. If the stress is considered to be too high then this can be taken as an indication that the layout is not an accurate representation of the original dissimilarities\(^\text{43}\). This stress function is regarded as being almost identical to Kamada and Kawai’s energy function for force-directed layouts. The difference between the two is that Kamada and Kawai use Newton-Raphson iteration to find the minima whilst distance scaling minimises the stress through the statistical technique of stress majorization\(^\text{44}\).

Distance scaling was first used for graph drawing by Kruskal and Seery\(^\text{45}\) for social network layout and since then it has also been used by Freeman\(^\text{43}\) to show relationships between workers in a department store while Buja et al.\(^\text{46}\) have implemented it as part of the XGvis system.

With distance scaling the optimisation procedure may result in a local minima solution. However, classical (or Torgerson-Gower) scaling follows a method of fitting inner products to the dissimilarities and finding an exact solution through the spectral decomposition. Formally, the spectral decomposition is the representation of the matrix of graph-theoretic dissimilarities between node-pairs as the matrix of its eigenvectors and a diagonal matrix of corresponding eigenvalues. By choosing the largest \(d\) eigenvalues (where \(d\) corresponds to the number of dimensions you want to reduce to) the lower dimensional representation of Euclidean distances between node-pairs can be found.

Brandes and Pich\(^\text{47,48}\) proposed that classical scaling should provide a good alternative to distance scaling but its quadratic running time is prohibitive to implementation. They proposed a sampling approximation technique known as Pivot MDS. In Pivot MDS some nodes are assigned to be pivots (the first pivot is chosen randomly and subsequent ones are chosen by being the node with the greatest graph-theoretic distance from all selected pivots so far). Non-pivots are positioned based on their distances to the pivot nodes whereas the pivot nodes can use the distances both to other pivot nodes and non-pivot nodes to determine their position. This is able to approximate the results of classical scaling but in linear time. Brandes and Pich also recognised that selecting
the number of pivots was a key problem and so implemented a second method, Progressive MDS, where the number of pivots required could be defined along the way.

Brandes and Pich48 recognise the importance of distance scaling noting that it is more successful at showing local details than classical scaling which is more suited to capturing global structure. They recommend using a version of classical scaling for initial layout followed by refinement through weighted distance scaling (in fact they recommend this refinement for any layout method). They also warn about the merits of approximating Euclidean to graph-theoretic distances pointing out that if the structure of the graph is not well captured by these distances then whatever layout method is used the resulting layout will not be good. Example layouts produced through both distance and classical scaling are shown in Figure 7.

![Figure 7. The distance and classical scaling layouts for the protein interaction network.](image-url)

Although the technique uses principal component analysis (PCA) for dimension reduction, Harel and Koren’s49 high dimensional embedding (HDE) has strong similarities with Pivot MDS. The aim of this layout was to follow the convention of placing adjacent nodes close together and non-adjacent nodes further apart. The graph is first embedded in a high-dimensional space by choosing 50 nodes as pivots and associating each pivot with a dimension; nodes are then expressed in high-dimensional space as graph-theoretic distances from pivots. Then the graph is linearly
projected onto two dimensions using PCA (although projection onto any lower dimensional space is possible). PCA maps the data onto the first two principal components which account for the most variance in the data. HDE is one of the quickest layout techniques available and is implemented in both Topolayout50 and Visone51, although it does seem to come at the cost of quality, in terms of edge lengths, co-located nodes and edge crossings52. Brandes and Pich48 note that both algorithms have similar running times although the quality of Pivot MDS is higher than HDE. Koren53 improves upon the HDE method by replacing PCA with subspace optimisation where the aim is to find a subspace of low dimensionality which can display the graph with, what they call, a “nice” (short edge lengths and uniform node distribution) layout.

Spectral graph drawing also reduces dimensions by using the eigenvectors associated with the two largest eigenvalues of the graph-theoretic distance matrix found via the spectral decomposition54. The method is also sped up by only using a sample of the nodes to compute the graph theoretic distances much like HDE and Pivot MDS55.

Self-organising maps (SOM) can be used to draw a self-organising graph. Here an unsupervised neural network is formed to project high-dimensional data onto a lower-dimensional space. For each node its neighbourhood is defined to be all connected nodes. There exists a set of two-dimensional, uniformly distributed training vectors and so each node is also described as a position in 2D space. The system tries to learn the distribution of the training vectors by selecting a training vector followed by its closest node. This node and all its neighbours positions are updated by moving the nodes closer to the position of the training vector. This method tends to be easy to implement and efficient due to no computationally expensive iterations. Bonabeau’s56,57 method can be used as a standalone graph layout or as a pre-processing step to provide initial layout. Due to the difficulty in training smaller graphs the method actually works better for larger graphs. Meyer’s58 inverted self-organising map (ISOM) fits graph-theoretic to Euclidean distances to layout the graph using a SOM method utilising their strong clustering and structure detection capabilities.
2.3 Computational improvements

While force-directed techniques are generally not suitable for graphs with node numbers in the hundreds or thousands, when evaluated qualitatively or against the aesthetic principles on graphs with up to 40 nodes, they do give good results. Above that size, multi-level (or multi-scale) algorithms are one option that can be used to make force-directed techniques more efficient.

The idea behind multi-level techniques is to find a sequence of coarser representations of a graph, optimise the drawing in the coarsest representation, and propagate that layout back through to the original graph. The coarser representations are created by collapsing connected nodes whose edges becomes the union of the edges of all the nodes it comprises.

The inspiration for using a multi-level technique for graph drawing came from Hendrickson and Leland, although the original idea came from particle physics. Their idea was to use a multi-level technique to solve the graph partitioning problem of how to divide the nodes of the graph into sets such that there are as few edges crossing between the sets as possible. Hendrickson and Leland solved this problem using the coarsest representation of the graph to define the partitions. An example of the stages of a multi-level graph layout algorithm can be seen in Figure 8.

Once the graph has been reduced to its coarsest level the method to actually lay out the coarse graph varies. This can be using a force-directed algorithm, a dimension reduction approach or a spectral approach. Computational improvements are not limited to multi-level
methods and other techniques are also successful.

Multi-level methods vary not only by the layout algorithm used but also by the coarsening scheme implemented. Cohen65 developed the first multi-level technique and it has similarities to GRIP60. The algorithm follows the recurring theme that graph distances should be reflected in Euclidean distances by using an incremental layout approach with MDS. Instead of modelling the Euclidean distances on graph-theoretic distances between nodes Cohen opts to use the linear-network distance. The linear-network distance reduces the distance between nodes if there are multiple paths between them further emphasising the structure of the graph; in particular, this strategy makes clusters in the graph more prominent in the drawing.

Walshaw64, GRIP (Graph Drawing by Intelligent Placement)60,68 and Hu61 all share the idea of using maximum independent vertex sets (MIVS) for their coarsening procedures where an IVS is formed if there are no two nodes connected by an edge in the subset, and it is said to be maximal if the addition of any edge to the subset would break this property. One of Hu’s61 contributions is a hybrid approach that allows the algorithm to follow a simple edge collapsing coarsening scheme typically but if more than 50\% of the nodes remain after the edge collapsing then the algorithm reverts to the MIVS coarsening scheme. FMS’s (fast multi-scale method)63 coarsening method is based on an approximation to the \textit{k}-centres problem forming clusters which are then shrunk to single nodes while its predecessor69 creates the hierarchy based on cluster number, degree number and homotopic number. In FM3 (fast-multipole, multilevel method) Hachul and Jünger62 use a novel method based on solar systems where each node is classified as a sun, planet or moon and each solar system is collapsed to one node.

Many of the multi-level algorithms are variations of the force-directed layouts and since force-directed layouts are modelled as physical simulations they can be described as \textit{n}-body problems. So, along with using a multi-level scheme to improve computation, a Barnes-Hut42 simulation can be used with a quad-tree to improve the order of complexity of the calculation from \(O(n^2)\) to \(O(n \log n)\). A square is placed over the initial layout of the graph and is divided into four. If there is more than one node inside a sub-square then it is divided into four. This procedure continues recursively until each square contains at most one node. Nodes are then clustered based on their
position in the quad-tree and those clusters considered to be far from the node of interest form a
super-node whose forces can be considered as one reducing the complexity of the force calculation.

In terms of the force-directed methods used in multi-level algorithms, Walshaw's method is
quick and is able to lay out a graph of 500,000 nodes in only a few minutes using a modified version
of Fruchterman and Reingold's algorithm. GRIP initially uses Kamada and Kawai's algorithm
followed by Fruchterman and Reingold's for refinement but the difference with GRIP is that the
layout can be done in any dimension and Gajer et al. then suggest projecting down to two-
dimensions at the end to create a smoother layout. FMS (Figure 9(a)) also uses Kamada and
Kawai's layout technique aiming to conform to the graph layout principles at both the local and
global levels. Hu61 (Figure 9(b)) claims to produce layout with a similar speed to Walshaw but
with better results for certain graphs. He utilises the Barnes-Hut approximation but can limit
the number of recursive divisions, and adds an adaptive cooling scheme to a general force-directed
model where step length remains constant until there are five consecutive energy reductions, in
which case the step size is increased, or if there is an energy increase then step length is decreased.

FM3 is the final multi-level force model which also uses the quad-tree to approximate repulsive
forces by rapidly evaluating potential fields on each node. Further computational improvements
of FM3 have involved implementing a version of it on the GPU for speed resulting in layouts that
were at least 20 times and up to 60 times faster70.

Spectral graph drawing approaches can also use eigenvectors of the Laplacian matrix to produce
a projection of the layout via the spectral decomposition. For a general undirected graph the
Laplacian matrix is symmetric with node degrees along the diagonal, zero where there is no edge
between two nodes or the negative weight of the edge between the two nodes if there is. If the
graph is not weighted all edges can be taken to have equal weight.

The algebraic multigrid computation of eigenvectors (ACE)66,71 algorithm is able to draw
graphs with millions of nodes in under one minute. It does this by stating Hall's72 placement
algorithm as the eigen-projection problem as in equation (1) where L is the Laplacian matrix,
x is a vector of coordinates of the position of each node and $1_n = (1 \ldots 1)^T \in \mathbb{R}^n$. ACE then
requires the coarsening phase, known as the algebraic multigrid technique, to simplify and solve the
problem. Here the coarsening phase is based on stating the problem initially in a high-dimension and then to keep restating the problem in lower dimensions. Once expressed in the lower dimension the problem can be solved in that dimension and the solution can be projected back up through the increasingly less coarsened graphs to the original problem.

\[
\min_x x^T L x \\
\text{given } x^T x = 1 \\
in the subspace x^T \cdot 1_n = 0
\] (1)

Frishman and Tal67 also suggested using a spectral approach for layout using a sequence of coarsened graphs which were then partitioned and a layout found for each partition followed by a layout for the whole graph. This showed a greater clustering ability than GRIP and sped up their technique further by also implementing it on the GPU.

OpenOrd36 is a graph layout based on the VxOrd73 algorithm and implemented in the graph drawing software Gephi. It is specifically designed to uncover global structure, improve the visual
appeal and shorten the running time of force-directed graphs. It is based on the phases of simulated annealing and incorporates node clustering by ignoring or cutting long edges in the layout (due to the force calculation, domination of the repulsive force gives more clustering). The multi-level part uses Walshaw’s algorithm but instead of using random initial positions for coarsening, average-link clustering is used which makes use of both edge weights and graph distance to find clusters to collapse. The algorithm can be implemented in both serial and parallel. They have tested the layout on real-world datasets with over 500,000 nodes and found that the serial and parallel implementations produce similar results that were more visually appealing than VxOrd. As can be seen from Figure 9(c) the OpenOrd algorithm produces a layout markedly different to the others clearly showing an overview and clustered structure of the graph.

Chen and Buja74 also use a combined approach in a method which can be applied to dimension reduction as well as to graph drawing problems. They do this by taking a force-directed function and modelling the attractive and repulsive forces with box-cox transformations which results in a generalisation of many previously published energy functions in graph drawing such as Noack’s LinLog. In this case the parameter (such as clustering) which we wish to optimise in the algorithm can be tuned.

TopoLayout50 is a completely different approach to finding coarser representations of the graph whereby the algorithm detects topological features in the graph (such as trees, clusters and complete graphs) and collapses them into a single node. This is done repeatedly until the coarsest graph is reached and then each feature is assigned their own layout algorithm and laid out accordingly. These include circular layouts, the GEM algorithm and also detecting and using the high-dimensional embedding (HDE) layout algorithm discussed in Section 2.2 on dimension reduction. In their evaluation they found it performed better, in general, than FM3, ACE, and HDE in terms of speed and a visual assessment of the quality of the layout produced.

2.4 Evaluation of algorithmic layouts for graph visualisation

Force-directed, dimension reduction and multi-level algorithms are often evaluated to see which gives the ‘best’ layout. Typically, it is the adherence to some of the principles of graph drawing,
along with the time taken to draw the graph, which are used to determine which layout is best; although sometimes only a visual inspection of the graph is used to assess visual quality as in Hachul and Jünger75 and Archambault et al.50.

The criticism of force-directed methods is wide and varied but that does not seem to have prevented them from becoming popular. The two main criticisms are that they have a high running time and therefore become unsuitable for large graphs and the second is their tendency to get trapped in local minima (even with some improvements added)60. These problems are magnified in larger graphs resulting in layouts with many edges crossing, node occlusion and labels on nodes which are unreadable. Ultimately this leads to nodes being placed in arbitrary positions76 or layouts which have led to the term “giant-hairball” being applied, an example of which can be seen in Figure 10. They are also often unpredictable and may produce very different graph layouts for graphs which only differ slightly in structure10, a problem known as “preserving the mental map”77.

Not all algorithms perform equally though and so a number of comparisons between layouts measuring running time and other criteria have been conducted. Tunkelang19 was the first to
perform a quantitative evaluation of his layout comparing it to Fruchterman and Reingold’s and simulated annealing. He evaluated on the principles of uniformity of edge lengths, uniformity of node distribution and number edge crossings on a range of graphs. Small graphs had about 16 nodes and large graphs between 50 and 60. Sparse graphs have nodes with degree at most three and dense graphs with degree greater than four. In both small and large sparse graphs Tunkelang’s method out-performed Fruchterman and Reingold’s and simulated annealing on all three measures. On the dense graphs Fruchterman and Reingold’s produced a graph with more uniform edge lengths and node distribution than Tunkelang’s. Simulated annealing gives the worst performance out of the three.

Frick et al. evaluated their GEM algorithm against Fruchterman and Reingold’s and Kamada and Kawai’s on 30 graphs on the criteria of running time and the quality metrics of edge crossings, mean edge length, edge length deviation and node distribution. GEM was always the fastest algorithm being at least four times faster that Fruchterman and Reingold’s. Kamada and Kawai’s layout slowed considerably once graph size was above 30 nodes. In terms of the principles the three algorithms produced similar results though GEM fared slightly better than Fruchterman and Reingold’s while Kamada and Kawai’s did better than GEM on the aesthetic criteria with the smaller, sparse graphs.

Brandenburg et al. compared Fruchterman and Reingold, Kamada and Kawai, GEM, simulated annealing and Tunkelang’s approaches on general, undirected graphs with straight lines. They found that most graphs drawn conformed to the aesthetic principles of graph drawing, in particular, uniform node distribution and edge length, whilst also stating them to be empirically visually appealing. The layouts were also stable producing much the same graph each time the chosen algorithm was run. However, the graphs were small with no graph having more than 150 nodes plus edges in total. Fruchterman and Reingold, Kamada and Kawai, GEM and simulated annealing all produced relatively similar graphs especially showing symmetry, while Tunkelang’s generally produced a different drawing with no symmetry. They suggest using Tunkelang’s method as an option if the other methods are unable to produce an adequate layout. Kamada and Kawai’s and GEM were found to be the quickest followed by Fruchterman and Reingold’s if the graphs
were kept small. Simulated annealing is a flexible method because of how it can be weighted to prioritise specific aesthetic principles but a lot of time and patience is needed to configure these parameters and then run the algorithm. Ultimately, they recommend that Kamada and Kawai’s or GEM should be used first followed by Tunkelang’s and then simulated annealing.

Hachul and Jünger52,75 evaluated the same six layout algorithms twice; they were Fruchterman and Reingold’s grid variant algorithm (GVA), FM3, GRIP, FMS, HDE and ACE. Firstly, they evaluated only on the basis of run time and their own visual inspection. 28 graphs were chosen to perform the evaluation on and classified as artificial or real-world, and kind or challenging. In general, GVA was always the slowest algorithm and takes over five hours to compute for the largest graph. FM3 is generally faster and GRIP up to nine times faster again. FMS produces layouts in a similar time to FM3 but is restricted to graphs of less than 10,000 nodes. Except on the two most challenging graphs ACE computes layouts in less than 10 seconds and HDE will compute most in under one second and all in under five. In inspected visual quality terms they consider GVA to always produce a poor layout with all other methods able to produce visually pleasing results for the kind graphs. Despite being the quickest ACE and HDE suffer from node occlusion. GVA, FM3 and HDE were the only algorithms able to produce layouts for all graphs and they consider that FM3 always produces a pleasing layout.

In Hachul and Jünger’s52 second evaluation they used the same layouts and testbed of graphs but replaced the visual assessment with quantitative measures of uniform edge length, number of edge crossings and non-overlapping of nodes and edges. For the kind graphs GVA, FM3, FMS, HDE and ACE all produced layouts with uniform edge length; however, ACE and HDE produce much more variation for the challenging graphs. In terms of edge crossings all graphs perform better than GVA and particularly ACE and then FM3 do the best. FMS and HDE produce graphs with a range of edge crossings while those two plus FMS also give layouts with many overlapping nodes and edges. Again they report that FM3 to be the most generally pleasing layout in terms of complying with the graph drawing principles. Ultimately they recommend that when attempting to lay out a graph HDE should be used first followed by ACE, but if neither of the produce acceptable results then FM3 should be used.
As mentioned at the end of Section 2.1.3, Jacomy et al.39 compared the ForceAtlas layout to the ForceAtlas layout with a LinLog implementation, Fruchterman and Reingold’s layout and to the layout produced by the non-multi-level implementation of Hu61. ForceAtlas in general produced better quality graphs (in terms of a normalised edge length metric41) in fewer iterations. When combined with the LinLog implementation, ForceAtlas, for long-term quality (letting the algorithm run for 750 iterations), was shown to produce the highest quality in terms of Noack’s metric. This is perhaps not a surprise considering the LinLog layout was developed for this optimising metric.

There are few comparisons of the dimension reduction techniques against other algorithms but a comparison from Brandes and Pich48 between HDE, FM3, GRIP and classical MDS notes that each of the layouts can be improved by applying up to 60 iterations of distance scaling to the layout as a post-processing refinement to any original algorithm.

User studies of the effect of layout are less common, one exception to this is the comparison of three force-directed layouts from Purchase23. She found that for three layouts tested (Fruchterman and Reingold, Kamada and Kawai, and Tunkelang) there was little variation in users’ understanding of the graph between layouts despite the fact the each layout emphasised a different aesthetic principle. This could indicate that the use of these criteria in layout is not as important as first thought; however, the graphs tested had only 17 nodes and 29 edges and so the graphs may not have been large enough distinguish between the principles, that the principles were competing with each other or that the graphs were too small to produce much variability in the layout or difficulties to overcome.

What is interesting though is the type of tasks she asked her users to complete. These were finding shortest paths, identifying nodes to remove in order to disconnect the graph and identifying edges to remove in order to disconnect the graph. A particular consideration is whether these tasks are representative of those carried out by users in visual network analysis.

The readability and graph drawing principles qualities emphasised by most force-directed methods seem to support this style of task, and are feasible on the small graphs that force-directed layouts work optimally for, but it is unclear as to if these type of accurate, precise measurements are a typical analysis tasks for graphs with hundreds or thousands of nodes. Therefore, if force-directed
layouts are optimal for a particular task and these tasks are only completed on a certain size of graph then extending force-directed techniques to larger graphs would only produce a layout that is perceived to be optimal for those task. So if those kinds of tasks become infeasible due to the volume of nodes and edges then the better layouts should support the user for a different set of tasks.

Noack’s LinLog layout is optimised for clustering to give a clear representation of the structure in the network and van Ham and Rogowitz found users tried to optimise clustering ahead of any other aesthetic metric also indicating users are more concerned with overall structure. Another aim for layout should then be to support users in tasks concerned with overview, structure, exploration, patterns and outliers. Algorithmic layouts which tend towards this motivation for layout are Noack’s LinLog and OpenOrd.
Table 2. A summary of how the graph drawing algorithms in this section compare. A checkmark against a graph drawing principle indicates it was considered in the design of the algorithm.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Performance</th>
<th>Edge Crossings</th>
<th>Symmetry</th>
<th>Even Node Distribution</th>
<th>Uniform Edge</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Embedder</td>
<td>Good for graphs of up to 50 nodes</td>
<td>✓ Achieves this for small graphs</td>
<td>✓ Small graphs</td>
<td>✓ Small graphs have even edge lengths</td>
<td>50 nodes and should not be dense</td>
<td>Best for less than 30 nodes</td>
<td></td>
</tr>
<tr>
<td>Fruchterman & Reingold (FR)</td>
<td>Aim was for speed and simplicity but slower than GEM</td>
<td>✓ Performs worse than Tunkelang’s algorithm on edge crossings</td>
<td>✓ Shows symmetry</td>
<td>✓ This was one of their aims but they did not think they achieved it but better than SA and Tu for dense graphs</td>
<td>Able to draw graphs with thousands of nodes but slowly and does not often result in a good layout</td>
<td>Does not require parameters to be optimised</td>
<td></td>
</tr>
<tr>
<td>GEM</td>
<td>Much faster than FR and KK</td>
<td>✓ Although they say they did not explicitly minimise this</td>
<td>✓ Shows symmetry well</td>
<td>✓ Similar performance to FR and KK</td>
<td>Handles large (> 128 nodes) better than FR and KK</td>
<td>Produces similar results to FR and KK when compared using the graph drawing principles</td>
<td></td>
</tr>
<tr>
<td>Kamada & Kawai (KK)</td>
<td>Much slower than GEM for graphs > 30 nodes</td>
<td>✓ Main aim and shown in layouts</td>
<td>✓ Similar to FR and KK</td>
<td>Handles large (> 128 nodes) better than FR and KK</td>
<td>Euclidean distance should approximate graph theoretic distance</td>
<td>Up to 30 nodes, better results than GEM on small sparse graphs for graph drawing principles</td>
<td></td>
</tr>
<tr>
<td>Simulated Annealing (SA)</td>
<td>Considered to be too slow to be used practically</td>
<td>✓ Performs worse than FR and Tu</td>
<td>✓ Performed worse than FR and Tu</td>
<td>Can be used for graphs up to 60 nodes with similar performance to FR, KK and GEM</td>
<td>Can be used for graphs up to 60 nodes with similar performance to FR, KK and GEM</td>
<td>Also tries to prevent nodes coming too close to edges. Adaptable.</td>
<td></td>
</tr>
<tr>
<td>Tunkelang (Tu)</td>
<td>Similar to FR, 100 node in less than 3 seconds</td>
<td>✓ Performs better than FR and SA on this metric</td>
<td>Can show symmetry</td>
<td>✓ For dense graphs FR performs better</td>
<td>Tested on graphs with more than 10 000 nodes</td>
<td>Aims to place non-adjacent nodes further from each other. If other force-directed layouts do not produce a good result then try this algorithm</td>
<td></td>
</tr>
<tr>
<td>LinLog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results in graphs with more obvious clusters than KK and FR</td>
</tr>
<tr>
<td>Force Atlas</td>
<td>Speed can be sacrificed for greater precision or vice versa. In terms of number of iterations to layout the graph it takes fewer than FR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Edges should be as short as possible</td>
</tr>
<tr>
<td>Pivot MDS</td>
<td>Can layout a graph with 100 000 nodes in 11s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approximation to a classical MDS technique which reproduces graph theoretic distances as Euclidean distances. Node distribution is proportional to the graph theoretic distribution</td>
</tr>
</tbody>
</table>
Table 2. A summary of how the graph drawing algorithms in this section compare. A checkmark against a graph drawing principle indicates it was considered in the design of the algorithm.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Performance</th>
<th>Edge Crossings</th>
<th>Symmetry</th>
<th>Even Node Distribution</th>
<th>Uniform Edge</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDE</td>
<td>Should be extremely fast, 1 million nodes in less than a minute</td>
<td>Often produces layout with many edge crossings</td>
<td>Similar to Pivot MDS and places adjacent nodes close together and non-adjacent further apart</td>
<td></td>
<td></td>
<td></td>
<td>Static layouts can be much worse than traditional force-directed algorithms. Tries to achieve the graph drawing principles in a higher dimensional space.</td>
</tr>
<tr>
<td>ACE</td>
<td>Like HDE is able to draw graphs quickly but a layout is not always able to be computed</td>
<td>Does well at computing graphs with few edge crossings</td>
<td>Nodes may end up being placed too close together</td>
<td>Especially with large graphs edge length uniformity is poor</td>
<td></td>
<td>Up to about 5000 nodes</td>
<td>Running times can grow as graphs get more challenging</td>
</tr>
<tr>
<td>ESOM</td>
<td>Are known to be computationally efficient</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walshaw</td>
<td>Fairly fast computed layout in less than 30 seconds for a graph with less than 10 000 nodes</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRIP</td>
<td>Able to layout graphs with more than 10 000 nodes in less than one minute</td>
<td>✓ The projection from the higher dimensional space should aid symmetry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMS</td>
<td>Around two minutes for a graph with 6000 nodes but 10 000 nodes at the most</td>
<td>Not considered because of the use of KK’s algorithm</td>
<td>✓ Since based on KK and this was their main aim. Locally aesthetic.</td>
<td></td>
<td>More than 6000 nodes</td>
<td>The graph should be aesthetic but specific criteria are not defined. Partly based on KK.</td>
<td></td>
</tr>
<tr>
<td>FM³</td>
<td>Not as fast as HDE but still quick and able to produce layouts for even very large graphs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hu</td>
<td>Speed is similar to Walshaw and FM³ and uses Barnes-Hut for optimisation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenOrd</td>
<td>Has a parallel implementation to improve performance</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- HDE: Heuristic Dot Placement
- ACE: Algorithm for Catching Edges
- ESOM: Edge-Splitting Multidimensional Scaling
- Walshaw: An algorithm for drawing graphs
- GRIP: Graphical Interface for Planning
- FMS: Force-directed Multithreaded Strategy
- FM³: Force-directed Multithreaded Strategy 3
- Hu: Hsu
- OpenOrd: OpenOrd
Table 2. A summary of how the graph drawing algorithms in this section compare. A checkmark against a graph drawing principle indicates it was considered in the design of the algorithm.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Performance</th>
<th>Edge Crossings</th>
<th>Graph Drawing Principles</th>
<th>Uniform Edge</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TopoLayout</td>
<td>Worst case complexity of $O(n^3)$</td>
<td>✓ Crossing reduction for each topological feature.</td>
<td>Symmetry</td>
<td>Even Node Distribution</td>
<td>More than 70,000 nodes</td>
<td>Produces a visually appealing layout usually different to those by other algorithms.</td>
</tr>
</tbody>
</table>
Away from direct comparisons, a general problem noticed by Gansner and North 81 is that most force-directed algorithms were drawn with ‘point’ nodes in mind (nodes which are drawn as a dot rather than a disc) whereas many graphs in information visualisation require nodes to be shown with varying size, colour, shape and be labeled or they need to be interactive. Archambault et al. 50 call this being “area-aware”. This is particularly prevalent in network visualisations where being able to interact with and explore the graph is more common than just with graph drawing. An alternative to just scaling the diagram up is using a post-processing solution of constructing a Voronoi diagram over the graph. A Voronoi diagram is constructed by partitioning a plane into convex polygons such that there is one node in each polygon known as a cell. Nodes are then moved to the centroid of their cell which is the point most removed from all other nodes; thus, they no longer overlap but neither do they lose the relative distance between each other. Additionally, the straight line edges are then replaced with smooth curves to prevent node-edge overlaps, which has been found to improve readability 82,83.

Running time aside, it is still the graph drawing principles that most graph layouts are judged on. However, studies on user requirements and the impact of these principles are lacking, especially on graphs of any significant size. This means that the layout algorithms used may not be satisfying anyone’s requirements at all.

Because of this dissatisfaction with standard layout outputs new techniques have been developed. These techniques often make use of node-attribute data. Node-attributes are additional pieces of data that may be known about each node which can be used to enrich the understanding of the graph. The evaluation of these techniques is more focused on what can be learnt or what insights can be made through using this layout than on conforming to specific principles. Techniques that take advantage of node-attributes are discussed in the next section.

3 Using Node-Attributes for Layout

Graphs that are defined along with attributes from their nodes are termed multivariate graphs. Graphs that have this kind of structure are actually quite common35,41,84,85. The most popular
way of visualising this underlying data is using retinal variables such as the colour (and colour gradients), shape, and size of drawing of the nodes; additionally, glyphs can also be used.

Here we take an attribute to mean:

(a) a piece of data about a node (or edge) that already exists;

(b) a derived item of data about a node such as a computed centrality metric or a cluster generated from an algorithm;

(c) a user-defined restriction that they want the graph to portray.

As stated above, users strongly interpret the proximity of a node in relation to others as the existence of a relationship or similarity between two nodes. Similarity of attributes would also imply a similarity between two nodes. Therefore, introducing attributes is one way of relating the layout of the graph to the properties of its nodes. Being able to make inferences about correlations between the structure of a graph and node-attributes is one way of increasing the potential insight to be gained from visualising it.

Using attributes to influence the layout of the graph is not such a recent idea. As far back as the 1930s Jacob Moreno realised that “variations in the locations of points could be used to stress important structural patterns in the data”, for example, simply separating boys and girls when graphing friendships between classmates or placing American football players in their positions on the field in a pass network gives valuable insight into the structure of relationships in the graph.

Lundberg and Steele and Northway used sociometric status for determining node position. Lundberg and Steele used those with high status as the nuclei of the network and placed others in a ring around them for presenting their research on social patterns in a village. Northway used a layout of concentric circles, known as a target sociogram, putting nodes with higher values close to the centre for displaying relationships between pupils in a classroom. A similar method has also been used by Brandes and Wagner and Brandes et al. to show the preventative measures for HIV introduced by local organisations in Germany where various node centrality measures were used to show status.
Recently, it has become even more common to use node-attribute data for layout of graphs. There are three main ways attributes can be used in graph layout: one is to use them to impose a set of restrictions on the placement of nodes, a second is to use membership of a group or cluster to position the nodes and the third is to directly map an attribute (or attributes) to a coordinate in the layout space (e.g., \(x\) and \(y\) in a Cartesian system).

3.1 Constraint-based layouts.

As with multi-level techniques, constraint-based methods often make use of force-directed algorithms. As shown in Sections 2.1 to 2.4 force-directed algorithms and their derivatives use aesthetic principles as motivation, in their implementation and for their evaluation. Constraint-based techniques impose some user-defined placement criteria on all or a selection of the nodes in addition to using a layout algorithm. These can be constraints such as fixing node position, separating certain groups of nodes or adding layout constraints to a fixed sub-graph. These constraints often come from node-attributes in the data.

Probably the most well-known use of constraints in graph drawing is the Sugiyama et al.\(^9\) approach for hierarchical structures. The hierarchy can already exist in a directed graph or could be induced from a set of node-attributes. It results in a layered style where vertical positions are assigned first followed by horizontal ones to reduce edge crossings. A version of this has also been applied by Brandes et al.\(^9\) using the vertical attribute to depict a person’s status in a social network and by Brandes and Wagner\(^5\) by clustering and using each cluster as a layer.

A similarly inspired method by Koren and Harel\(^4\) is an application of one-dimensional layout optimisation by axis separation. A one-dimensional layout is computed where the layout of nodes on each axis can come from a node-attribute, some aesthetic consideration or application of an existing layout algorithm to one dimension (Koren and Harel give an example of using Kamada and Kawai’s) which provides a one-dimensional coordinate. The second dimension can then be left to show hierarchy or clustering in the data, another node-attribute or they propose an web-based example where the same nodes emit two different graphs (one showing hyper-link structure and the other page similarity) and produce a one-dimensional layout for each then combine the axes.
into a two-dimensional plot.

Mapping nodes to one axis is also the rationale behind Krzywinski et al.'s Hive plots95. Multiple axes are positioned radially and nodes are divided between axes according to some attribute or their connectivity structure and then distributed along each axis according another attribute. An edge is drawn as a curved line between axes and nodes may appear more than once in a layout in order to clarify structure. They call the layout a “rational visualisation of networks” and a panel of Hive plots can be created to view multiple attributes at the same time. The main aim of Hive plots are to uncover structure in the graph that could not be previously seen with other network diagrams and to be able to do so for graphs of any size. In Figure 11 a Hive plot shows the dependencies between classes in the Flare visualisation tool-kit. Nodes are clustered by class type and the two distinct axes show nodes which are either only source or only target nodes. The duplicated axes show nodes which are both source and target nodes.

Figure 11. A hive plot showing dependencies between classes of the Flare visualisation tool-kit implemented in d3.js. (Image based on http://bost.ocks.org/mike/hive/).

Most constraint based layouts take the form of solving an optimisation problem subject to some
constraints. He and Marriott96 recognised that adding constraints to the layout could aid interactivity through preserving the user’s mental map of the layout when nodes are moved. Realising that adherence to graph drawing principles was restricting users’ understanding of the underlying semantics of the graph they proposed three implementations (plus one for trees). The first was a constrained version of Kamada and Kawai’s algorithm and the second a polynomial approximation to this constrained version. The third combines the two methods by initially applying the polynomial approximation method to the graph which gives performance benefits (up to four times faster) followed by the full method which optimises the layout to better adhere to some of the graph drawing principles.

Much of the work on constraint-based layout methods has been done by Dwyer and various co-collaborators, though initially they only focused on direction as an attribute in DiG-CoLa (constrained layout of digraphs)97,98 basing it on Sugiyama’s method but adding a further optimisation procedure for consideration of the aesthetic principles. They extended this by adding orthogonal ordering constraints which imply relative node position in relation to all other nodes (a kind of spatial arrangement attribute), again preserving the user’s mental map99.

A more generic method from Dwyer et al.100 is IP-Sep CoLa (Incremental Procedure for Separation Constraint Layout of graphs). This method forces a separation between nodes by adding constraints such as organisation into horizontal or vertical layers, containment in a fixed area (as shown in Figure 12), fixing node positions, and non-overlapping nodes by considering certain attributes. This method was suggested as being useful for displaying protein interaction networks by Barsky et al.101 and Jianu et al.102, but both found its adaptability is negated by its complexity; however, Dwyer et al.103 make use of the method interactively by implementing it in the detailed view for overview+detail graph exploration. It is further extended by its use for continuous layout in the diagramming tool ‘Dunnart’ by preserving topology in response to user interaction104,105.

The biology community is a particular driving-force behind the use of node-attribute data for constrained graph layout27,101,102. This is often because there are already conventions that depend on node-attributes (from when layouts were drawn manually) that were failing to be satisfied by automatic layout algorithms. Examples are Cerebral from Barsky et al.101 for the inclusion of
sub-cellular localisation and so positioned the regions in layers with a modified version of simulated annealing. Jianu et al.102 and Genc and Dogrusoz27 required signalling pathway drawing conventions in their interaction network (see Figure 13) and Jourdan and Melançon107 for the use of conventions from metabolic and regulatory pathways. As Barsky et al.101 put it the nodes need to be positioned in a “biologically meaningful” manner.

MagnetViz108 also blends force-directed techniques with attributes for layout. Initially the graph is laid out as an adapted version of Tunkelang’s19 force-directed layout from which point the layout become interactive. A user can then assign a virtual magnet to represent a particular attribute and decides where to place this on the graph. Nodes then rearrange their locations depending on the presence of that attribute. Those nodes which have that attribute are attracted towards the magnet and it is up to the user to decide how strongly attracting each magnet can be; they can also define a boundary inside which all nodes with that attribute should be. Multiple magnets can be used in the layout and and they support the use of logical operators for combinations of attributes. After each addition of a magnet the graph re-organises its layout to reflect the new forces in the graph. Problems with the approach mainly lie on the user’s side and that they
cannot be relied upon to create layouts that are necessarily the most useful for the tasks they want to accomplish, may put magnets in inappropriate positions or not select the best combinations of attributes to use. Spritzer and Freitas accept that the tool can have a steep learning curve but have also proposed a number of improvements they will make to the tool including limiting the strength of the magnets, proportion boundary size with the number of nodes inside it, adding filters to hide nodes and to incorporate different layouts for nodes attracted to different magnets. However, if the method is correctly applied then it can produce layouts that are “aesthetically pleasing and semantically relevant” that enable the user to complete many of the graph analysis tasks defined by Lee et al.80.

A pure attribute only based generic constraint-based layout technique is Shneiderman and Aris’s NVSS (Network Visualisation by Semantic Substrates)76,109. Nodes are placed in non-overlapping regions according to the value of some attribute; nodes inside these regions can then be further positioned with respect to other attributes. Each region is described as a semantic substrate and by proportioning substrate size to the number of nodes it contains allows a quick and easy comparison of category sizes whilst the use of the regions makes it easier to identify links between categories and to follow connections. It has proved useful in the analysis of legal precedent data and an
example network is shown in Figure 14.

Genetic algorithms provide another way of encoding constraints into graph layout. Like some force-directed methods they don’t solve the optimisation problem directly but follow the genetic operations of mating and mutation. The idea is that good genes will thrive and bad genes will die out. In graph layout this is akin to reaching the optimal layout according to the specified constraints110. Kosak et al.111 specified that perceptual organisation (the principles of grouping from Gestalt Laws) was more important than layout aesthetics and proceeded to lay out the graph using a genetic algorithm according to conformation to these features (such as clusters or zones, sequences, alignment and symmetry), syntactic validity (overlapping nodes or intersection of nodes and edges) and also some graph drawing principles. The genetic algorithm was more successful than following these rules alone and its strengths lie in being able to handle multiple interacting visual organisational features and aesthetics, while at the same time claiming to produce layouts of excellent quality. Two drawbacks of the method are that the genetic algorithm may never find a valid layout and that the algorithm may take a long time to converge. Branke et al.112 combined
each iteration of a genetic algorithm with the spring embedder until it no longer improved the quality of the graph. They tested it on graphs that are usually difficult for the spring-embedder to lay out successfully alone and found that it was able to produce graphs that reduced the number of edge crossings compared to the force-directed layout.

Since some constraint based layouts include one or more of the graph drawing principles as a constraint some of these layouts can be analysed in a similar respect to those in Section 2. Sugiyama et al’s layout, for example, considers the principles of edge crossings and keeping adjacent vertices close and can lay out graphs with more than 500 vertices. Brandes and Wagner built on Sugiyama et al’s layout to consider the constraint of clustering. Hive plots do not follow the graph drawing principles and once all the data for the axes is computed it takes less than one second to lay out a graph with many thousands of nodes. In an application-based context Hive plots have been compared to the ForceAtlas layout demonstrating how they are able to more clearly show certain structural features of the graph. The addition of constraints to the Kamada-Kawai method by He and Marriott does not significantly affect running time and they were even able to combine it with a polynomial approximation.

DiG-CoLa was tested against a Sugiyama-style layout and while it produced more edge crossings for smaller graphs DiG-CoLa had fewer edge crossings for the larger graphs. Dig-CoLa’s edge lengths were also more uniform and it took seven minutes to lay out approximately 2000 nodes. Meanwhile, IP-Sep CoLa also included support for clustering, preventing node-label overlap and various positioning constraints. In 100 seconds IP-Sep CoLa can layout 10,000 nodes. Barsky et al’s Cerebral can lay out a few thousand nodes if the number of attributes is kept to around 12 or fewer. They considered edge crossings, node-edge crossings, edge-lengths and also biological proximity in the optimisation of their layout. MagnetViz reported that their method was able to produce an aesthetically pleasing graph while NVSS focused on clustering, groups and filtering. The genetic algorithms did not consider specific principles but just that the user could incorporate whichever principle they may wish into the optimisation.
3.2 Clustering-based attribute layout.

Showing clustering in the layout of the graph is one of the most efficient ways of communicating structure in a graph to users. Users even completely neglect the aesthetic of edge crossing in favour of clustering the graph. Section 2.1.3 reviewed Noack’s proposal for a force-directed approach for showing clustering (although the clusters were determined by the algorithm rather than being a defined attribute). The OpenOrd layout mentioned in Section 2.3 also groups nodes into clusters according to topology. Methods do exist, however, to either explicitly show clusters already encoded as attributes or to show clusters that have been inferred from attribute similarity.

Extending the semantic substrate idea from Section 3.1 is the Group-in-a-Box layout (as shown in Figure 15) which groups each cluster into the rectangle of a treemap and each cluster is then laid out individually inside each rectangle. Other treemap approaches have also been used. Fekete et al. took the idea of decomposing every graph into a tree structure plus some remaining edges and then using this tree structure to display the graph as a treemap upon which the links between nodes can be overlaid as did Muelder and Ma. However, while Fekete et al. put all nodes that did not fit into the computed hierarchy into a separate section, Muelder and Ma used hierarchical clustering to compute the tree structure and so all nodes were part of the treemap. Muelder and Ma showed their approach scales to over 300,000 vertices and that it can be used both independently and as an initiation strategy for force-directed layouts.

Following their treemap layout method Muelder and Ma went on to propose the use of a space-filling curve for layout. The nodes are positioned along the curve according to some computed node ordering to maximise the usage of space. For weighted graphs single linkage clustering is used while for unweighted graphs a community structure algorithm is used to decide the node orderings. Muelder and Ma demonstrate that the technique can be used for graphs with over one million nodes. They compare two of their space-filling layouts to a treemap layout and various algorithmic layouts (LinLog, GVA, FM³, GRIP, ACE and HDE) on a graph with 6,000 nodes. While ACE and HDE were clearly the quickest (about 3.5 times faster compared to the space-filling layouts) their layouts showed no structure at all. GVA, LinLog, GRIP and FM³ were all slower (1.5s for GRIP to three minutes for LinLog) and produced hairball type layouts.
Figure 15. The group-in-a-box layout from NodeXL of the clustered protein interaction network.

The treemap and two space-filling layouts all computed in a similar time of under one second. Their layouts were clearly able to show a clustered structure having used a clustering algorithm as part of the layout to decide the node ordering in the space-filling case and for the treemap in the other case. This leaves a dependency on being able to detect a clustering in the graph, but if one exists the method is very useful for visualising the overall structure of the network. Itoh et al.117 also used a similar space-filling approach for multi-category graphs (i.e., many attributes) that computes a clustering hierarchy from similarities between node-attributes. The graph of clusters is then laid out using a simple force-directed method and nodes within each cluster are delineated by a rectangle and laid out using a space-filling algorithm.

Both GOlorize29 and GraphScape118 extend force-directed methods to use attributes to show clustering. GOlorize adds a virtual node to the graph representing each cluster. Virtual edges are then added from the virtual cluster node to members of that cluster. This then drags apart the clusters using Fruchterman and Reingold’s force-directed algorithm, this is very similar to
the general method proposed by Huang and Eades. With GraphScape, nodes are clustered based on attribute similarity first and then a modified version of the spring-embedder algorithm is applied to reflect this similarity. Additionally, running time is improved if the FADE algorithm is implemented alongside layout and certain attributes are emphasised through a mountainous landscape metaphor where height represents some attribute value.

Pretorius proposes two attribute layouts based on a hierarchical clustering procedure. The first is applied to a large (＞50000 nodes) state transition graph where the user initially selects a number of attributes they are interested in an order of importance. The nodes are divided into clusters based on their values for the most important attribute, these clusters are then sub-divided according to their value of the second attribute. This recursive sub-partitioning continues for each attribute and the hierarchy is pictured as the background to the graph. Nodes are placed horizontally along the bottom of the hierarchy according to their attributes. For numeric attributes bar charts show the presence of these attributes below the graph and correspond to the levels in the clustering hierarchy. The transitions between states are then shown as arcs which indicate direction enabling the user to combine the attributes and the graph to identify recurring patterns in the data.

In the second multivariate graph visualisation Pretorius again uses the context of a state transition graph. In this case all nodes are placed in a vertical line on both the left (as a source) and right (as a target) sides of the graph in order to indicate direction. As the technique can also visualise edge attributes labels describing the types of edges are placed between the two sets of nodes. Each edge of that type must pass through its corresponding label’s box. The order the nodes appear in depends on their attributes and much like the previous method there is a recursive clustering approach of partitioning based on the first attribute and then on the second, etc. The method scales to more than 10,000 nodes and users were able to analyse the state transition graphs more effectively. This suggested to the authors that the technique may be able to be applied to multivariate social networks and even be generalisable to all multivariate graphs.
3.3 Mapping attributes directly to two-dimensional space.

Perhaps the most obvious use of node-attributes in graph layout is using an attribute which already represents a position. This may be position such as geo-coordinates that allow the graph to be superimposed over an image such as a map123,124, or placed as they would line up on a soccer125 or an American football pitch88. However, just because a node has a spatial attribute doesn’t mean that it is necessarily the most informative projection of the data, for example, the most interesting patterns might not be geographic ones126.

The direct mapping of two attributes to Cartesian coordinates in 2D space is also possible. By way of example, consider the aggregated graph layout, PivotGraph127. PivotGraph is based on the idea of pivot tables from spreadsheets and uses an OLAP (Online Analytical Processing) database model in order to produce a grid-based graph showing two categorical attributes with node sizes representing the number of nodes with that attribute. This technique allows the exploration of the relationships between attributes in the graph through collapsing and expanding the attribute nodes; however, it also can obscure the topology of the graph by making graphs appear connected or cyclic when they are not.

Two similar methods for SNA (Social Network Analysis) are given by Bezerianos et al.13 and Viau et al.128. Bezerianos et al.’s GraphDice builds on a similar technique for scatterplots called ScatterDice129 and aims to be more of an exploratory tool than other SNA visualisation tools, which tend to be confirmatory. Like Viau et al.128, it provides two views of the data. One is an overview scatterplot matrix (seen on the left in Figure 16) which shows a small multiple of each possible combination of attributes while the other larger graph view to the right shows a full image of the graph based on the two currently selected attributes. GraphDice uses attributes that are application specific (e.g, in a co-authorship network, papers written, citation count, field) as well as node centrality metrics. Viau et al.128 also allow parts of the graph to be laid out manually or using a force-directed layout.

GraphDice received positive feedback from a user working in the history domain while Viau et al.’s implementation also received praise from the biologists they were working with claiming it could prove to be a valuable part of their work flow.
There is no limit to the number of attributes a node can have. Therefore, it should be possible to use all of these attributes for layout and a number of techniques using dimension reduction have been proposed. The first of those was a multidimensional visualisation of state transition graphs by Pretorius and van Wijk\cite{130} where the graph is comprised of the state transitions and the attributes are the variables of each state. A user then selects a subset of variables to be included in the visualisation and five possible projections into two dimensions are offered: uniform distribution, manual distribution, hypergrids, rotated hypergrids and a PCA projection. However, ultimately for this application they found simply visualising the state variables as parallel histograms enabled them to fulfil the tasks they wished to carry out with the graph most successfully. The PCA projection allowed them to see the different phases of the system easily but they were unable to find correlations between the graph and variables.

Since Pretorius and van Wijk’s attempt there have been more successful efforts at using dimension reduction for visualisation of graphs using node-attributes. GeoSOM\cite{131} (geodesic self-organising map) was a hybrid approach to laying out graphs using both node-attributes and prop-
erties of the graph based on a world metaphor. The SOM is trained to place vertices with similar attributes close to one another and the algorithm was improved in order to non-linearly take into account the graph distances between vertices (the same approach as Kamada and Kawai’s24 force-directed method) resulting in a layout that both reflects the graph’s structure and its attributes. Evaluating their layout they found that the non-linear incorporation of graph distance rather than linear132 decreased the number of edge crossings in the layout. From a user study they also found that users were able to combine the structure and the attributes to extract useful information from the graph better than they were able to using a force-directed layout and a glyph approach for the presentation of the attributes. An example of the GeoSOM layout for an international metal trading network is shown in Figure 17.

Two recent methods which also use the idea of dimension reduction are EdgeMaps by Dork et al.133 and Gibson and Faith’s134 application of targeted projection pursuit (TPP) to graph layout. The aim of EdgeMaps was to unite the visualisation of node-link diagrams that show the explicit relationships between nodes in the graph and multidimensional scaling techniques used to visualise implicit relationships, i.e., attribute data. The layout is produced from an MDS projection of attributes onto a the Cartesian space and position is double encoded by hue and saturation. In particular, three application areas are explored: influence relationships of philosophers, musicians...
and artists on others in their field. Implicit relationships are those such as interests, musical genres or artistic movements. Only one node’s links are shown at a time for readability but this means that the user can explore only one set of influences at a time and cannot, for example, explore influence similarity between two nodes easily. In addition there is no indication as to which attributes have resulted in two philosophers being placed close one another. An example of the projection is shown in Figure 18(a) and the influence edges in 18(b).

Targeted projection pursuit for graphs also considers multiple node-attributes and relates each one to a dimension. Initially, nodes are laid out using a PCA projection based on the node-attributes. From this the users can begin to explore the graph. A user can grab any set of nodes and try to reposition them to reflect some intuitive idea or hypothesis they have about the data. The nodes will only move to this position if there exists some projection from the original data space to two-dimensions that results in a view equal to the target view, i.e., the one desired by the user. Otherwise the projection that is the nearest match to the target view is found. The technique is particularly useful if the user has some clustering in mind for the data; they can try
to separate each of the clusters whilst observing the pattern of edges between those clusters and if the attribute data follows the same pattern as those clusters or another one altogether. This separation can also be automated to find the maximum separation between clusters. The user then can additionally assess which attributes are most significant in the chosen layout aiding the feedback loop between the graph’s topological structure and the attributes of the nodes. Figure 19 shows an image of how the graph can be clustered according to its attributes. While the technique shows promise for future applications so far its usefulness has only been demonstrated on a small synthetic data set replicating a small-world graph.

3.4 Discussion of the use of node-attributes in layout.

Clearly there is some potential in using node-attributes for layout. As more data is collected understanding how it combines to form a whole is an important task. For example, Bezerianos et al.13 state that nodes in social networks can have as many as 30 attributes; knowing how these attributes affect or even govern the interactions in a social network can have a significant impact on how it is analysed or the insight gained from it. Other advocates of this idea have also identified
its potential to create a deeper understanding of the graph as a whole including the potential correlations between graph topology and the underlying attributes.

There do not have to be as many as 30 node attributes to be able to use them for layout. Graphs which have only a few attributes are prime candidates for graph visualisation through one of the constraint or clustering based methods. Hive plots, for example, require only one attribute for their layout and the user can then define how they want to partition that attribute to form the axes of the layout. They are useful for focusing on one attribute and its relationship to the graph’s structure. Being able to understand and analyse their output requires a steep learning curve; however, they are able to visualise large graphs with many thousands of nodes and provide a structural perspective that other layouts do not. In biology, utilising a few attributes for layout can prove extremely fruitful and exactly what users want. One such case was Barsky et al.’s layout which provided a clear way to separate proteins in a cell and a visual indication of which part of the cell they exist in. However, even this technique quickly runs into problems where there are parts of the cell are contained inside other parts, e.g., mitochondria inside the cytoplasm.

MagnetViz gives users a lot of control over the layout and by combining it with a force-based layout some of the topological structure of the graph remains in the layout. The interaction and observing how the graph rearranges itself as magnets are added or taken away may also improve the users understanding of the relationship between the attributes and the graphs structure. NVSS allows multiple types of nodes all with different attributes to appear in the same layout meaning there are even less restrictions on the data that can be included in the graph though the technique is difficult to scale to larger graphs without interactive filtering.

When manually drawing graphs users tend to neglect aesthetic criteria in favour of displaying the clustering the graph thus layouts that automatically cluster the nodes according to some predefined criteria have a good chance of being useful to the user and are an important structural feature for understanding the graph. Layouts that show clustering range from the Group-in-a-Box layout which delineates each cluster into a box which can then be laid out to using Muelder and Ma’s treemap and space-filling approaches which scale to hundreds of thousands of nodes and give that all important strong overview of the structure of the graph.
Sometimes using just a few attributes isn’t enough, to begin with a user might be visualising the graph to gain a better understanding of the data in it and may not know which are the attributes to focus on, which was an issue found by Shneiderman and Aris109 in NVSS. In that case moving between scatterplot matrices, such as in GraphDice, provides one way of having multiple attributes for layout at a user’s fingertips. However, they can still only investigate a relationship between two attributes at a time and too many attributes would make the scatterplot matrix unreadable negating its utility.

GeoSOM, EdgeMaps and TPP are three methods which try to overcome this limit on the number of attributes by utilising dimension reduction techniques to project the graph onto a 2D space. They all consider multiple attributes and, therefore, multiple dimensions at once, but all three also leave room for improvement. GeoSOM is the only method that takes into account topological structure when computing the layout as well as the attributes, but using the world metaphor means it is difficult to comprehend edges which leave the graph on one side of the world and reappear on the other. Also from Figure 17 it can be seen that if the size of graph were to increase much more it would become quite difficult to read.

EdgeMaps restricts the display of links at any one time and while this improves readability it also results in a loss of context if a user would wish to compare two or more nodes or look for a similarity between attribute structure and topological structure. Even simply allowing multiple selections of nodes to be in focus would, in part, solve this problem and at least allow the user to explore edge patterns between nodes. Although attributes are used in the MDS projection the user then has no idea how the attributes have influenced the positions of the nodes in the final projection and so some of the insights that could have been gained from this layout are lost.

TPP on the other hand does show all of the links in the graph and allows the user to interact directly with the graph to find a layout, form hypotheses based on how influential certain attributes are in the current projection and provides an automatic way to determine relationships between node-attributes and cluster membership. This method now needs to be validated on real-world data with many more nodes and edges in order to assess its effectiveness as a network visualisation technique.
Graph layout that combines node-attributes and dimension reduction provides one solution for producing an overview layout with meaningful positions for nodes that can communicate a structure of the graph related to specific properties of the nodes. This sort of overview is particularly suited to tasks of exploring the data, finding clusters, identifying pattern and outliers. Using node-attributes for layout should improve this insight that can be gained from the graph by allowing the user to make visual inference from the links between nodes, their positions in space and the combination of the two. In almost all these cases though there needs to be more evidence of application to specific use cases, extensions to larger datasets, evaluation against other methods and specific criteria as to when these methods are best applied.

4 Discussion

Over the past 30 years many solutions to the problem ‘what is the best way to draw a graph?’ have been put forward. Initially, most of these algorithms were force-directed approaches and these have remained consistently popular over this time and as such have found themselves integrated into many graph visualisation tools, thereby reinforcing their popularity. These algorithms gained acceptance by drawing a graph which is said to conform to several of graph drawing aesthetic principles. The drawing of graphs with these algorithms often suffers from high running times and the production of a non-optimal graph layout. Beyond that there is also a problem with validation of the use of these principles for layout in terms of aiding users’ understanding and enabling them to extract meaning from the graph. Studies assessing the impact these principles have on layout tend to be limited to a small set of nodes (less than 20) and a limited set of tasks that are not necessarily applicable to a much larger graph. Even Huang and Eades in their eye tracking study said that they did not know if their results would scale with size and complexity of the graph.

Force-directed methods seem to be optimised for a particular type of task, like those indicated by Purchase and Lee et al. such as counting node degrees and identifying adjacent nodes and further connections. However, both Dunne and Shneiderman and Salvini et al. comment on
the lack of knowledge about the relationship between drawing principles, layout and task.

One effort to overcome this lack of understanding is Purchase’s study on how the principles, such as symmetry and edge crossings, and layout are related to the ability to complete three tasks. These tasks were finding a shortest path between two nodes, identifying nodes to remove which would disconnect part of a graph and similarly for edges. She found that for the three force-directed graph layouts studied little variation was found in the time taken to complete the tasks or in the errors made when answering with respect to each different layout method. This indicates that where graph size is small, there is no reason to choose one layout over another, at least in the case of performing those three tasks.

When looking at this study the first thing to consider is how appropriate the tasks were for analysing layout. Were the tasks chosen representative of tasks where it is essential to have a good layout to complete or are there other tasks on which layout has more impact? The second is whether the principles used to create these layouts are actually successful in aiding users to carry out this type of task. Thirdly, are the results the same for much larger graphs or is there a more perceptible difference on task completion and the differences between the layouts more apparent?

Graph size in general is a very important consideration when analysing the success of the effect of layout. Newer layout algorithms developed have tried to improve upon the results given by force-directed layouts; these included multi-level techniques which make force-directed approaches more efficient for graphs of larger size and the use of dimension reduction techniques making use of graph-theoretic distance for computing node position, resulting in layouts similar to force-directed ones. These techniques still tend to keep the guiding graph drawing principles as a goal and because of this are likely only to produce good layouts for sparsely connected graphs or those which form a mesh or grid-like structure. Except in these cases, they are unlikely to produce layouts that are a sufficient improvement on the force-directed ones.

What comes from this is the question of how do the principles apply in terms of graph sizes? Force-directed methods are still a very good option for graph layout when the graph is small and it is true that for small graphs these principles are successful in computing a comprehensible layout. But it is not understood whether they are as applicable to producing a good layout for
larger graphs. For example, Henry and Fekete8 make the point that finding a good overview is a challenge for large graphs and crucial to the following exploration process. This overview should then be connected to a layout which gives a good representation of the high-level structure of a graph placing more emphasis on identifying and analysing spatial groupings, clustering, patterns and outliers but a good overview does not necessarily translate to one that conforms well to the principles of graph drawing.

More successful recent force-directed based techniques have actually been the ones that have ignored certain principles to show off other structural properties of the graph such as the LinLog, ForceAtlas and OpenOrd layouts. All three are still based on the idea of a physical system but the principle they have tried to optimise is one of clustering rather than being concerned with edge lengths or uniform node distributions, for example. Clustering is only one potential new principle and there may be others that the layout can be optimised to show. For example, decreasing the number of edge crossings is usually an aim for layout but in parallel coordinate plots they are used to highlight an inverse relationship between two dimensions, thus rather than attempting to minimising edge crossing perhaps they could also be used to emphasise a particular structural feature or relationship. Additionally, with the adaptation of force-directed techniques for clustering it shows that using a physical system model can still be a very strong option for layout if applied in the right way.

Given that there has been such a large body of research on the simulation of physical systems for graph layout and the optimisation of force-directed algorithms this work should be utilised. Thus, by identifying and then changing the emphasis on which properties of the graph the layout should reflect, force-directed methods could be redesigned to highlight some of these other features of the graph. This should be done in conjunction with an investigation into alternative graph drawing principles and whether they can be principles that can be applied generally, to graphs with certain topological structure or for specific graph sizes. An extension of this would be if to investigate if there is a relationship between the principles used and the type of task the user wants to carry out with the visualisation or that can be best solved using a particular layout style.

Even some of the studies on smaller graphs have recognised the importance of presenting a
good structural overview. Van Ham and Rogowitz’s79 observed users preferring to cluster nodes in their layouts of a graph, most participants in an experiment by Dwyer et al.137 selected graphs which show a clique while semantic grouping and considerations of semantics in general have been considered important for improving user understanding of graph visualisations in information visualisation contexts138,139.

The lack of semantic considerations has also been highlighted by users, with many communicating their dissatisfaction at the inability of force-directed techniques to produce a comprehensible layout either because it resembles a ‘giant-hairball’ or because it lacks any context. This is particularly true of users in the biology community who have already expressed their desire, and made some attempts, to have a graph layout that is meaningful and improves their understanding33,101,106,140.

This includes layout methods making use of attributes. Typically, there is a lot of information available on the nodes, more than just how they are connected to other nodes. Developing computational methods using this philosophy of laying out graphs according to their attributes has potential, with the correct algorithm, to assess the correlations, contradictions and trade-offs between the attributes and focus them into a comprehensible, informative layout.

Layouts which require the incorporation of node-attributes are becoming more frequent and are able to give users a context they cannot get from purely algorithmic methods no matter how good the layout might be. Layouts with attributes also range from the very simple showing only one additional attributes (such as a cluster or the separation of axes based on numerical values that can be achieved using Hive plots) to dimension reduction methods where there is no theoretical limit on the number of dimensions that can be incorporated into the layout. They provide a connection between the graph and all the other data that is potentially available allowing the user to not only answer questions such as whether A and B are connected but also if there is something about their attributes that is able tell them why they are connected.

However, node-attribute based layouts do not escape criticism and leave plenty or room for improvement. A major drawback of some of these methods so far is their lack of demonstrated scalability to larger datasets. Those layouts such as EdgeMaps and TPP can visualise high numbers of attributes but they also need to show that they can effectively use those attributes to visualise
high numbers of nodes and edges. In addition to aiding the exploration of the relationship between the topological structure and the attributes they should also facilitate the completion of tasks related to the graph’s structure.

There are three other potential methods for improving node-attribute layouts further. The first is to follow the promising leads of GeoSOM and MagnetViz so that both the graph’s topological structure and attributes influence the layout; a pure node-attribute layout may miss some interesting topological features. This can even be by adding graph theoretic distances between nodes as additional dimensions for the dimension reduction techniques. Dimension reduction is a well studied area and so a further enhancement may be to utilise some of the state of the art dimension reduction techniques for visualisation and use them for layout. Finally, it has also been suggested that interaction or at least user involvement in the layout process, as found with MagnetViz and TPP, is a promising approach to creating new layouts.

This review has presented some of the most commonly used and implemented techniques for graph layout in information visualisation. This was followed by a discussion of the current state of graph layout particularly emphasising those techniques making use of node-attributes for layout. It has discussed some of the merits and deficiencies in both of these approaches to graph layout and has suggested some directions for further research particularly in regard to understanding what users want from a layout, which tasks are to be completed with the layout and how the size of the graph to be laid out affects the layout and the actions of the user. In addition, it has proposed that whilst a good start has been made on incorporating attributes for layout, in order to enrich the graph’s layout further research should do more to both validate and extend these techniques.

References

