ABSTRACT

Seed development in *Arabidopsis thaliana*, has been studied at several levels. However, little has been done to study the role of sugar metabolism genes in seed pod development in this species. As the fertilized egg progresses to a mature seed, the sugars composition during different stages of the developing changes. These changes are related to metabolic processes in the developing seeds, but also to the activity of sucrose- converting and transporting genes, active at the interphase between the maternal tissue and the endosperm. Sucrose synthase (SUS) is one of these genes; it catalyses the reversible reaction of sucrose breakdown in the presence of UDP to form fructose and UDP-glucose.

In this study we looked at glucose, fructose and sucrose concentration at different time points during seed pod development. These changes in sugar concentrations were analysed in both Colombia wild type and WS (Wassilewskija) ecotypes. By comparison of the sugar composition of these ecotypes, and linking these data with phenotypic observations in both ecotypes during development, we are able to comment on the possible role of sugars in seed pod development. Also, the sugar composition of wild type seed pods were compared with those of *Atsus* mutant seed pods, and possible effects sucrose synthase mutations on the phenotype of the developing *Arabidopsis thaliana* seeds were analysed. The effect of sucrose synthase knockouts in developing seed pods were studied by comparing biochemical and phenotypic characteristics data of the *Atsus* mutants within Colombia wild type plants.

Salk line plants were screened to identify plants carrying a homozygous insertion for T-DNA in five of the sucrose synthase genes. The developing seed pods of each of the homozygous mutants were characterized biochemically via High-Performance Anion-Exchange Chromatography (HPAEC). Furthermore, seed weight, number of seed per pod, germination rate and the morphological development of the embryo were closely analysed.

The study found out that there were some biochemical effects of *Atsus* knockout mutants, and some phenotypic effects of *Atsus* knockout mutants on the developing seed pods. However, in general the effects were not as pronounced as those that were seen in maize seed, pea seed and potato tuber as a result of sucrose synthase knockout. The general pattern of glucose, fructose and sucrose were similar to the Colombia wild type, although in mature seed pods the sucrose levels in *Atsus1, Atsus2, Atsus3* and *Atsus6* were slightly, but significantly lower than in the Colombia wild type.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter and Section number</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>Table of Tables</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>Table of Diagrams/Figures</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>xxii</td>
</tr>
<tr>
<td>Dedication</td>
<td></td>
<td>xxiii</td>
</tr>
<tr>
<td>Declaration</td>
<td></td>
<td>xxiv</td>
</tr>
<tr>
<td>Abbreviations</td>
<td></td>
<td>xxv</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 Introduction 1
1.2 Seed Development 2
1.3 *Arabidopsis thaliana* the model plant 4
1.4 *Arabidopsis* seed 7
1.5 Embryo development 7
1.6 Development and functions of endosperm 9
1.7 Suspensor 12
1.8 Sugar Transport in Developing Seeds 13
1.9 Sugar Metabolism in Developing Seed 15
1.10 Sucrose Metabolism Enzymes: Invertase and Sucrose Synthase 17
1.10.1 Invertase 17
1.10.2 Sucrose synthase 18
1.11 Sucrose Synthase in *Arabidopsis thaliana* 19
1.12 Sugar regulation in seed development in *Arabidopsis thaliana* 22
1.11 Hypothesis and Aims 26

Chapter 2 Materials and Methods

2.1 Growth Conditions 27
2.2 Plant Material 27
2.3 DNA Extraction 31
 2.3.1 Edwards’s Method 31
 2.3.2 Msc Method 32
2.4 Polymerase Chain Reaction (PCR) 32
2.5 Agarose Gel Electrophoresis 35
2.6 Gel Photographs 36
2.7 Determination of Age of the Pods 36
 2.7.1 Tagging by cutting 36
 2.7.2 Artificial Pollination 37
2.8 Harvesting 37
2.9 Seed Clearing 38
 2.9.1 Potassium hydroxide clearing 38
 2.9.2 Chlorohydrate clearing 38
 2.9.3 Acetic acid and chlorohydrate clearing procedure 39
2.10 Microscopy and photography 40
2.11 Germination Assay 40
2.12 Seed Weight 40
2.13 Seed Count 42
2.14 Abortion Ratio 42
2.15 Whole Seed and Embryo Measurement 42
2.16 Sample Preparation for Sugar Analysis 47
 2.16.2 Standard Curve Sample Preparation 49
 2.16.3 Calculation of Sugar Content 49
2.17 Data Analysis 50

Chapter 3

Genotyping

3.1 Introduction 51
3.2 Identification of Homozygous Mutant Plants 54
3.3 Genotyping AtSUSI 61
3.4 Screening for Homozygous AtSUSI plant 61
3.5 PCR with T-DNA F3 and T-DNAR3 61
3.6 PCR with BR151 and LBB1 primers 64
3.7 PCR with BR151 and BR151r primers 66
3.8 *AtSUS1* Genotyping Conclusion 68
3.9 Genotyping *AtSUS 2* 69
3.10 Screening for homozygous *AtSUS2* plant 69
3.11 PCR with T-DNAF₃ and T-DNAR₃ 69
3.12 PCR with NR200 and LBA1 primers 71
3.13 PCR with NR200 and NR200r primers 73
3.14 *AtSUS2*/N576296 Genotyping Conclusion 75
3.15 Salk Line N550900 76

3.16 Screening for Homozygous *AtSUS2* plant Salk line N550900 76
3.17 PCR with T-DNAF₃ and T-DNAR₃ 76
3.18 PCR with NR212 and LBB1 primers 80
3.19 PCR with NR212 and NR212r primers 83
3.20 *AtSUS2* Genotyping Conclusion 86
3.21 Genotyping *AtSUS3* 87
3.22 Screening for homozygous *AtSUS3* plant 87
3.23 PCR with T-DNAF₃ and T-DNAR₃ 87
3.24 PCR with NR201 and LBA1 primers 89
3.25 PCR with NR201 and NR201r primers 91
3.26 *AtSUS3* Genotyping Conclusion 93
3.27 Genotyping *AtSUS5* 94
3.28 Screening for Homozygous *AtSUS5* 94
3.29 PCR with T-DNAF₃ and T-DNAR₃ 94
3.30 PCR with NR203 and LBA1 primers 96
3.31 PCR with NR203 and NR203r primers 98
3.32 *AtSUS5* Genotyping Conclusion 100
3.33 Genotyping *AtSUS 6* 101
3.34 Screening for Homozygous *AtSUS6* 101
3.35 PCR with T-DNAF₃ and T-DNAR₃ 101
3.36 PCR with NR204 and LBA1 103
3.37 PCR with NR204 and NR04r 105
3.38 *AtSUS6* Genotyping Conclusion 107
Chapter 4 Biochemical analysis of *Arabidopsis thaliana* seed

4.1 Introduction 117
4.2 The Sucrose -Cleaving Enzymes 117
4.3 Effect of Change in Sugar Status in Developing Seed 118
4.4 Sugar as Gene Expression Regulator 119
4.5 Analysis of Sugars 120
4.6 Principle of HPLC 121
4.7 Wild type *Arabidopsis thaliana* sugar analysis 125
4.8 Glucose Analysis in Colombia wild type 127
4.9 Fructose Analysis in Colombia wild type seeds 129
4.10 Sucrose Analysis in Colombia wild type 129
4.11 Sugar Concentration at the Developmental Stages 129
4.12 Hexose Sucrose Ratio Analysis 132
4.13 Discussion of sugar content in developing wt Col seeds 134
4.14 Sugar metabolism in sucrose synthase mutants seeds 136
4.15 Biochemical Analysis of Sugar in *Arabidopsis thaliana* SUS1-mutant Seeds 136
4.16 Glucose levels in developing seed pods of *Atsus1*
mutants

4.17 Fructose levels in developing seed pods of Atsus1-mutants

4.18 Sucrose levels in developing seed pods of Atsus1-mutants

4.19 Biochemical analysis of sugar in Arabidopsis thaliana sus2 mutant seeds

4.20 Glucose levels in developing seed pods of Atsus2-mutants

4.21 Fructose levels in developing seed pods of Atsus2-mutants

4.22 Sucrose levels in developing seed pods of Atsus2-mutants

4.23 Biochemical analysis of sugar in Arabidopsis thaliana sus3 mutant seeds

4.24 Glucose levels in developing seed pods of Atsus3-mutants

4.25 Fructose levels in developing seed pods of Atsus3-mutants

4.26 Sucrose levels in developing seed pods of Atsus3-mutants

4.27 Biochemical analysis of sugar in Arabidopsis thaliana sus5 mutant seeds

4.28 Glucose levels in developing seed pods of Atsus5-mutant

4.29 Fructose levels in developing seed pods of Atsus5-mutants

4.30 Sucrose levels in developing seed pods of Atsus5-mutants

4.31 Biochemical Analysis of Sugar in Arabidopsis thaliana sus6 mutant seeds

4.32 Glucose levels in developing seed pods of Atsus6-mutants

4.33 Fructose levels in developing seed pods of
Chapter 5 Phenotypic Characterization of Sucrose Synthase Mutants Seeds

5.1 Introduction 209
5.2 Endosperm dependent phenotype 209
5.3 Phenotypic effect of sucrose synthase mutants 211
5.4 Sugar Determines Phenotypes 212
5.5 Gene Expression 212
Chapter 6

Internal Structure of Mutated Sucrose Synthase Seeds

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td></td>
<td>236</td>
</tr>
<tr>
<td>6.2 Overview of Arabidopsis thaliana seed development</td>
<td></td>
<td>236</td>
</tr>
<tr>
<td>6.3 Seed Clearing Techniques</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>6.4 Results</td>
<td></td>
<td>239</td>
</tr>
<tr>
<td>6.4.1 Colombia wild type Seed Development</td>
<td></td>
<td>239</td>
</tr>
<tr>
<td>6.4.2 Analysis of Atsus1 internal structure</td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>6.4.3 Analysis of Atsus2 internal structure</td>
<td></td>
<td>248</td>
</tr>
<tr>
<td>6.4.4 Analysis of Atsus3 internal structure</td>
<td></td>
<td>252</td>
</tr>
<tr>
<td>6.4.5 Analysis of Atsus5 internal structure</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>6.4.6 Analysis of Atsus6 internal structure</td>
<td></td>
<td>260</td>
</tr>
<tr>
<td>6.5 Discussion</td>
<td></td>
<td>264</td>
</tr>
<tr>
<td>6.5.1 The internal structure of Atsus1 seed</td>
<td></td>
<td>265</td>
</tr>
<tr>
<td>6.5.2 The internal structure of Atsus2 seed</td>
<td></td>
<td>266</td>
</tr>
<tr>
<td>6.5.3 The internal structure of Atsus3 seed</td>
<td></td>
<td>267</td>
</tr>
</tbody>
</table>
Chapter 7 General Discussion, Conclusions and Further Work

7.1 Sugars content of Colombia wild type and Ws ecotypes of *Arabidopsis thaliana* 269

7.1.1 Colombia wild type sugars content 269
7.1.2 Ws wild type sugars content 270
7.1.3 Sugars content of Colombia wild type vs Ws wild type 270
7.1.4 Hexoses /sucrose ratio of Colombia and Ws ecotype 271
7.1.5 Physical characteristics of Colombia wild type seeds 274
7.1.6 Colombia wild type and wild type segregate 276

7.2 Sugar Analysing technique 279

7.3 The effect of *AtSUS* knockout of developing seeds 282
7.4 Summary of the effect of *AtSUS* knockout of developing seeds 286

7.5 Relevance and redundancy of *AtSUS* during seed development 293

7.6 Conclusions 294

7.7 Further works 296

7.7.1 Comparison of sugar analysis in seeds and pod walls 296
7.7.2 Comparison of sugar analysis in *Arabidopsis* and Oil seed rape 297
7.7.3 Further analysis of Columbia wild type segregate

7.7.4 Down regulation of sucrose synthase gene

Section 8 References 299
Section 9 Appendices 308
Table of Tables

<table>
<thead>
<tr>
<th>Chapter and Section</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2</td>
<td>Materials and Methods</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>The list of seeds used and their sources</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Gene and the primers used in screening for plant carrying T-DNA insertions and their Sequences</td>
<td>34</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Genotyping</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>AtSUS genes and different primers combination used in the screening process with the expected sizes.</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Predicted PCR result for each of the three possible T-DNA insertion genotypes</td>
<td>60</td>
</tr>
<tr>
<td>3.8</td>
<td>The number of AtSUS2 Salk line screened.</td>
<td>114</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Biochemical analysis of Arabidopsis thaliana seed</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Sugar content (ng / g pod) in wild type seed pod and corresponding p-value of comparison between the developmental stages</td>
<td>131</td>
</tr>
<tr>
<td>4.2</td>
<td>Glucose content (ng / g pod) in wild type and Atsus1 seed pod and corresponding p-value of comparison between mutant and wild type seed pods</td>
<td>139</td>
</tr>
<tr>
<td>4.3</td>
<td>Fructose content (ng / g pod) in wild type and Atsus1 seed pod and corresponding p-value of comparison between mutant and wild type seed pods</td>
<td>142</td>
</tr>
<tr>
<td>4.4</td>
<td>Sucrose content (ng / g pod) in wild type and Atsus1 seed pod and corresponding p-value of comparison between mutant and wild type seed pods</td>
<td>145</td>
</tr>
<tr>
<td>4.5</td>
<td>Glucose content (ng / g pod) in wild type and Atsus2 seed pod and corresponding p-value of comparison between mutant and wild type seed pods</td>
<td>148</td>
</tr>
<tr>
<td>4.6</td>
<td>Fructose content (ng / g pod) in wild type and Atsus2 seed pod and corresponding p-value of comparison</td>
<td>151</td>
</tr>
</tbody>
</table>
between mutant and wild type seed pods

4.7 Sucrose content (ng / g pod) in wild type and Atsus2 seed pod and corresponding p-value of comparison between mutant and wild type seed pods

4.8 Glucose content (ng / g pod) in wild type and Atsus3 seed pod and corresponding p-value of comparison between mutant and wild type seed pods

4.9 Fructose content (ng / g pod) in wild type and Atsus3 seed pod and corresponding p-value of comparison between mutant and wild type seed pods

4.10 Sucrose content (ng / g pod) in wild type and Atsus3 seed pod and corresponding p-value of comparison between mutant and wild type seed pods

4.11 Glucose content (ng / g pod) in wild type and Atsus5 seed pod and corresponding p-value of comparison between mutant and wild type seed pods

4.12 Fructose content (ng / g pod) in wild type and Atsus5 seed pod and corresponding p-value of comparison between mutant and wild type seed pods

4.13 Sucrose content (ng / g pod) in wild type and Atsus5 seed pod and corresponding p-value of comparison between mutant and wild type seed pods

4.14 Glucose content (ng / g pod) in wild type and Atsus6 seed pod and corresponding p-value of comparison between mutant and wild type seed pods

4.15 Fructose content (ng / g pod) in wild type and Atsus6 seed pod and corresponding p-value of comparison between mutant and wild type seed pods

4.16 Sucrose content (ng / g pod) in wild type and Atsus6 seed pod and corresponding p-value of comparison between mutant and wild type seed pods

4.17 Glucose content (ng / g pod) in wild type and Ws seed pod and corresponding p-value of comparison between mutant and wild type seed pods

4.18 Fructose content (ng / g pod) in wild type and WS seed
Chapter 5 Phenotypic Characterization of Sucrose Synthase Mutants Seeds

5.1 The weight of 100 seeds and % differences between the means of the wt and the sus mutants with their corresponding p values 216

5.2 The genotypes, the number of seed/pod and % differences with their corresponding p values 216

5.3 The weight of 100 seeds and % differences between the means of the wt segregate and the sus mutants with their corresponding p values 220

5.4 The number of seed/pod and % differences between the segregate wild type and the sus mutants with their corresponding p values 222

Chapter 6 Internal Structure of Mutated Sucrose Synthase Seeds

6.1 The Average length (µm) of Atsus1 seeds at different DAP 246

6.2 The Average width (µm) of Atsus1 seeds at different DAP 246

6.3 The length of developing embryo from DAP4 to DAP6 of Atsus1 seed 247

6.4 The Average length (µm) of Atsus2 seeds at different DAP 250

6.5 The Average width (µm) of Atsus2 seeds at different DAP 250

6.6 The length of developing embryo from DAP4 to DAP6 of Atsus1 seed 251
Chapter 7 General Discussion, Conclusions and Further Work

7.1 Overview of Atsus mutants’ parameters and point of significant difference with Colombia wild type of Arabidopsis thaliana 289
Table of Diagrams/Figures

<table>
<thead>
<tr>
<th>Chapter and Figure</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Fertilization in wild type Arabidopsis thaliana</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>An adult Arabidopsis plant</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Sucrose metabolism path way</td>
<td>16</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Materials and Methods</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Seedlings growing in a Petri dish</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Seedlings growing in individual pot after 14 days of sowing</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Arabidopsis thaliana plants in growing cabinet</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Olympus BX 40 microscope</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Plump seed and Shrivelled seed</td>
<td>43</td>
</tr>
<tr>
<td>2.6</td>
<td>The schematic diagram of a developing seed</td>
<td>44</td>
</tr>
<tr>
<td>2.7</td>
<td>The schematic diagram of a developing seed</td>
<td>44</td>
</tr>
<tr>
<td>2.8</td>
<td>The graticule</td>
<td>46</td>
</tr>
<tr>
<td>2.9</td>
<td>The picture of a graticule ruler taken under microscope</td>
<td>46</td>
</tr>
<tr>
<td>2.10</td>
<td>Dionex DX500 chromatograph</td>
<td>48</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Genotyping</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Possible results of T-DNA insertion in different locations in a gene</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic diagram of PCR with two T-DNA primers</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic diagram of PCR with left border primers and gene specific primers</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>Schematic diagram of PCR with two endogenous primers</td>
<td>55</td>
</tr>
<tr>
<td>3.5</td>
<td>Schematic diagram of Salk line T-DNA and it primers</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>Agarose gel under UV light and PCR product with F_3 and R_3</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Agarous gel under UV light and PCR product with LBB1 and BR151 primers</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Agarous gel under UV light and PCR product with BR151 and BR151r primers</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Agarous gel under UV light and PCR product with F<sub>3</sub> and R<sub>3</sub> primers</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Agarous gel under UV light and PCR product with NR200 and LBA1 primers</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>Agarous gel under UV light and PCR product with NR200 and NR200r primers</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>Agarous gel under UV light and PCR product with F<sub>3</sub> and R<sub>3</sub> primers</td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>Agarous gel under UV light and PCR product with F<sub>3</sub> and R<sub>3</sub> primers</td>
<td></td>
</tr>
<tr>
<td>3.14</td>
<td>Agarous gel under UV light and PCR product with NR212 and LBB1 primers</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>Agarous gel under UV light and PCR product with NR212 and LBB1 primers</td>
<td></td>
</tr>
<tr>
<td>3.16</td>
<td>Agarous gel under UV light and PCR product with NR212 and NR212r primers</td>
<td></td>
</tr>
<tr>
<td>3.17</td>
<td>Agarous gel under UV light and PCR product with NR212 and NR212r primers</td>
<td></td>
</tr>
<tr>
<td>3.18</td>
<td>Agarous gel under UV light and PCR product with F<sub>3</sub> and R<sub>3</sub> primers</td>
<td></td>
</tr>
<tr>
<td>3.19</td>
<td>Agarous gel under UV light and PCR product with NR201 and LBA1 primers</td>
<td></td>
</tr>
<tr>
<td>3.20</td>
<td>Agarous gel under UV light and PCR product with NR201 and NR201r primers</td>
<td></td>
</tr>
<tr>
<td>3.21</td>
<td>Agarous gel under UV light and PCR product with F<sub>3</sub> and R<sub>3</sub> primers</td>
<td></td>
</tr>
<tr>
<td>3.22</td>
<td>Agarous gel under UV light and PCR product with NR203 and LBB1 primers</td>
<td></td>
</tr>
<tr>
<td>3.23</td>
<td>Agarous gel under UV light and PCR product with NR203 and</td>
<td></td>
</tr>
</tbody>
</table>
3.24 Agarous gel under UV light and PCR product with F3 and R3 primers
3.25 Agarous gel under UV light and PCR product with NR204 and LBA1 primers
3.26 Agarous gel under UV light and PCR product with NR204 and NR204r primers

Chapter 4 Biochemical analysis of Arabidopsis thaliana seed

4.1 Schematic diagram of HPLC
4.2 Sugar profile of wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)
4.3 The sugar changes in the seed development process of Arabidopsis thaliana Colombia wild type.
4.4 The hexose /sucrose ratio was calculated with the mean concentrations of hexose (glucose and fructose) and sucrose
4.5 Glucose profile of Atsus1 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)
4.6 Changes in glucose amount during seed development of Arabidopsis thaliana sus1 mutant
4.7 Fructose profile of Atsus1 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)
4.8 Changes in fructose amount during seed development of Arabidopsis thaliana sus1 mutant
4.9 Sucrose profile of Atsus1 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)
4.10 Changes in sucrose amount during seed development of Arabidopsis thaliana sus1 mutant
4.11 Glucose profile of Atsus2 and Colombia wild type Arabidopsis
4.12 Changes in glucose amount during seed development of Arabidopsis thaliana sus2 mutant

4.13 Fructose profile of Atsus2 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)

4.14 Changes in fructose amount during seed development of Arabidopsis thaliana sus2 mutant

4.15 Sucrose profile of Atsus2 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)

4.16 Changes in sucrose amount during seed development of Arabidopsis thaliana sus2 mutant

4.17 Glucose profile of Atsus3 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)

4.18 Changes in glucose amount during seed development of Arabidopsis thaliana sus3 mutant

4.19 Fructose profile of Atsus3 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)

4.20 Changes in fructose amount during seed development of Arabidopsis thaliana sus3 mutant

4.21 Sucrose profile of Atsus3 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)

4.22 Changes in sucrose amount during seed development of Arabidopsis thaliana sus3 mutant

4.23 Glucose profile of Atsus5 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)

4.24 Changes in glucose amount during seed development of Arabidopsis thaliana sus5 mutant

4.25 Fructose profile of Atsus5 and Colombia wild type Arabidopsis
4.26 Changes in fructose amount during seed development of Arabidopsis thaliana sus5 mutant

4.27 Sucrose profile of Atsus5 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)

4.28 Changes in sucrose amount during seed development of Arabidopsis thaliana sus5 mutant

4.29 Glucose profile of Atsus6 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)

4.30 Changes in glucose amount during seed development of Arabidopsis thaliana sus6 mutant

4.31 Fructose profile of Atsus6 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)

4.32 Changes in fructose amount during seed development of Arabidopsis thaliana sus6 mutant

4.33 Sucrose profile of Atsus6 and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)

4.34 Changes in sucrose amount during seed development of Arabidopsis thaliana sus6 mutant

4.35 Glucose profile of Ws and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)

4.36 Changes in glucose amount during seed development of Arabidopsis thaliana Ws ecotype

4.37 Fructose profile of Ws and Colombia wild type Arabidopsis thaliana developing seed pods at different days after pollination (DAP)

4.38 Changes in fructose amount during seed development of Arabidopsis thaliana Ws ecotype

4.39 Sucrose profile of Ws and Colombia wild type Arabidopsis thaliana
developing seed pods at different days after pollination (DAP) 191

4.40 Changes in sucrose amount during seed development of *Arabidopsis thaliana* Ws ecotype 192

4.41 The hexose/sucrose ratio of Ws wild type 194

Chapter 5

Phenotypic Characterization of Sucrose Synthase Mutants

Seeds

5.1 Mature seed of *Arabidopsis thaliana* 210

5.2 Comparison between the germination percentage of Colombia wild type and the SUS mutant at 2 days after 48 hours incubation 224

5.3 Comparison between the germination percentage of Colombia wild type and the SUS mutant at 4 days after 48 hours incubation 225

5.4 Overview of germinating Colombia wild type seeds at 2 days after 48 hours incubation in dark room 226

5.5 Overview of germinating Colombia wild type seeds at 4 days after 48 hours incubation in dark room with the first cotyledon leaves 228

5.6 Comparison between % plump seeds and % shrivelled seeds of Colombia wild type and the SUS mutants 229

5.7 Picture A shows a plump seed and B a shrivelled seed 292

Chapter 6

Internal Structure of Mutated Sucrose Synthase Seeds

6.1 The pictures show that some pods contain seed of different embryonic stages 241

6.2 Length and width of developing Colombia ecotype of *Arabidopsis thaliana* seed 242

6.3 Seeds from the same pod but different embryonic stages 243

6.4 Sequential pictures of *Atsus1* seed development 245

6.5 Figures A and B compare *Atsus1* and Colombia wild type length and width during development respectively 246

6.6 Embryo length from DAP 4 to DAP 6 of *Atsus1* and Colombia wild type 247
Chapter 7 General Discussion, Conclusions and Further Work

7.1 The initial steps in sucrose metabolism pathway 281
ACKNOWLEDGEMENT

I am really grateful to God for seeing me through my education, particularly this programme.

I wish to express my profound gratitude and heartfelt appreciation to my dear supervisor Dr. Rinke Vinkenoog, for his support and invaluable contribution to the success of this work. I also thank Professor Gary Black for all his assistances and especially for reading through this thesis. I appreciate all the advices and guidance of Dr. Caroline Orfila during the course of this research.

What would I do without the technical support of all the technicians in the School of Applied Sciences? I say a big thank you to Dave Thomas, Beth Lawry, Vivien Brindley, Gary Askwith, Karen Walker, Gordon Forrest and Jennifer Stone.

I own a great deal of gratitude to my colleagues in A307 lab; those that had finished their PhD (Dr. Anna Lindsay, Dr. Obaidur Rahman, and Dr Meng Zhang) and those that are still busy with their programme (Vatsalaa, Lakshmy, Claire, Caroline, Lee, Alexis, Andrew, Paul and Felicia). And to those in chemistry labs, I thank you for your love and concern.

Finally, I thank my family especially my loving wife Ayosola for her financial and emotional support throughout this programme. I thank my parents for giving me a foundation to build on. And to all kindred and friends - thanks for your love.
DEDICATION

I dedicate this work firstly to God, who gives freely to all. To my wife (Ayosola) and son (Ajibola). And lastly, to all those who dream and pursue their dreams.

Wisdom is the principal thing in all your getting; understanding is even more valuable than rubies.

—King Solomon
DECLARATION

I declare that the work contained in this thesis has not been submitted for any other award and that it is all my own work.

Name: Benjamin Oladipo Odunlami

Signature:

Date: 19/10/2009
Abbreviations

ANOVA-Analysis of variance
AtSUS- *Arabidopsis thaliana* sucrose synthase
DAP- Day after pollination
DNA- Deoxyribonucleic acid
0°C – degree centigrade
Col- Columbia
EF- Elongation factor
el- embryo length
g- gram
GC- Gas chromatography
GSP – gene specific primer
h- hour
HPAEC-High performance anion exchange chromatography
mA- milliamplitude
Min -minute
ml- millilitre
mM - millimolar
mRNA – messenger ribonucleic acid
MΩ/cm - ohm meters per centimetre
NASC – Nottingham Arabidopsis stock centre
ng- microgram
PCR- Polymerase chain reaction
PTGS- Post transcription gene silencing
%- percentage
RAM- root apical meristem
RNAi – RNA interference
TAIR - The Arabidopsis Information Resource
T-DNA- transfer DNA
TIAG- the *Arabidopsis* genome initiative
TES-
s- second
sd- standard deviation
sl- seed length
SUS- sucrose synthase
sw- seed width
T-DNA- transfer DNA
TLC- thin layer chromatography
T3- third generation
SAM – stem apical meristem
SPS- sucrose phosphate synthase
UDP- Uridine diphosphate
µeq - microequivalents
µl- micro litre
µg- micro gram
µM- micro molar
UNEP- United Nation Environmental Protection
UTR- untranslated region
UV- ultraviolet light
v/v- volume per volume
Ws- Wassilewskija