The Process Semantics of Time and Space as Anticipation

Michael Heather
Nick Rossiter

nick.rossiter@unn.ac.uk

University of Northumbria

http://computing.unn.ac.uk/staff/CGNR1/
Outline

• Relationships in Category Theory
 – Pivotal Role of Adjointness
 – Intension-Extension
 – Static/Dynamic
 – All a Question of Typing

• Natural Composition of Systems
 – Godement
 – Satisfy Complex Requirements

• Time-Space and other Examples
 – Relevance to Anticipation
Purpose

• To attempt to show that the natural relationships declared categorically can satisfy those needed in the real world and provide a basis for anticipation.
Relationships Dominate Category Theory

• Categories
 – Cartesian closed – products
 – Locally cartesian closed – pullbacks/comma/slice
 – Intra-category

• Functors
 – Map from one category to another
 – Inter-category

• Natural Transformations
 – Map from one functor to another
 – Inter-functor
Adjointness

- Perhaps most important relationship is that of adjointness
- Discovered by Kan
- Elaborated by Lawvere
- Provides a more general type of relationship then equivalence
 - Suited to real-world where relationships are not always so simple
Inter-relationship between two Categories L, R through Functors F, G

If adjointness holds, we write \(F \dashv G \)
Features of Adjointness $F \dashv G$

- Free functor (F) provides openness
- Underlying functor (G) enforces rules
- Natural so one (unique) solution
- Special case
 - $GF(L)$ is the same as L AND
 - $FG(R)$ is the same as R
 - Equivalence relation
- Adjointness in general is a relationship less strict than equivalence
 - $1_L \leq GF$ if and only if $FG \leq 1_R$
Example of Adjointness

- If conditions hold, then we can write the adjunction $F \dashv G$
- The adjunction is represented by a 4-tuple: $\langle F, G, \eta, \varepsilon \rangle$
- η and ε are unit and counit respectively
 - $\eta : L \to GFL; \varepsilon : FGR \to R$
 - Measure displacement in mapping on one cycle

 casys 2009 intension-extension
Uses of Adjointness

• Representing intension-extension
• Intension-extension is critical for representing information systems
 – Goes back to Port Royal Logic
• Intension is definition of a system
 – The permanent part that does not change
• Extension is time-varying part of a system
 – The time-varying part that is in constant flux
Example 1

• Banking System
• Intension is definition of structures, rules and procedures that specify how the bank operates; can be a preorder with cycles
• Extension is the data values for the banking operation at a particular time; a partial order
Consider one relationship

- Customer (C) : account (A) in context of holds (H)
- For Intension (I) - Extension (E) define 2 categories and 3 functors:
Definitions

• $C \times_H A$ is the relationship $C \times X \times A$ in the context of H
• C is customer, A is account, H is holds
• $C + A$ is all possible values for pairs of C,A; by convention written this way but also includes other pools of possible data values (data soup, data types)
Functors pair 1

- Σ selects values that exist for C, A in E
 - Free functor as performing choice
- Δ takes values that exist for relationship between C, A in E and checks conformity with definition in I for $C \times_H A$
 - Underlying functor as checking a rule
- If Σ and Δ are adjoint, we write:
 $$\Sigma \dashv \Delta$$
Functors pair 2

- Δ takes values that exist for relationship between C, A in E and checks conformity with definition in I for $C X_{H} A$
 - Because many contexts may exist it is now a free functor as selecting a role (viewpoint is now free)
 - Could have other contexts H', H'' ...
 - Note no use of number (Gödel !)
- Π selects values that exist for $C X_{H} A$ in E
 - Underlying functor as checking that values selected in E match the type definition
- If both pairs of adjoints hold, we write:
 $\Sigma \vdash \Delta \vdash \Pi$
Simultaneity

• In all categorical constructions
 – There is no sequence in the composition
 – The whole structure is evaluated simultaneously (snapped)

• The I-E relationship is an arrow
 \[\Sigma \dashv \Delta \dashv \Pi \]
 and not any of the categories or functors on their own
Can Build up Relations

• Composition of arrows is natural
 – Godement calculus
• As I-E relation is an arrow
• Can compose one I-E relation with another
• Can build up complex levels of types and definitions with flexible meta levels
Defining Four Levels of Data Typing with Contravariant Functors and Intension-Extension (I-E) Pairs
Composition of I-E pairs

• Higher I-E pair becomes \((\Sigma \vdash \Delta \vdash \Pi)'\)
• Lower I-E pair becomes \((\Sigma \vdash \Delta \vdash \Pi)\)
• Then top-down is
 \[(\Sigma \vdash \Delta \vdash \Pi) \circ (\Sigma \vdash \Delta \vdash \Pi)' \]
 and bottom-up is
 \[(\Sigma \vdash \Delta \vdash \Pi)' \circ (\Sigma \vdash \Delta \vdash \Pi) \]
Form of Underlying Categories

• Might represent data structure (static)
 – Pullbacks/ pushouts
 – Comma/ slice categories

• Might represent process (dynamic)
 – Monads/comonads
Pullback

\[
\begin{array}{c}
\text{C} \\
\text{A} \\
\text{C} + \text{A}
\end{array}
\]

\[
\begin{array}{c}
\Pi_c \\
\Sigma \\
\Pi_a \\
\Delta \\
\Pi \\
\end{array}
\]

\[
\begin{array}{c}
\text{C} \\
\text{X_H} \\
\text{A} \\
\text{C} + \text{A}
\end{array}
\]

casyx 2009 intension-extension
Pullback versus I-E

• Saying much the same thing
• Pullback useful as a descriptive diagram
• I-E is more useful algebraically as it:
 – Spells out the exact nature of the relationship
 – Is an arrow which can be composed with other categorical arrows
Monad

Transaction (ACID):
\(T \) is one cycle
\(T^2 \) is two cycles
\(T^3 \) is three cycles

\(T \) is an endofunctor, can be an adjoint:
\(GF \) or \(\Sigma \dashv \Delta \dashv \Pi \), latter as 2 pairs strictly

cays 2009 intension-extension
Monad

- Monad is an abstract concept:
 \[\text{Monad} = \langle T, \eta, \mu \rangle \]
 Where \(T \) is the endofunctor -- endofunctor is functor with same source and target (often an adjoint)
 \(\eta \) is the unit of adjunction: change in \(L \) on one cycle
 \(\mu \) is the multiplication: change between \(T^2 \) and \(T \) (on 2nd cycle looking back)
 But can express in more detail:
Adjointness between Monad/Comonad

$$\text{Monad} = \langle T, \eta, \mu \rangle$$

$$T = GF$$

$$\text{Comonad} = \langle S, \epsilon, \delta \rangle$$

$$S = FG$$
Comonad

- Comonad is dual of Monad
- Comonad = $\langle S, \varepsilon, \delta \rangle$
- Where S is the endofunctor (often an adjoint)
- ε is the counit of adjunction, measuring change in R on one cycle
- δ is the comultiplication, measuring change between S and S^2 (looking forward)
Simultaneity

• Monad/comonad are not handled in a sequential fashion
• Cycles are simultaneous
• Structure satisfying the rules is snapped
Time/Space

I

Σ

Δ

Π

T Xc S

E

T + S

casys 2009 intension-extension
Time/Space as I-E

- $T \& S$ is in the intension
- $T \| S$ is in the extension

- $\Sigma \rightarrow \Delta \rightarrow \Pi$ gives the relationship for a particular context C between:
 - $T \& S$ and $T \| S$

where $T \& S$ is the invariant intension (I) and $T \| S$ is the time-varying extension (E)

Relativistic: η, ε are significant; classical: maybe not so.
Anticipation 1

- So is anticipation the comultiplication
 - $\delta: S \rightarrow S^2$
 - taking the comonad forward one cycle
- This is a tempting conclusion
- But it is not so simple
- Anticipation is not one arrow on its own
- Need to consider the full context
Anticipation 2

• Could better be viewed as looking forward:

\[\delta: S \rightarrow S^2 (FG \rightarrow FGFG) \]

in the context of the monad/comonad adjointness, in particular of the arrow looking back:

\[\mu: T^2 \rightarrow T (GFGF \rightarrow GF) \]