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Abstract

Discontinuous and particulate metal matrix composites have emerged as a set of
materials which has found increasing niche areas of use. They are now widely used in
both diesel and petrol internal combustion engines, as well as in sports bicycles and
other areas where their combination of unique properties can be exploited to
advantage.

The inclusion of fibres into a base matrix produces a complex material both in its
make up and mechanical properties and it would be an advantage to be able to predict
a candidate metal matrix composite material’s mechanical and thermal properties
prior to that material’s development. One such approach, the so called Theory of
Cells, is a micromechanical approach which uses the analysis of repeating cells within
the composite to make prediction of the composite’s mechanical properties.

In the present study, this approach has been employed to predict the fatigue life of a
series of different metal matrix composites at ambient temperature. These composites
include some materials with SiC fibres and some with Al,O; fibres. Using data
obtained from the monolithic matrix material and the individual fibres theoretical
S/N and Strain/N curves were produced. This was possible by assuming that the
matrix material in the composite fails at the same fatigue stress level as does the
monolithic matrix material or, if fibres fail, this will be at the failure level of the
individual fibres. These curves were then compared to experimental data for all metal
matrix composites and good agreement was obtained for all but the low cycle
fatigue regime.

A finite element programme was employed to predict fatigue life in the low cycle
fatigue regime and the results were compared to the predictions made by the Theory
of Cells. It was found that the finite element was no better at predicting the fatigue life
of the composite than the Theory of Cells. Both systems however predicted an area of
high stress in front of the fibre in the direction of loading.

Fatigue tests were carried out on one particular material at both 200°C and 300°C and
the fatigue life was compared to that predicted by the Theory of Cells. It was found

that the predictions became increasingly inaccurate with increasing temperature.
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Chapter 1

1.0 Introduction

1.1 Metal Matrix Composites

Strong materials are always of interest to both the designer and the engineer. Often
strong materials are also of high density as is the case of steel compared to for
example standard polymers. A material that combines the properties of both
lightweight and strength would be particularly desirable. One such material is
aluminium, which in its many alloy forms can show both high ultimate strength
and high yield strength. In ambient conditions it is only the relatively high cost of
aluminium that precludes its use in many more high strength situations. Although
all materials will have much degraded mechanical properties at elevated
temperatures this degradation starts at only 200°C for aluminium when both
stiffness and strength start to deteriorate. At 300°C creep will start to play a
significant part in the life history of the material.

Initially the inclusion of stiff, high strength fibres into aluminium was to produce a
super high strength, high stiffness material. To achieve this, long continuous fibres
were used in a lightweight matrix. A typical example being the boom/waveguide
for the Hubble space telescope' made from an aluminium alloy and carbon fibres.
With high stiffness and low density it was ideally suitable for the harsh
environment in which it was installed. Due to the high cost of producing
unidirectional continuous fibre metal matrix composites, they have only been used
in these very specialist areas up till recently.”

To reduce cost, short fibres have been used when producing metal matrix
composites. These short fibres are relatively easy to handle and allow the use of
such standard production methods as squeeze casting® and extruding®. Short fibre
composites will show much reduced mechanical properties when compared to an
equivalent long fibre composite. However because the fibre direction is usually
randomly orientated throughout the material, the properties will be the same in all

directions unlike the situation found in a continuous composite.



Originally, fibres were added to metals to improve their strength and their stiffness.

This was possible because of the superior stiffness and strength exhibited by

certain ceramic fibres. However in short fibre composites the fibres are divided and

the matrix material must now take some of the load. The resulting loss of strength

experienced by the composite can often be such that it is weaker than the

equivalent base material. However, even these short fibre composite materials find

a use in high temperature environments. Metal matrix composites will tolerate

much greater temperatures than an aluminium alloy before their strength or

stiffness is affected. These composites have been used as pistons in internal

combustion engines that may experience temperatures of 290°C. At such

temperatures, the metal matrix composite maintains its strength and is not affect by

creep.

An area of concern when using composites is fatigue. The introduction of fibres

into a material has also introduced potential stress raisers into that material. The

fibres themselves, as inclusions, could act as sites for crack initiation: the area

around the fibre could be seen as a void, and the mismatch in the stiffness of fibre
and matrix could lock in stresses during production or during loading. An attempt
to look at ways of predicting metal matrix composite fatigue life will be a valuable
and useful tool for future composite development.

The analysis of materials with a complex morphology such as a composite is

important for the safe and confident use of such materials. While work has been
done in the area of predicting static material properties such as Young’s Modulus,
Poisson’s Ratio and also attempts have been made to predict the stress strain
behaviour of metal matrix composites, little work has been done on the fatigue
behaviour of such materials. One useful area of fatigue analysis is to predict the
fatigue life for a given material. This information is often presented as a maximum
stress against number of cycles to failure (S/n) curve or a maximum strain against
number of cycles to failure curve. This information is necessary to perform fatigue

damage calculations on any structure or artefact.



Although many factors may come into play to affect the fatigue life of a material,
stress levels within that material are a major factor. Although the make-up of a
metal matrix composite is complex a number of methods are available to analyse
the stress strain behaviour on a microscopic level. The finite element method
appears to be a good candidate to carry out this analysis, but the time required and
the complexity of the analysis places severe limitations on its use. A
micromechanical model of the material structure would appear to offer a solution
to the many problems faced in mechanically modelling a composite.

In this work a micromechanical model, the Theory of Cells, is used to predict the
stress within and around a fibre in a metal matrix composite. Using this
information the assumption is made that the fatigue behaviour of the matrix will be
the same as the fatigue behaviour of the bulk homogeneous material, while the
fibres will fail statistically as they reach their overall failure stress. A prediction
is then made of the fatigue life of a number of metal matrix composites using both
the maximum stress and maximum strain approach. This prediction is then

compared with experimental results and also a finite element prediction.

1.2 Commercial Use of Discontinues and Particulate Metal
Matrix Composites

With the possibility of producing materials with many improved properties it is
rather surprising that the introduction of short fibre composites into commercial
production has been rather slow. The problem has not been producing suitable
composites but producing a composite whose cost is comparable to that of the
monolithic material.

The automotive industry has used metal matrix composites for a number of years.
AE, Kolben Schmidt, Mahle and Toyota have used fibre reinforced aluminium
pistons for diesel engines.’ Although some pistons have been used which are made
wholly from metal matrix composites, one company at least® has chosen to

selectively reinforce the piston head with fibres. This has allowed them to exploit



the advantages of reinforced aluminium in the high temperature area of the diesel
engine whilst saving costs by using conventional aluminium in the rest of the
piston.

Honda has pioneered the use of aluminium metal matrix composites as an
alternative material to cast iron for use in automotive engine blocks. Such blocks
have been used in Accord, Ascot Innova and the S2000 models. The use of metal
matrix composites has both reduced the engine length and allowed a weight saving
of around 4.5 kg.

Chevrolet and General Motors have replaced steel with aluminium metal matrix
composite in their automotive drive shafts on a range of pick up trucks.”® As the
drive shaft rotates at high speed, dynamic stability depends on the material
modulus and density with an ideal material having high modules and low density.
When steel is replaced with aluminium no dynamic stability benefit is obtained, as
although aluminium is lighter than steel, its modulus is less than steel. The only
way of significantly increasing the modulus of aluminium is by adding stiff
ceramic fibres. Aluminium metal matrix composite drive shafts can run at
significantly higher speed than the steel drive shafis they replace.

To allow ease of handling and yet be capable of high speed, a stiff but lightweight
material is an advantage in high performance bicycle frames. Aluminium metal
matrix composites have been incorporated into the design of a number of racing
bicycles. Extensive tests have shown that not only do the bicycles have superior
specific stiffness but have an improved fatigue resistance compared to the
aluminium equivalent.

In the aerospace industry metal matrix composites have made some progress. Pratt
and Whitney have used metal matrix composites in guide vanes on their 4000
series engines whilst Lockheed Martin’s F16 fighter aircraft incorporates metal

matrix ventral fins and also fuel access covers on the main airframe’.

10



1.3 Aims and Objectives.

The aim of the study was to provide a theoretical and experimental framework for

the prediction of fatigue life of commercial metal matrix composites using the
Theory of Cells.

The following is a list of the objectives addressed in the study.

1.

Reformulate the Theory of Cells to allow it to be incorporated into a
computer program.

Write a computer program, using the Theory of Cells, to allow fatigue
predictions to be made on candidate metal matrix composite materials.
Enable the programme to predict other relevant mechanical properties of
the metal matrix composite. For example the various moduli , the Poisson’s
Ratio and the yield stress.

Carry out a series of fatigue tests varying both the fibre type and volume
fraction of fibres in the selected metal matrix composites.

Carry out testing at elevated temperatures.

Compare experimentally derived mechanical properties with those
predicted by the Theory of Cells for a number of metal matrix materials.
Compare experimentally determined fatigue life predictions with those
forecast by the Theory of Cells for all materials tested.

Compare fatigue life predictions provided by the Theory of Cells with
those fatigue life predicated by the finite element method.
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Chapter 2

2.0 Overview

2.1 Definition of a Composite

A composite material is comprised of two or more dissimilar materials. However
this leaves the range of materials that would fall under the heading of composite
too broad. It is therefore necessary to define an engineering composite material.’
Firstly the material must be manufactured, it must be a combination of at least two
materials possibly separated by an interface and it should have properties that
could not be achieved using any of the individual constituents. Unlike an alloy the
constituents of the composite remain separated and do not form compounds or
solutions. In commercial use the composite is usually a two-constituent material

comprising the base matrix material and a second reinforcing fibre material.

2.2 Matrix and Fibres

Metal matrix composites are one of three basic composite material systems. The
distinguishing feature of each is the matrix material can be a polymer, a metal or
a ceramic. In a commercial metal matrix composite the base matrix material is
usually an alloy of aluminium or titanium although copper, steel and other
materials have been used. The fibre is normally an oxide, carbide or a nitride but
prototype composites with metal fibres have been produced. The fibres used in
metal matrix composites are usually SiC or Al,O; but again a number of other
fibres are reported in the literature.'’ As well as differing in their material of
construction the fibres are also available, in different forms: as continuous fibres,
whiskers, short fibres or particles. Long fibre composites give the metal matrix
composites superior properties compared to short fibre and particulate composites

but the latter type offers significant cost reduction.
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2.3 Continuous Fibre Composites

The earliest metal matrix composites had continuous fibres, which produced a
sophisticated class of materials whose properties were highly anisotropic but had
compensating improvements of properties in at least one direction in the material.
The advantages of these materials compared to the matrix material, from which
they are produced, would include high strength, high elastic modulus, high
toughness and impact properties and much-reduced tendency to creep over a wide
temperature range. The composite will also tend to maintain its ambient yield
stress, its maximum strength and also its stiffness at a wide range of elevated
temperatures. In these composite systems the primary role of the fibres was to
carry the load, while the function of the matrix was to hold the fibres together and
to distribute the load amongst the fibres. In this case, the properties of the metal
matrix composites were determined by the properties of the fibres, the matrix being
chosen for its density or corrosion resistance or some other property. For economic
reasons long fibre metal matrix composites have found only limited use in

aerospace and military applications'’.

2.4 Short Fibre Composites

Because of their economic advantage discontinuous metal matrix composites have
found many uses in conventional engineering situations'”. As their name suggests,
the fibres in this type of composite are short but only composites having a fibre
length to a diameter ratio of less than 100 can truly be called short fibre
composites. Not only are the discontinuous fibres in themselves cheaper and easier
to handle but also these composite materials can be shaped and formed by standard
engineering processes such as forging, rolling and extrusion. Also, as machining,
drilling and grinding do not break critical fibres these processes do not alter the
mechanical properties of the composite.

By using discontinuous fibres instead of continuous fibres the great improvements

in the strength and stiffens of the composite, compared to the base material, is
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reduced. However discontinuous metal matrix composites will retain their
mechanical properties at higher temperatures than their comparable matrix
material."?

In this type of metal matrix composite certain parts of the matrix can play a
significant role in load bearing. The stress pattern over the area of the composite is
somewhat complex but within the elastic range of the composite, high stress
regions of matrix can be seen to take a significant share of the load compared to
the fibres. Once yield in the matrix takes place, this situation rapidly changes
however, with the stress in the fibre increasing significantly with load while the

stress in the matrix rises at a much slower rate.

2.5 Types of Discontinuous Metal Matrix Composites

As well as the different materials that can be used for the matrix and the
reinforcement, the length of fibres is perhaps the next most important variable in a
metal matrix composite. Short fibre composites have fibre lengths less than 100
times their diameter while particulate composites have particles whose diameter
and length are of the same order. This length to diameter ratio is called the aspect
ratio (ASP) and in particulate composites the ASP would be expected to be 1 but
because of varying manufacture methods it is assumed that it will be between 1
and 2. Both short fibres and particles can be of a polycrystalline nature while the
short fibre may also be made from a single crystal with a high aspect ratio called a
whisker. These whiskers in themselves are much stronger than the polycrystalline
material but they are more expensive and may not realise their full strength in the

metal matrix composite system.

2.6 History

Although the first metal matrix composites were developed in the 1920’s** no
serious research was carried out on these materials until the 1960’s. A lot of the

early work was involved in producing two-constituent materials, which have
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similar properties to metal matrix composites. With these materials, a precipitate
second phase is formed within the structure. This phase behaves in a similar way to
a fibre or a particulate, its properties being radically different from the other phase
in the structure. The 60°s also saw the production of the first modern metal matrix
composites. The matrix used for these composites was aluminium and copper
while the reinforcements were long boron and tungsten fibres. Economic
considerations saw the development of discontinuous reinforced fibres in the
1980°s with aluminium-based composites using SiC and Al,O; reinforcements

being used in commercial products.”

2.7 Problems of Analysis

The introduction of fibres into a base metal may give greatly enhanced mechanical
properties to the resultant metal matrix composite. These properties will be
dependent on many factors that involve both the properties of the base matrix and
the fibre used.

It would be advantageous to be able to predict some of these properties in the
material design stage. It would then be possible to calculate the potential
usefulness of a material or a range of materials before embarking on a costly
production process. It would also narrow the range of materials that need to be
considered. However the reason for needing to carry out this study, the vast range
of possible variables when mixing the materials together, is what makes the
analysis difficult. The base material may suggest itself by its end use, but
producing the metal matrix composite may alter its microstructure. There is often a
limited choice of fibre types, but also fibre diameter, cross sectional area and also
length are amongst some of the variables. The volume ratio of fibre to matrix needs
to be considered as well as the fibre orientation. The fibres may be aligned in one
direction within the composite or may be randomly distributed through the matrix.
A metal matrix composite also includes an interface between fibre and matrix
whose function is to transmit stress between fibre and matrix but may also be an

area of weakness.!®
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The range of properties that it would be useful to predict is the Young’s Modulus,
Shear Modulus, Poisson Ratio, Yield Stress and Ultimate Stress. Because the
material may be anisotropic, it is important to predict these properties in different
directions within the material. As fatigue life is of great importance to the safe
operation of many highly stresses structures it would also be useful to predict the

way any potential material might behave under cyclic stress.

2.8 Topics of Interest in the Review.

The following review will look at various micromechanical models that predict
mechanical properties of a composite. Then using the method called the Theory of
Cells, show how it has been adapted to include continuous and discontinuous
fibres, and how it may be used to predict fatigue life. A review of current
knowledge of the fatigue behaviour of metal matrix composites will also be given.
An account will also be given of the current knowledge of both the nature of the
fibre-matrix interface and its role in determining metal matrix composite
properties. A brief review will also be given on possible ways of modelling the

plastic behaviour of the matrix and metal matrix composite.
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Chapter 3

3.0 Review of the Literature

3.1 Predicting Properties of Metal Matrix Composites
3.1.1 Introduction

In deciding the potential value of any metal matrix composite system it would be
useful to forecast the major mechanical properties of such a system. The possible
methods available are: using empirical relationships, using a finite element system
or deriving a set of relationships using some micromechanical system derived from

the properties of the constituent parts of the composite.

3.1.2 Rule of Mixtures

One popular empirical method is the so-called Rule of Mixtures.'” This rule
assumes that the composite mechanical property under consideration will have a
value in ratio to the volume fraction of each of the constituents, i.e.

N
Pc= Z ViPi
i=0

N
Where Z(;'Vl =1

P. is the property of the metal matrix composite under consideration
P; is the property of the constituent material under consideration
V; is the volume fraction of the constituent material

N is the number of constituent materials
Although there is no analytical basis for this rule, it has proven useful when

analysing aligned continuous fibre composites for properties in the direction of the

fibres.
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3.1.3 Finite Element Method
While in principle a numerical method such as finite element analysis can be used
to determine mechanical properties the amount of time and expertise required for

such an enterprise is prohibitive.

3.1.4 Analytical Methods
3.1.4.1 Introduction

In an early review article'® four micromechanical models were highlighted which

could predict a variety of mechanical properties of metal matrix composites by
knowing the properties of the composite’s constituent parts. Each of the four
models was intended for use with continuous aligned fibres and each of the
methods could predict both transverse and axial properties. The methods were The
Discrete Fibre Matrix Model'®, the Vanishing Fibre Diameter Model?°, the Multi
Cell Model*! and the Theory of Cells?2.

3.1.4.2 The Discrete Fibre Matrix Model

This method as originally proposed uses the computational method of differences

and assumed that both the matrix and the fibre were linear elastic.

Figure 3.1(a) & (b): Idealised Cross Section of Composite
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Figure 3.1 (c¢) Quarter Fibre with associated matrix and associated Finite Difference Mesh

Figure 3.1a shows an idealised cross section of a composite. It is not necessary to
analyse the whole structure to obtain accurate results, a region comprising a % of a
fibre plus its surrounding area has proven sufficient. Figure 3.1 (b) shows a fibre
and surrounding area while Figure 3.1 (c) shows the smallest volume that is
required to completely characterise the material’s behaviour. This region is then
subdivided into triangular elements to allow a finite difference analysis to be
carried out. The resultant computer program is written in a manner to predict the
transverse Young’s modulus and the transverse shear modulus for a chosen
fibre/matrix system over a range of volume fractions. Some experimental evidence
has been produced to show the validity of this method. The limitations of the
method, at least as it was first proposed, are quite severe. It only forecasts a limited
number of properties with severe restrictions on the types of composite systems to

be used.
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3.1.4.3 The Multi Cell Model

This approach uses a ‘Mechanics of Material® approach to predict both mechanical

and thermal properties of a proposed metal matrix composite.

Matrix
"~ Interphase
"~/ Fibre

B
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non-uniformity [

Figure 3.2 Multi-cell mode] showing sub-region

This approach uses an idealised cross section of a square array of fibres within a
composite. In this approach only one sub region need be analysed as shown in
Figure 3.2. This region comprises a fibre, its surrounding area of matrix and an
interfacial area between the two. This allows for the properties of any material that
may be produced due to fibre/matrix interaction to be used in the governing
equations.

The backbone of the analysis is the assumption that the sum of the forces on each

of the composite constituent parts will equal the overall force in the composite:

Poveratt = Psiver + Pinterface T Pmatrix

and that the overall strain in the composite will be the same as the strain in each of

the constituent parts:
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Eoverall = Efibre ~Einterface = Ematrix.

Knowledge of each of the constituent’s various moduli and other elastic properties,
coupled with a basic mechanics of material approach, makes it is possible to
predict a set of homogenous properties of the composite. The mechanical
properties predicted are the various moduli, the Poisson’s ratios and the uni-axial
strength.

Carrying out a similar analysis using the thermal properties of the constituent parts
it is also possible to predict the conductivity, coefficients of expansion and heat
capacity of the overall composite. In the early stages of this theory the predictions

were checked favourably with results obtained by finite element analysis.

3.1.4.4 Vanishing Fibre Diameter Model

This is one of the methods that use a rigorous mathematical approach to the
prediction of composite properties. It follows from work on the mathematical
modelling of the macroscopic behaviour of a heterogeneous media from
constituent properties and interactions®. This work was extended®* to incorporate
an elastic inclusion embedded within the media. This solution as it stands is known
to suffer from problems that the vanishing fibre model seeks to address.

In the classical solution of this problem, the retention of the actual physical
boundaries of the constituent parts is assumed. However, in the case of a
composite, problems occur when one of the materials is plastically deforming
while the other remains elastic. Local stress concentrations in the matrix are
ignored, thus causing errors in the calculation of stress and plastic strain both
during and after yielding. This is overcome by assuming that although the fibres
occupy a finite space within the composite, their diameter is so small that they do
not interfere with the matrix deformation in the transverse and thickness direction.
Some experimental evidence and finite element analysis has been offered to show
the validity of this method.?
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3.1.4.5 Theory of Cells.

In this method an analytical approach is taken to the modelling of an elasto-plastic
metal matrix composite. A micromechanical analysis is carried out which allows
both the fibre and matrix to be either elastic or inelastic. The material is assumed to
have a regular array of doubly periodic square fibres arranged in a matrix material.

This arrangement of a continuous fibre unidirectional composite is shown in

Figure 3.3.
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Figure 3.3 (2) An idealised array of unidirectional continuous fibres embedded in a composite matrix (b) One
fibre and its associated matrix represented as four sub-cells

Because of the periodic arrangement, it is sufficient to analyse only a
representative cell of the material as shown in Figure 3.3 (b). This cell is divided
into 4 sub-cells as shown in the figure, one cell being fibre the other 3 made up of
the surrounding matrix. The micro-mechanical analysis between these four sub-
cells is carried out taking into account continuity of displacement and traction at
the interfaces of the sub-cells. The equilibrium within the cell is also taken into

consideration.
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Determination of overall composite properties in all three dimensions is possible
with this system of analysis. A considerable amount of experimental evidence is

available to verify the validity of this method.

3.2 Developments in the Theory of Cells.
3.2.1 Introduction

The Theory of Cells is a robust model that has been extended into many areas of
composite analysis. The continuous fibre version has been used to analyse
materials with polymeric, metal or ceramic matrix materials. The continuous fibre
theory is fully three-dimensional, allowing both fibre and matrix to be anisotropic
and consequently predicting anisotropic properties for the resultant composite.
Elasticity is not imposed on either the fibre or the matrix but using the ideas of
Bodner,?® plastic modelling is included within the theory. Extensions of the theory
have included the modelling of non-linear behaviour of resin matrix composites,
allowing for imperfect bonding of fibre and matrix, a method for predicting yield
and ultimate strength of the composite and finally a re-casting of the theory to
allow for analysis of short fibre and particulate composites. With the continuous
and short fibre versions of the Theory of Cells a refinement has been added that

allows analyses of randomly oriented fibres.

3.2.2 Short Fibre Composites.
In the modelling of short fibre composites the fibres are assumed to be aligned
rectangular parallelepipeds imbedded in a matrix and to form a triply periodic

array as shown in Figure 3.4.
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Figure 3.4 Schematic of an MMC with periodic array of fibres

As with the long fibre composite, only a representative volume of the composite
need be analysed. This cell of material comprises one fibre and seven sub-cells of

matrix material. This is shown in Figure 3.5.
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Figure 3.5 A representative cell of the composite showing the eight sub-cells

The system of algebraic equations that needed to solve this problem is far more
complex than that which is required to solve the continuous fibre model. A
summary of the method is given in Chapter 3. As with the continuous fibre
version of the Theory of Cells, the analysis not only predicts the various moduli in
all three directions but will give the overall stress in the composite during each

stage of loading as well as the corresponding stress in each of the sub-cells.
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This version of the Theory of Cells can be used to analyse metal matrix composites
with fibres of any dimension and therefore long fibre and short fibre metal matrix
composites are handled in the same manner. For the special case of particulate

composites the computation is carried out with all dimensions of the fibre equal.

3.2.3 The Fibre Interface in the Theory of Cells.

A metal matrix composite is composed of at least two very dissimilar materials,
which must however form a good bond at their interface to produce a useful
material. Difficulties in obtaining data on the mechanical or physical properties at
the interface meant that in all early versions of the Theory of Cells, perfect
bonding was assumed between fibre and matrix. However, in a real material this
requirement of perfect bond is quite demanding since it requires adhesion of
materials that by their nature may not directly adhere. Even a material that on
production has good bonding between fibre and matrix may suffer some level of
de-bonding during service use.

The first attempt to modify the Theory of Cells to take into account a real interface
assumed a metal matrix composite that had suffered total de-bonding of the
fibres’’. This is of course an extreme situation, as actual de-bonding would be
assumed to be partial and non-uniform throughout the metal matrix composite.

The total de-bonding of the fibres is achieved in the theory by allowing free
tangential slip at the fibre matrix interface, while still demanding the continuity of
the normal displacement there. This ideal of tangential slip was first used in the
study of periodical bi-laminated composites® but is here used in conjunction with
a first order expansion, to determine average constitutive equations for a fibre
matrix composite. It should be stated that as presented this theory could only be
used with continuous reinforced composites.

Due to the limited applications of this method, Aboudi uses a totally different
approach when looking at the more general case of imperfect bonding®. This

approach was first suggested by Jones and Whittier®® and consists of assuming that
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the interface is a thin film. Imperfect bonding can then be represented in this model
by two parameters, one dependent on the level of adhesion in the tangential
direction the other on the level of adhesion in the normal direction at the interface.
This method has been used to analyse a unidirectional continuous aluminium/
boron metal matrix composite and the results checked against results obtained

using finite element analysis with good agreement.

3.2.4 Inelastic Behaviour of Metal Matrix Composites

A typical metal matrix composite comprises a fibre that behaves in an elastic
manner up to the breaking stress and a matrix that will show the typical elasto-
plastic behaviour of a ductile material. In order to model a composite an allowance
must be made for the plastic deformation of the ductile matrix. In the development
of the Theory of Cells a unified theory of plasticity, developed by Bodner and
Partom, was used.’! In this approach, plasticity is assumed to be always present
throughout the loading process, and deformation is represented by the sum of the
elastic strain and the plastic strain throughout the whole of the loading history of
the material. The elastic strain is calculated in the standard manner, using linear
elastic theory while plasticity is represented by a plastic flow rule which couple
plasticity and creep functions together. In this unified theory, five experimentally
determined parameters are used to represent inelastic behaviour. These parameters
can represent both creep and plastic behaviour. They are strain rate sensitive and
can also represent work hardening of the material.

It should be noted that there is no yield function in this theory as elastic, plastic
and creep deformation is assumed to be taking place at all time during loading.
However at low loads and ambient temperatures the inelastic strain term is

insignificant for an aluminium metal matrix composite.

26



3.2.5 The Generalised Cells Model

In the original Theory of Cells a continuous fibre composite was modelled as one
sub-cell of fibre and three sub-regions of matrix material. However a more
generalised version of the Theory of Cells has been developed®” in which the area
selected for analysis is divided into any number of rectangular sub-cells as opposed

to the four sub-cells in the original formulation shown in Figure 3.6.
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Figure 3.6. A repeating cell for the generalised version of the Theory of Cells

In this model the fibre may be represented by a single cell or a group of cells and
the remaining cells may represent the matrix or the fibre/matrix interface.
Increasing the number of sub-cells to be analysed will allow for a more detailed
modelling of the plastic behaviour of the matrix and therefore a more accurate
prediction of the stress strain curve of the proposed metal matrix composite might

be expected. This model is more sensitive to yield and plastic flow in the matrix
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when these values might be expected to vary significantly across the cell. With the
increased number of sub-cells it is also possible to represent multiphase composite
material and to model such areas as the interface.

The Generalised Theory of Cells model has been used to predict the axial and
transverse stress strain curve for aluminium boron aligned continuous metal matrix
composite. With a 16 sub-cell configuration good agreement is shown between the
model and a finite element prediction in the transverse direction while only a 4
sub-cell configuration is necessary to show excellent agreement with a finite

element prediction in the axial direction.

3.3 Composite Interfaces

An important component of any composite system is the fibre-matrix interface.
The interface in a composite can be defined as a boundary surface between
dissimilar materials. The interface is important because it controls the degree of
bonding between matrix and fibre, and it is also the cohesive forces that exist
within the interface which govern the load transfer within the composite
structure.”> This interface load transference often dictates the performance of the
whole composite structure. The nature of the interface is dependent not only on the
make up of the constituent parts of the composite but on the way the composite
was manufactured. Knowledge of the interface will allow a margin of control of its
properties both during the composite production process and any subsequent post
process treatments.

When casting one material around, another the chemical reaction that results at
their interface is obviously governed by the nature of the two materials. In a
successful composite, this interface will act as a bond between the two constituent
parts of the composite and the type of bond can be divided into three categories:
The bonds may be mechanical in nature, they may be chemical (either dissolution

or wet-ability bonding) or reaction bonds.
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Due to the roughness of the fibres®* and contraction of the matrix during cooling, a
strong mechanical bond can be set up within the composite material. If the fibre
and matrix have a good wet-ability interaction® the bonding will be caused by
electron interchange and so as this force is of short range it is essential that their
surfaces come into intimate contact. This is achieved by ensuring that the fibres are
treated to remove any impurities that may exist on their surface before they are
incorporated into the composite. In reaction bonding, there is an interchange of
atoms between materials which is caused by the high temperatures during
composite production. This reaction bonding will tend to create an interfacial
material with different properties from both the fibre and matrix.

The modelling of any interfacial region within a mechanical theory of composites
is very difficult. Direct testing of the interfacial region to determine mechanical
properties is extremely difficult due to the size of the region. Some information can
be obtained about the bond strength of the interface by using a fibre pullout test.
This is carried out on a specially prepared test specimen which has a single fibre
half-embedded in a matrix under an axial load and displacement is then measured
due to the increasing load.*

Unfortunately, because of preparation and handling difficulties, this and other
similar tests are not practical for metal matrix composites. For this reason it is
normally assumed that the interface forms a perfect bond®’ between fibre and
matrix and that the forces and displacements will be transmitted across the region.
However, as perfect bonding would seem to be a rather difficult to achieve or
maintain in a system, it may be achieved in only a few composites. Certainly
under a highly stressed situation, failure or partial failure of the interface may be
expected. Failure will usually be by one of two failure mechanisms®®: cavitation or
de-bonding.

The dominant mode of interface failure in short fibre and particulate metal matrix
composites is by cavitation. It is assumed that in these systems strong interfacial

bonds exist between fibre and matrix, then ductile failure is precipitated by
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nucleation, followed by growth and then coalescence of voids within the vicinity of
the fibre reinforcements.

In composites containing weakly bonded fibre and matrix it would be expected that
interfacial de-bonding would occur. This happens in a brittle manner once local
conditions reach a critical value. This could be that the local stress has exceeded
the interfacial bond strength or the strain energy release rate exceeds the interfacial
fracture toughness.

The manufacture of a composite material has an influence on the interface,
encouraging solution segregation, local dislocation density precipitation reaction
and fibre clustering. These will tend to cause imperfections and flaws near the
interface and cause cracks to form and cavitation nucleation to occur. The
nucleation of voids however requires an amount of plastic strain and so would
occur under a high stress regime®. In strongly bonded interfaces voids will grow
from the matrix and conversely for weak interfaces voids form at the ends of
fibres.

Damage will tend to occur at weak interfaces because this will be the area at which
stress are concentrated due to abrupt change of materials and the geometric
distribution of fibres. The weak interface itself may be caused by weak or brittle
phases within itself or porosity generated during manufacture. These items will add
to the tendency for the fibre within the composite to de-bond from the matrix.
Several attempts appear in the literature that incorporates the resistance and effect
of imperfect bonding in composites. They mainly consist of the introduction of a
third phase (inter-phase) between the fibre and matrix constituents. The effect of
the degree of adhesion is represented by a proper choice of the material constants,
density and thickness of inter-phases®’. The difficulty is of course devising a test
procedure to obtain these parameters. After all, the fibres themselves are measured
on the micron scale and the area of interest, the interface, is embedded within the

metal matrix composite itself.
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3.4 Fatigue of Materials under Cyclic Stress

Although some static fatigue failure has been reported for certain glasses*' failure
by fatigue usually takes place under cyclic loading and involves the initiation and
progressive growth of a crack across the specimen. Failure usually occurs when the
remaining area of material can no longer resist the applied load and because of the
presence of the area of high stress in front of the fatigue crack tip failure is usually
sudden and catastrophic.

Unless the material initially contains a crack or other such default it is believed that
crack initiation may not occur until quite late in the fatigue life of the material.*?
Initiation is therefore quite an important factor in the general fatigue life of any
material. The factors affecting initiation are many and their interaction quite
complex. The maximum and minimum cyclic stresses are obviously important but
so is the sign of both these stresses. The rate of stress cycling may play a part, as
may the form of the stress pattern (i.e. sinusoidal, step or triangulated). The
specimen size and shape, the specimen surface finish and microstructure are other

factors to be considered.

3.5 Fatigue Behaviour of Fibre Composite

3.5.1 Introduction

All fibre composites possess a unique combination of characteristics that must be
recognised from the outset if their fatigue behaviour is to be understood. Major
factors are heterogeneity, anisotropy, strengthening by load transfer, and interfaces
between fibre and matrix. Although many of these factors may be found in
conventional engineering materials it is their combination and extent that presents

problems in composite materials. Combined, these characteristics result in
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unprecedented complexities in composite fatigue behaviour, but they also provide
unparalleled opportunity to design more fatigue-resistant materials.

A composite material is of course at least a two-component material and the
fatigue behaviour of both the fibre and the matrix need to be considered. Ceramic
fibres do not often suffer from fatigue damage and typically their endurance limit
will be their static strength®®. The metal matrix within the composite will of course
be subject to fatigue failure in much the same way as it would if it were a
monolithic material.

The inclusion of fibres into the matrix material multiplies the possibility of defects
occurring and defects are candidate areas for fatigue crack initiation and growth.
These defects may often occur at the interface or they may occur at fibre ends. If
they have not occurred during material manufacture they will often be induced
upon the first loading of the composite. During cyclic loading some fibres may
break at weak points but more importantly the fibre and matrix will try to strain at
different rates perhaps causing damage at the interface. If the mix of fibre and
matrix is such that the fibres take most of the load it will be difficult to damage the
matrix even if there are readily available defects.

In a homogeneous material fatigue damage is usually associated with one crack
only, which may cause catastrophic failure. For composites the situation is far
more complex. Even if a fatigue crack is initiated and starts to grow it may
encounter a fibre that could deflect the crack into a less damaged direction.
Because of this behaviour the first fatigue crack that starts to propagate may be
deflected and thus arrested by a fibre that may allow another and then many cracks
to grow. This is most likely to occur in long fibre composites that may then sustain
damage throughout the stressed region. A decrease in the Young’s modulus of the
material will result as fatigue damage is sustained, and as a consequence material
failure may occur by a loss of material stiffness rather than actual tensile failure™.
Reinforcement occurs by the transfer of loads via shear stresses across fibre-matrix
interfaces and the fibres, which are stiffer than the matrix, will carry most of the
applied axial loads. Interfaces play another important role in fracture resistance
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by controlling the modes of crack growth; they can deflect growing cracks and
impede crack growth®.

3.5.3 Fatigue of Polymer Composites

In polymeric composites, fatigue testing can generate a considerable amount of
heat depending on the frequency. This makes the test both temperature and
frequency dependent. Due to the temperature effect on fatigue strength, obtaining
valid experimental data in the form of S/n curves and endurance limits has proven
difficult. However it has been shown that fatigue strength dependence on
temperature is a function of tensile strength dependence on temperature, and
temperature against tensile strength data is easily obtained.*® Therefore any fatigue
tests carried out at above ambient temperature, which is normal if a moderately
high frequency of stress reverses is used, can be recalculated for ambient
temperature. This allows an S/n curve to be generated for a composite and a fatigue
life prediction to be made at ambient temperatures.

The fatigue failure modes in long fibre reinforced polymer matrix composites are
controlled by the fibre, the matrix and by the fibre/matrix interface. That is, if the
matrix requires much less cyclic strain to fatigue than the fibre, then the matrix
damage will occur first. If on the other hand, the fibre requires less cyclic strain to
fail than does the matrix, the fibre damage will occur first

3.5.4 Fatigue of Metal Matrix Composites

The unique combination of stiffness, strength and density offered by metal matrix
composites has made them leading material candidates for advanced engineering
application. A key factor in the safe design and use of any material in a highly
stressed situation is the rate at which fatigue cracks initiate and the rate at, once

initiated, they will propagate. For optimum fatigue life in a composite system,
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the right balance of interfacial strength and, where applicable, fibre bridging must
be obtained*’.

When considering metal matrix composites we must distinguish between long fibre
composites and short or particulate composites. Even when these two types of
composites have identical matrix and fibre, the material properties of each
composite can be radically different and this is also true of their fatigue properties.
Often long fibre metal matrix composite materials can appear to be very fatigue
resistant. However, if they undergo damage during cyclic loading at high stress
this can lead to a significant reduction in stiffness that may cause “failure” in
components where the stiffness is critical. Fatigue damage in a long fibre
laminated metal matrix composite can reduce the laminate stiffness by as much as
50% without causing laminate failure.*® Stiffness loss in long fibre metal matrix
composites has been a useful paramount for detecting fatigue damage initiation.
Compared to a polymeric composite the matrix material of a metal matrix
composite is of relatively high strength and stiffness compared to the fibre and
consequently contributes more to the composite properties than does a polymer
material. The metal matrix may have a modulus of the same order of magnitude as
the fibre and while under static loading the fibres reach their ultimate strain first
and fail before the matrix, under fatigue loading the matrix yields at strain level far
below fibre ultimate strain. As a consequence of this, fatigue and therefore fatigue
damage will be matrix dominated.

A model of fatigue behaviour of unidirectional MMC has been developed which
takes into account both crack initiation at fibres and crack stopping by fibres. If we
imagine a crack growing in the composite matrix, this may grow according to the

Paris Power Law :-

da
— =C(AK)"
o (AK)
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The crack will grow until it reaches a fibre then it must either break the fibre at
this point or change direction and move parallel to the fibre. It can only cross the
fibre at a weak point. As long as it grows parallel to the fibre it will not contribute
to final failure of the composite. Fibres with no weak points are called perfect
fibres and if the material has mostly perfect fibres the S/N curve will be flat with
the fatigue endurance stress being almost the same as the fibre tensile stress and
this appears not to follow the Paris hypothesis. Fibres which contain a high
number of weak points will behave in much the same way as the matrix material
where crack growth is a function of AK, and follow the Paris Power Law.
In practice, we usually get a mixed type of crack growth, with the crack taking
some time to find the weakness in the fibre, but nevertheless finding it. This results
in long fibre metal matrix composites possessing high fatigue strengths in the
longitudinal direction..
As with polymers, the first sign of fatigue damage may be loss of material stiffness
and will be due to extensive matrix cracking. However in some materials when the
failure is mostly due to fibre breakage the ultimate fatigue failure is caused by a
relatively strong crack at 90° to loading.
It has been suggested that the overall crack growth is controlled by the
fibre/matrix interface and the fibre spacing. It has also been shown that bundles
of fibres can inhibit crack growth in a titanium metal matrix composite. The
bundles halted the crack growth across the fibres and forced the crack to grow
parallel to the fibres until weaker fibre sections allowed the crack growth to
continue across the fibres again®.

Fatigue behaviour of a unidirectional metal matrix composite is usually superior to
that of the un-reinforced material but short-fibre composites tend to have lower
fatigue strength than that of the un-reinforced material. The difference in behaviour
is explained by the stress distribution within these two types of composite. In long
fibre materials, the matrix function is to hold the fibres apart and the matrix will
experience trivial stress levels compared to the fibres. In short fibre materials

whilst the fibres can still withstand high stress, the load must be transferred from
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one fibre to another via the matrix material. Some sections of the matrix will be
experiencing high stress, stress high enough to initiate fatigue damage. These
stresses can be higher, for a given loading, than that experienced by the non-
reinforced material. In short fibre materials it is only when the matrix has
undergone yielding that the stresses in the fibres become significantly larger than
that experienced by the matrix.>’

The present understanding of fatigue crack initiation in metal matrix composites
can be summarised as follows: Metal matrix composite fatigue crack initiation
differs from fatigue crack initiation in metals in only one principal way, namely
that, in addition to free surfaces acting as sites of initiation, fractured fibres serve
as a new source of fatigue cracks in the composite. This problem is naturally
more pronounced for brittle fibres, brittle coatings on fibres, or brittle interface
reaction products. More importantly, these are interior sites, not readily accessible
to observation and non-destructive inspection téchniques. Whether or not fatigue
cracks actually initiate at broken fibres depends on the association stress intensity
factor, which is proportionate to the fibre diameter and the stress amplitude.
Subsequent crack growth is controlled by the elastic property, yield strength and
work hardening characteristics of the constituents and the fibre matrix interfacial
bond strength and microstructure.

In metal matrix composites fatigue failure can affect both the fibre and the matrix.
Should a fibre fail, either by reaching its failure stress or by conventional fatigue
damage, the load carried by this fibre will be transferred to the matrix and/or onto
the other fibres. The fibre break point is also an area of potential crack growth.
Fatigue failure of the matrix itself will normally cause instantaneous failure of the
composite.

The ideal fatigue-resistant fibre-reinforced metal appears to be one having a low
yield strength ductile matrix, a high yield strength brittle fibre and a weak
interfacial bond. Then failure will occur at the interface instead of within the
matrix.
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3.6 Effect of Temperature on Metal Matrix Composites

Many metal matrix composites are specifically designed to be used in thermal
environments where most conventional materials fail to sustain their properties.
Because of their multi-constituent nature, metal matrix composites can be sensitive
to temperature change. The metal matrix base of the composite will have a high
coefficient of thermal expansion compared to the ceramic reinforcing fibres. When
the composite is exposed to elevated temperatures the constituent parts will expand
and contract at different rates, causing thermal stress fields around the fibres. Even
though yielding or creep of the matrix may relax some of this thermal stress,
premature yielding in the composite may still occur.®

The creep nature of the metal matrix composite may be significantly different from
that of the matrix material. Not only will the ceramic fibres, which in themselves
are creep free materials, slow the creep of the matrix but they will also impair the
movement of dislocations within the material. It has been suggested* that the
speed of dislocation movement can control creep rate. With a two material system
in which the heat capacity of both materials are significantly different, there will be
thermal gradients throughout the material thus causing ‘micro hot spots’ which

will enhance plastic strain at these areas.

3.7 The Prediction of Fatigue Behaviour
Early published works on fatigue of metal matrix composites were mostly

concerned with reporting experimental results of specific material behaviour.
Some of these studies were on continuous fibre composites and lead to a realisation
that fatigue could be dominated by the static strength of the fibres contained in the

composites.>
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Figure 3.7 Three Types of S/n Curves of Metal Matrix Composites A) Sigmoidal B) Flat Mixture of Type A
and Type B.

Figure 3.7 shows three types of S/n curve,

e Type A is fatigue dominated by matrix fatigue,

e Type B is fatigue dominated by fibre brakeage

e Type Cis a mixture of both modes of failure.
In type B failure, which was seen to be the case with most continuous fibre
composites, failure is occurring because fibres are reaching their failure stress and
not because they are being cyclically damaged. If the fibres within the composite
all had approximately the same static strength the composite would not suffer from
cyclic fatigue failure and failure would only occur if the working stress reached the
static failure stress. However, seemingly identical fibres will exhibit a wide range
of failure stresses. On the first loading of a composite, a small number of the
weaker fibres break, on the second loading there are fewer fibres to withstand the
stress so failure of other fibres occurs and this continues throughout the cyclic

process until failure occurs.
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Experimental work on the fatigue of discontinuous fibre metal matrix composites
did not start in earnest till the 1990°s>* and in addition to work reporting the fatigue
performance of various composites, attempts were being made to understand and
predict some aspects of the fatigue behaviour. The predictions revolved around two
major areas:-

e crack growth

o fatigue life prediction.
For crack growth, the Paris relationship has been show to be applicable for a range
of short fibre composites. For example, in tests carried out on two particulate metal
matrix composites, both with a matrix material A12014 but with different volume
fractions of SiC, the Paris law was shown to apply and the parameters calculated.>
The results are shown in Figure 3.8 and, as can be seen, the rate is different for
both composites. It can be seen that by adding fibres to the composite the crack
growth rate is much increased over all load levels.
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Figure 3.8. The fatigue crack propagation rate for two metal matrix composites a) A17091 30% volume SiC,
and  b) Al2014 40% SiC,
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For these materials, crack propagation occurred in the matrix layer with preference
in areas with fibre clumping. Crack branching was also noted, which indicates that
the SiC particles could effectively hamper crack growth. The reason for
accelerated crack growth in the metal matrix composite with the higher fibre
volumes is that this composite was more prone to large clusters of fibres, these
causing rapid crack growth along what was believed to be weakened interfaces
between fibre and matrix.

This work was concerned with predicting what would happen to existing material
but the Paris Law does not help with predicting on what happens to an as yet
untried matrix fibre combination. The work did however point out the problems
with excessive volume fraction of fibres in a composite.

The Paris Law does not model all types of cracks. It was first reported by Pearson’®
that very short cracks propagated at rates different from long cracks. It has now
been recognised that microscopically small cracks are fundamentally different

from both mechanically small cracks and long cracks.”’

This concept of
microscopically small cracks has lead to the defect tolerance approach to the
prediction of both crack growth and fatigue life forecast.’® Using the effective
range of the J-integral to characterise the elasto-plastic fatigue crack growth rate of
the microscopically small crack. Both R-curves and crack closure need to be
determined experimentally and then it is claimed that this method can model all
modes of crack growth. With these results, a theoretical S/n curve can be generated
for a specific metal matrix composite type>”.

The results using this method are shown in Figure 3.9. Experimental and predicted
results are shown on the same diagram. Although it has been claimed that these
results are in close agreement with each other, serious doubts must be raised as it is

impossible to draw a line through either set of results. It is obvious that more

experimental evidence is required to validate this approach to fatigue life.
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Figure 3.9. Predicted Fatigue Lives of the Al 359 Metal Matrix Composite
Using Pre-Determined Initial Defect Sizes.

This approach is not applicable to predicting the fatigue properties of proposed
metal matrix composite systems, as a defect size to cause failure for a given stress
is required for any material being analysed. As it is not possible to know the defect
size within a particular material, it must either be calculated from experimental
results or a typical defect size must be used. Experimentation has shown that for a
particular metal matrix composite defect sizes range from 0.04 mm to 0.1 mm.
This variable quantity must be looked on as a major weakness of this method.

Another fracture mechanics approach has been used by Ding et al®® to predict the
low cycle fatigue crack growth behaviour and fatigue life of a short fibre metal
matrix composite. If the crack growth in this type of composite is treated as a
succession of crack initiations by accumulated cyclic plastic deformation, this
deformation must occur at the crack tip. Within this cyclic plastic zone there is also
a fatigue damage zone where the degradation process must take place. The stress
levels within this zone must be in the region of the ultimate stress of the matrix
material, as this is what causes the crack to grow. The cyclic J integral for this
fatigue damage zone can be calculated, and therefore a range of crack tip opening
displacements correlated. The crack growth per cycle can then be determined and

by using the concept of a critical crack length the fatigue life calculated.
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Figure 3.10 Total Strain Amplitude against Reversals to Failure for experimental and model
predictions for A199.85 with 20% volume of Al,O; at three temperatures.

The results from this work are shown in Figure 3.10 where total strain amplitude is
plotted against reversals to failure. The material used is pure aluminium (A199.85)
with 29% by volume of Al;O; and three different test temperatures were used in
the experiments. As can be seen, this approach works reasonably well at high strain
levels over the whole range of temperatures. Because this approach only models
crack growth, no allowance is made for crack initiation and at high strain rate crack
initiation will be rapid and most of the fatigue life of the metal matrix composite
will be involved in crack growth. Once 1000 cycles have been exceeded the
specimens, as would be suspected, survive for longer than predicted. Fatigue crack
initiation should at these lower strain values, occupy a substantial amount of the
life of the material.

Another fracture mechanics approach has been used to predict fatigue life of a fibre
reinforced concrete.’’ It uses a Paris based law with a crack tip stress intensity
factor and assumes unstable fracture conditions when the crack tip stress intensity
factor surpasses the matrix fracture toughness. There is a complication in that the
crack tip stress intensity factor is made up of both the stress intensity due to

geometry and stress intensity due to crack bridging. The solution to both these
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factors and the matrix fracture toughness must be achieved numerically. From this
analysis a theoretical S/n curve can be calculated. Figure 3.11 and Figure 3.12

shows this analysis and compare it to experimentally derived data
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Figure 3.11 S/n diagram of theoretical predictions of plane concrete and four fibre reinforced concretes
shown against experimentally derived results for the same concretes.
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Figure 3.12 Same results as given in Figure 3.11 but with curve fit of experimental results.

Five different materials were analysed and tested: A plain concrete (PLC) and four

fibre reinforced concretes ( AA1, HS1, HS2 and HYB). As can be seen from these
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graphs, correlation between theory and experimental data is rather patchy. The
plain concrete correlates rather well for all results over 30 cycles. However for all
the fibre reinforced concretes it would be difficult to make any correlation between
the experimental results and the predicted values. Figure 3.12 is an attempt to make
some sense out of this conflicting data by curve fitting the experimental results.
Although this looks better for one or two of the fibre reinforced composites one
could argue that this has only been achieved by using the many 1 cycle to failure
results to skew the results towards the predicted results.

A different approach to fatigue prediction is by using a micromechanical analytical
model associated with some assumptions about fatigue damage. A mechanistic life
fraction model has been proposed®® and, in association with a two dimensional
version of the Theory of Cells, predications can be made on the fatigue life of
unidirectional long fibre metal matrix composites.** The modified Theory of Cells
along with Bodner-Partom's theory of viscous-plasticity®* % are used to calculate
stresses around a single fibre within a composite then, using a simplified life
fraction model of fatigue, fatigue life can be evaluated. This life fraction model
assumes that fatigue life is dependant on both a time dependant factor and a cyclic
factor and also introduces a term to take account of the interaction between the two

factors.
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Figure 3.13 S/n curve for SCS-6/TIMETAL 2Is cross-ply composite at 650°C.
with predicted results for various frequencies.

Initially, static testing needed to be carried out on the composite material to obtain
both the material properties, such as Young’s Modulus, and the stress strain curve
and also to calculate information necessary to carry out the fatigue life analysis.
The results from both experimental and theoretical analysis for ScS-
6/TIMETAL21s cross ply titanium metal matrix composite are shown in Figure
3.13 and Figure 3.14

These two figures are different ways to represent the same results and perhaps
Figure 3.14 gives a better summary of the results as it shows clearly how the
predicted results correlate experimental evidence. Poor correlation is observed for
low cycle life tests with some improvement as the cycle life increases. The
weakness of this method is that results are only given for long fibre composites and
it cannot be used to predict the fatigue life of proposed metal matrix composite

systems.
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Figure 3.14 Predicted fatigue results against experimental results SCS-6/TIMETAL 21s cross-ply composite
at 650°C. at various frequencies.
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Chapter 4

4.0 Theoretical Aspects: Development of
Mathematical Models

4.1 Theory of Cells
4.1.1 Introduction

In Chapter 3 a number of mathematical methods to predict the mechanical
properties of metal matrix composites were introduced. Of these, the Theory of
Cells offers a wide range of application over all types of composite systems. Three
separate versions of the theory have been produced; one for long fibre composites
comprising four sub-cells (see Figure 3.3), one for short fibre composites
comprising eight sub-cells (see Figure 4.1 and Figure 4.2) and a generalised form
comprising any number of sub-cells (Figure 3.6). The sub-cell number indicates
the complexity of analysis required in the process. As the computation required to
make a prediction of mechanical properties within this system is time consuming
a computer program is required no matter which version of the theory is used. The
present author has written two such programmes, one for long fibres and one for
short and particulate fibres (see Appendix A and Appendix B). All Theory of Cells
predictions shown in this document were carried out using the short fibre and

particulate program.

4.1.2 Assumptions Made in the Theory

In the simplest form of the Theory of Cells, the composite is assumed to have only
two constituents, the fibre and the matrix. Both fibre and matrix are assumed linear
elastic and for given fibre and matrix materials a whole range of composite

mechanical properties can be predicted. Development of this version of the theory
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allows for creep, yield and elasto-plastic behaviour of hoth fibre and matrix. A
review of this method is given in a review article published in 1989.%

The Theory of Cells (TOC) for short fibre and particulate metal matrix composites
has been further developed by Aboudi ¢. In this method, an elastic matrix is
considered which is reinforced by unidirectional fibres of short length. The fibres
are assumed rectangular with dimensions of d;, 1; and h; and arranged in the matrix

as shown in Figure. 4.1.
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Figure 4.1 Schematic of an MMC with periodic array of fibres

In a particulate metal matrix composite h; will have a similar value to 1;,

4.1.3 Designation of a Sub-Cell Position.

Given that the arrangement of fibre and matrix are periodic, only one fibre and its
surrounding matrix need be analysed to give a representative section of the
composite material. This area is called a cell and is shown in Figure 4.2. This cell
is divided into eight sub-cells and to allow analysis, each sub-cell must be uniquely
labelled. As is seen in Figure 4.2 each area is given a three digit reference which
depends on its position in the cell. For example the fibre is referenced 1,1,1 and
when considering stress and strain this is used as a super script notation, i.e. for

stress the fibre would be written o . This super-script notation is necessary to
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Figure 4.2 A representative cell of the composite showing the eight subs cells

distinguish it from the stress or strain direction which of course uses a sub-script
notation. For example the direct stress in the x; direction is labelled ¢, . The full

notation for the direct stress on the fibre in the x; direction will be Gﬁ’l’l) .

This is then repeated for all other sub cells. For example stresses in the sub cell

(1,1,2)

above the fibre, as shown in Figure 4.2, are labelled, and for example the

(1,1,2)

direct stress in the x; direction would be v

4.1.4 Development of the Theory.

It is assumed, initially, that both fibres and matrix are perfectly elastic materials

and the stresses are related to the strains as follows
G (@By) C @By Z @BY) _T @BY) AT

where

6P being the stress matrix of each sub-cell

C©PY) the stiffness matrix representing mechanical properties of each

sub-cell

I ©PY) a matrix representing thermal properties of each sub-cell
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AT the temperature difference between a reference stress free

temperature and the working temperature
while

Z, the strain micro-variables is given by

Z(OLBY) = @ (“BY),XZ(“BV),\{J3(“BY), XI(OLBY) + cDZ((XBY),
¥, @Bv) + cD3((XBY),\.I/2(0tﬁY) +X3(0tBY)

with

o) @By , (Dz(“BY), (D3(UBY), X 1(ocliH() X (an)’ X3 (GBY), ¥, @By) ,
g, @BY) @ @BY)  representing strain micro-variables

In an expanded form this matrix equality can be written for each sub-cell as

follows:

on [Cuh Cu Cuz 0 0 0 01
o2z |[Ce2 C2 Cs 0 0 O X2
o |Co Csn Cz 0 0 0 w3
o |0 0 0 Cu O 0 || 1+
o1 0 0 0 0 Csu O |yi+os
o3 0o 0 o0 o 0 CesA\yp2+ y3

If this matrix is solved we obtain expressions of the form

ady __ pvady aé’y ady ady ,, .acyd
oy =G e +Ch 1, +Ch

ady aody, _ady
0'22 Cz (o8 +C22 +C Vs

etc
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If continuity of traction between appropriate sub-cells is assumed, certain of the

sub-cell will have equality of stress i.e.:-

By _ 2By
Oon’ =0y

aly _ __a2y
Oy =0y

afil __ __apl
033 =073

Using a first order approximation the displacement component at any point in the

sub-cell can be expressed as
WP = W, @B 4y @ @By ® X @B 4y O @b
where
W; represents the displacement component of the centre of the sub-

cell and

@, X, ¥, characterises the linear dependence of the displacements

on the local co-ordinates. x,*, x,® and x,*

and the displacement can be connected to strain using the expression

gij(a,B,Y) =[5 ui(a,B,Y) . aiuj(a,B,Y)]
and 06, = o/ox*
8, = 06x
05 -0/0x3"
If continuity of traction and displacement between appropriate sub-cells is
assumed, it is possible to calculate the 26 strain micro-variables generated by the

theory. Once the stresses in each sub-cell are calculated the overall stresses can

be found as follows
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2

o= 1/V X (VEPD g feb)

a,By=1

V represents the total volume of the cell and

V@D the volume of a particular sub-cell.

By an incremental increase in the strain it is possible to generate the value of stress
in each of the sub-cells and also to determine the overall stress for the composite. It
is therefore possible to plot a stress strain curve for the proposed composite. A
number of strategies are available to take into account any plastic deformation
occurring in either the fibre or matrix and therefore calculate the yield stress of the
composite and estimate its overall elasto-plastic behaviour.

To obtain values of overall composite properties such as Young’s modulus and
Poison’s ratio, in the axial and transverse ratio an overall elastic matrix can be

calculated and from this the overall elastic constant can be determined.

4.1.5 Randomly Reinforced Metal Matrix Composites

The Theory of Cells was developed for unidirectional composites where the fibres
are aligned in the X, direction as shown in Figures 4.1 & 4.2 This places severe
limitations on the type of systems it is possible to analyse. However a
transformation can be made on the stiffness matrix of each sub-cell, using a
method first suggested by Arridge.®® It is found that for a material with randomly
distributed fibres, the stiffness matrix reduces to three non-zero elements which are

related to the aligned fibre matrix in the following manner

B *PV=(3A; +2A; +4A3)/5
B ®PP=(A; +4A; +2A3)/5
Bes™PP= (A1 - 4A; +3A3)/5
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where
A =(C, l(a,ﬁﬂ) +C22(0t,ﬁﬂ) +Cs 3(11,3,7)) /3

Az =(C 44(Ot,ﬁ,v) +Cs 5(Ot,B,Y) + Cs 6(%&7)) /3

B; P is the transformed stiffness matrix, allowing for a

fully random fibre distribution in the composite.

Cy PP is the stiffness matrix for aligned fibres

Using this modified stiffness matrix in the stress strain matrix, the strain in all
three dimensions can be calculated for each sub-cell in the MMC with randomly

distributed fibres.

4.2 Fatigue Analysis

It can be assumed that fatigue failure will occur when one or more of the sub-cells
reach a critical stress level. In a one-dimensional loading system the fatigue failure
stress for the matrix material can be obtained from an S/n curve. It can be assumed
that failure of the composite will occur, for a similar number of cycles, when any
matrix sub-cell reaches this cyclic stress level providing the fibre has not reached
its critical level. Therefore the matrix is assumed to fail by fatigue similar to the
homogenous material.

The fibres however may behave differently. Silicon carbide fibres are brittle and do
not exhibit fatigue failure.®® In the case of the individual fibres, their critical fatigue
stress is assumed to be identical to their tensile failure stress. However, similar
fibres exhibit a wide range of tensile failure stresses as can be seen in Figure 4.3.
This has important implications on the fatigue life of a metal matrix composite

containing such brittle fibres.
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Figure 4.3 Experimental strength behaviour of SiC yarn fibre ( Andersson and Warren™ )
QO 10-mm fibre carefully handled @ 100-mm fibre carefully handled

In the present study the Theory of Cells is used to calculate stresses in the eight
sub-cells for an increasing load. At each increment of load, a check is made to see
if any matrix sub-cell has reached its fatigue limit for a given number of cycles, or
if the stress level in the fibres is such that fibre failure is encountered. If the former
is the case, the overall composite stress is recorded as the fatigue failure stress for
that load. If fibre failure has taken place, the stress on each sub-cell is recalculated,
assuming a lower density of fibres and the possibility of more fibre breakage
ascertained. An iterative recalculation of stress is then performed until the mode of

fatigue failure is determined.

4.3 Elasto-Plastic Models within the Theory of Cells.

A typical MMC comprises a fibre that behaves in an elastic manner up to the
breaking stress and a matrix that will show the typical elasto-plastic behaviour of a
ductile material. To model a composite an allowance must be made for the plastic

deformation of the ductile matrix. In Aboudi's development of the Theory of
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Cells”! he used the unified theory of plasticity developed by Bodner and Partom.”
In this theory, plasticity is assumed to be always present throughout the loading
process. Although rigorous, the Bodner et al. approach adds a level of complexity
to the analysis that may not be necessary. In the present study, this has been
abandoned in favour of a theory of plasticity proposed by Mendelson”’, in which
the total strain experienced by a stressed material is made up of both elastic and
plastic strains. Using this approach, plastic strain can be assumed to approximate
to zero while the material is within the elastic region. Therefore if o <Y the

total strain can be written as
€ij (total) = Eij (elastic) = O/ E for a one dimensional direct stress
system.
Once the material suffers plastic deformation the relationship changes to:
€ij (total) = Eij (elastic) + Eij (plastic)

and €ij (plastic) Can be defined as (Gij -Y)n/ 3%

and therefore for oj > Y the total strain is now
g5 =oy/E + (05 -Y)/ p
where
oij represents the total stress in the ij direction
Y is the material yield stress
n and p are factors which characterise the plastic behaviour of the material.
This approach assumes simple elastic breakdown at the yield stress. For a bi-axial
loading system the failure theory can be modified to include a shear yield

component.74
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4 .4 Finite Element Analysis

4.4.1 2-D Approach

As a first approach a simple 2-D Finite Element Analysis was attempted using the
EsduFine 2-D modeller produced by Coventry University. This package is
restricted to elastic analysis and has limitations on the number of elements that can
be used. To accommodate these limitations only a small section containing one

fibre and the surrounding matrix was analysed.

Figure 4.4, ldealised representative area of a metal matrix compaosite with periodic armay of fibres

In finite element analysis, an idealised representation of the composite structure
must be chosen. Such a configuration is given in Figure 4.4. where it is assumed
that the fibres are arranged in a periodic manner and that all fibres are equally

spaced in both the X; and X; direction.
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A

Figure 4.5, Idealized region showing single fibre surround by matrix material,

It not necessary to look at the whole of the multi-fibre region to obtain accurate
results from a finite element calculation. Figure 4.5 shows one single fibre and
because of symmetry it is possible to take the region A-A which represents a '

fibre only and, by imposing certain constrictions, obtain valid results.

Deflection & (mm)

1t

1

|

Figure 4.6. Model of ¥ fibre with surrounding matrix used in the EsduFINE analysis.
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In Figure 4.6 a % fibre is shown surrounded by matrix material and constraints are
placed upon the two faces as shown. By superimposing a deflection in the X,
direction both the local and global effect upon the metal matrix composite stress
fields can be observed. The depth of the fibre, which is not shown on the figure, is

the ‘a’. the same as the width.

4.4.2 3-D Approach

The 3-D finite element approach has
been used with some success to
determine material properties of
both long and short fibre metal
matrix composites. In the present
investigation only the region of high
plastic  deformation has been

analysed. The stress-strain analysis

of both the metal matrix composite

Figure 4.7. Scheme of the MMC structure with periodic
array of fibres

and the individual cells within it are
a 3D plasticity problem. However,
as a first approach, the fibres were approximated to a spherical body surrounded by
a cylinder of matrix material (see Figure 4.4). The cylinder represented one cell of

75,76,77.78

the MMC. Using a model described elsewhere the cyclic stress-strain

response of the matrix material can be developed in terms of the simple

relationships. The stress o, and strain £, co-ordinates may be related during any
half-cycle n by

o, =/1,(&), @.1
where f (&) represents some modification of the initial stress-strain response of

the matrix material under monotonic loading (i.e. n=0). However other parameters
describing the material cyclic stress-strain curve will vary depending on the cyclic

history and the number of applied cycles, but, as was shown in previous
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publications””’%"- 7

,these changes may not only be dependent on the number of
half cycles. To take this into account an alternative approach is used, with the
parameters describing the cyclic strain curve dependent on the cumulative plastic

strain ¥ .

This is defined as

Wi
z=2 |As,|, 4.2)
n=0

The relationship between stress o, and strain £, (Figure 5) is represented in the
form

Elg* & <¢

o =1 . (.9*—5;][) . .
Ee, +b,df gs+—;——— -0, £ >¢,

\

(4.3)

. a
g = d—"]g; d,=E,[E

X
where o and &, are the initial stress and strain values at 0.02% offset yield; a,,
b, and d, are material-sensitive parameters describing plastic deformation

response of the material under cyclic load; E, is a plastic strain path (-dependant

modulus such that E=E, . In practice, due to the Bauschinger effect, a, may

2(

be defined as o, /o,, d is defined as stated above and a transformation
coefficient b, relates the non-linear portion of the stress—strain curve under

monotonic loading to that observed under dynamic loading conditions.

This relationship is valid for the matrix material, which under cyclic loading has an
alternating elasto—plastic strain while the fibre material remains elastic. Material
constants describing the above mentioned parameters of cyclic stress-strain were
defined on the base of experimental results obtained for an equivalent material to
that of the Al 7075 alloy.*
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These constitutive equations lead to the non-linear FE problem, the solution of
which requires special iterative procedure at every half cycle of the loading or
unloading.

Tests conducted for different engineering materials show that for constant—
amplitude stress, constant-amplitude strain and stress random—amplitude loading

the number of half-cycles n, before failure at alternating—sign plastic deformation

is related to the limiting value y__ by the power law:
V4
AR 4.4)

here & is the constant depending on the residual plastic strain value, y is the
parameter that characterises the material’s ability “to cure” the cyclic loading
damage.

The model, based on the relationship 4.3, allows simulating the cyclic life
exhaust process of the specimens under all conditions. At the same time, the
accumulated plastic strain may be plotted on the co-ordinate plane y, n by the

function In(y) of In(n). Moreover, if As, does not change sign in going from

half-cycle to half-cycle, then y increases and n, remains constant. If, in the two

adjoining half-cycles Ag, changes sign then # increases by one. If the value
D= Z(n)/ Kmax (n) is taken as the damage measure its equality to unit defines the

amount of half-cycles loading where the alternating-sign plastic deformation takes
place. If for different loading processes the parameters defining the material’s
mathematical model at cyclic deformation are equivalent to the same damage

measure D, all functions of y in equation 4.3 may be replaced by the functions of

the dimensionless parameter D.
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Figure 4.8. Experimental and analytical relationship between the ultimate accumulated plastic strain and the
number of half-cycles before failure.

Taking into account that parameter y in these tests can be obtained by the

. a;r G. (2‘5'5::1-' ) " .
following relationship :- x=n,| 2Ae,, ——'~E—' the results of which
1
are shown in Figure 4.8 where 1, is the number of half-cycles to failure for un-

notched Al specimens and Ag - is the specimen's elongation amplitude. Figure

4.8 is an approximation of these experimental points. The point of intersection

with the Y-axis gives the value of =0.1328. The line tangent is »=2.005,
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Chapter 5

5. 0 Experimental Aspects: Techniques Adopted and
Materials Used

5.1 Strain control testing

5.1.1 Testing Procedure

Tests were carried out on a PC driven Dartec 50 kN. capacity servo-hydraulic
testing machine. All tests were conducted under strain control and constant
amplitude. Tests were conducted in air at a frequency of 0.25 Hz using fully

reversed loading (R=-1.0) with stress and strain data being recorded for each cycle.

5.1.2 Material

The material under consideration in this section was an aluminium alloy Al 7075
and a metal matrix composite with an identical material for the matrix plus 12%
SiC fibres, in particulate form. The chemical composition of the composite was
6.2% Zn, 1.5% Cu, 2.3% Mg, 0.2% Cr., 0.3% Fe and the remainder aluminium.
The monolithic material had a Young's modulus of 72 GPa, a Poisson’s ratio of
0.33, a 0.2% proof stress of 416 MPa, UTS of 565 MPa and an elongation at
failure of 14%.

The SiC particles had the following specification®'. Diameters range from 0.25 to
20 microns with an average diameter of 3 micron to 4 microns. The average
effective aspect ratio was 1.3 while the Young’s modulus was 468 GPa and the
Poisson’s ratio was 0.25. The particulate strength was assumed to be statistical in
nature, 5% of the particulates failing at a stress of 1.6 GPa and 90% having failed

at an average stress of 3.1 GPa.
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The metal matrix composites were produced by spray forming followed by
extrusion. Heat treatment of the material consisted of an initial high temperature
solution treatment at 465 °C held for 45 minutes followed by a cold-water quench
and the material aged for 16 hours at 135 °C. The measured Young’s modulus was
then 84 GPa, the 0.2% Proof stress 404 MPa, the UTS 490 MPa and its elongation

at failure was 2%.

5.2 Stress control testing

5.2.1 Testing Procedure

Tests were carried out on a PC driven Dartec 50 kN. capacity servo-hydraulic
testing machine or on a PC driven Mayes electrically driven testing machine. Both
units are  shown in Figure 5.1. The particular machine used in any test is indicated

in the results section.

Figure 5.1 Elecirically driven Mayes dynamic testing machine and Dartec servo-hydraulic dynamic machine
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All tests were conducted under strain control using sinusoidal constant amplitude.
Tests were conducted in air at frequency ranging from of 0.5 to 8.0 Hz, using an R
ratio of 0.1 with load and displacement being recorded for each cycle. Both
machines were controlled using a Dartec modular 9500 controller capable of both
controlling and monitoring all necessary parameters. All information from the
controller was stored on a standard PC using Dartec Easy software. Setting up the
machine and all adjustments were carried out using the same PC. The 9500

controller and PC are shown in Figure 5.2.

Figure 5.2 A Dartec series M9000 controller that is used in conjunction with
the Mayes dynamic testing machine.
In the tests carried out above ambient temperature a three-zone furnace was used.
This unit was connected, as an integral part, to the Mayes testing machine. This
furnace was controlled by the use of a K type thermocouple connected to a

Eurotherm controller/programer TRI-24-ZV. During these tests a mineral insulated
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K type thermocouple was attached to the fatigue specimen and an Orion data
logger was used to record the temperature every 2 minutes. The furnace is shown
in Figure 5.3 and 5.4 in both the open and closed position.

All static and dynamic bend tests were carried out in four point bending. The
central span of the four-point bend cradle being 0.02m and the outer span 0.054m.

This is shown in position on the Mayes dynamic testing machine in Figure 5.5.

Figure 5.3 Three-zone furnace shown in its closed position,

65



Figure 5.5 Four Point Bend Testing Cradle
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5.2.2 Materials

A number of different metal matrix composites and matrix materials were used in

this series of tests, details of each material are given below.

5.2.2.1 Aluminium Al 2618

The metal matrix composite in this section was an Al 2618 alloy and a metal
matrix composite with identical base material with an addition of 20% volume
silicon carbide particulates. The chemical composition of this alloy was Cu 2.5%,
Fe 1.1 %, Mg 1.5 %, Ni 1.10 % the rest being aluminium. The base matrix material
had a Young’s modulus of 72GPa, a 0.2% proof stress of 428 MPa and a UTS of
459Mpa, while for the metal matrix composite the Young’s modulus was 92GPa,
the 0.2% proof stress was 484 MPa and it had a UTS of 510 MPa. The material
was spray formed and formed as an extruded bar. Afier extrusion both the
monolithic material and the metal matrix composite were solution treated at 530°C
for 1 hour, then water quenched and cold stretched up to 2%. Afterwards, they
were artificially aged at 190°C. for 10 to 20 hours to reach peak-aged condition
(Te6).

The fibres were the same as reported for the Al 7075 material and had an aspect

ratio of 1.3 and a statistical type failure mode.

5.2.2.2 Aluminium Al 2014

The metal matrix composite was a copper based aluminium alloy designated Al
2014 with an addition of 15% volume Al, O; fibres. The reported chemical
composition of both the monolithic material and the composite base material was
Al 93.5%, Cu 3.9 —4.5%, Mg 0.2 — 0.8%, Mn 0.4 — 1.2%, Si 0.5 — 1.2%. It was
experimentally determined that the composite had a yield strength of 359 MPa and
a UTS of 468 MPa. The Young’s modulus for the monolithic material is 72.4 GPa
with a Poisson’s ratio of 0.33. The yield stress of this alloy was 290MPa and the
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UTS was 425MPa. The reported Young’s Modulus of the Al, O; is 532 MPa and
the Poisson’s Ratio is 0.25. The failure stress of the fibre is again of a statistical
nature, with the reported maximum strength being 7.0 GPa. In this metal matrix
composite they had an average aspect ratio of 8.

The composite was solution treated for 2 hours at 500°C. It was then water
quenched and naturally aged for 2 days and finally aged for 16 hours at 160°C.
The comparison is with a monolithic Al 2614 alloy given identical heat treatment

to that of the metal matrix composite.

5.2.2.3 Aluminium AE 109

The monolithic material used in these tests was a standard AE 109 being a high
purity eutectic aluminium/ silicon-casting alloy. To achieve high rates of
solidification and good structural refinement the alloys were manufactured using
the squeeze casting method. The alloying elements used with the aluminium were
12% Si, 1.0% Cu, 1.0% Ni, 1.1% Mg, with no more than 0.5% Fe, 0.25% Mn and
0.2% Zn.

The metal matrix composite had a base material of AE109 and was manufactured
in an identical manner to the monolithic material except with the addition of 15%
Fibrefrax fibres.

Fibrefrax is a commercially available material being a mixture of AL, Os and SiO,
and has a measured Young’s Modulus of 103Gpa and a Poisson’s Ratio of 0.25.
The fibres range in diameter from 1 to 2.5 microns and in this metal matrix

composite the aspect ratio of the fibres was 30.

5.3 Replica work

As the outer surface of a bend specimen under load is the area of highest stress this

is also likely to be the area of crack initiation. As it would be difficult to constantly
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observe the outer surface of a bend specimen for signs of crack initiation a process
of surface replication has been developed.* In this method the machine was
paused at various stages of the test and a softened acetate strip was applied to the
surface of the specimen. Softening was achieved by applying a small amount of
acetone to the acetate strip a few seconds before applying the strip to the specimen.
A small pressure was applied while the strip remains in place for 15 to 20 seconds.
Upon removal the strip was carefully stored to allow hardening of the acetate. All
strips could then be microscopically observed at a later date for signs of crack
initiation or crack growth.

Figure 5.5 shows the set up for later observation of the replica slides

Figure 5.5 Set up for observation of the replica slides
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5.4 Finite Element

5.4.1 2-D Finite Element Model

As the 2-D finite element analysis was carried out using a purely elastic model the
matrix material could represent any aluminium alloys with a modulus of 72 MPa
while the fibre material was SiC with a Young's modulus of 468 GPa and the
Poisson’s ratio was 0.25. Because of the simplicity of both the mesh and the model
it was possible to carry out the analysis over a range of aspect ratios and volume
fractions of fibres. Figure 5.6 shows the mesh used for the 12% volume fraction 2-
D finite element analysis. Elements representing matrix material are marked °5°
while fibre elements are labelled ‘8°. A similar mesh was used for all tests with

only the ratio of matrix to fibre elements being varied.
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13-85-p8 5|5|5|5(5]|5|5]5]|5|5|5|5|5]|5|5|5[|5|5|5]|5
23251 5|5|5|5|5|5(5|5|5]|5|515|5]|5|5|5]5|5|5]|5
5|5|5|5|5|5|5|5|5|5|5]|5|5]|5|5|5|5|5]5]5
csls|s|s|s|s|s[s|s|s|s|s|s]|s({s|s|s]|s]|s]s
BEEEBEEEEBEBEEEBEEEEBEEE
5(5|5]|5|s|5|(a|5|5|5|5(5|5|5|5|5|5|5]|5]|8
(G|5(5|515|5|516]5]|5|5|5]1515/5|5|5|515]5|
5|5|5|5|5|5|5|5|5|5|515]|5|5|5|5]|5|515]5
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LH[5|5[5]|5]|5|5|5]|6[5[5|5|E|&6]|6
s|s|s|s|s|s|s|s(5|5[5(5|5|5]5
5|5|5|5|5|5|5|5|5|5|5|5|5|5]5
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Figure 5.6 Mesh used in 2-dimensional finite element analvsis,
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5.4.2 3-D Finite Element model

The testing of the material has been reported in section 5.1.1 and 5.1.2. and
comprises an aluminium alloy, Al 7075, and a metal matrix composite with an
identical matrix material plus 12% SiC by volume, of particulate fibres. In all
studies, the fibres are approximated to an elastic body with a Young's modulus of
468 GPa and a Poisson's ratio of 0.25. The Al 7075 had a Young's modulus of
72 GPa, a Poisson's ratio of 0.33, and a yield stress of 416 MPa and an ultimate
stress of 565 MPa with an elongation of 14%.

A NODES 4583 ELEMENTS 9018 B

-

X

Figure 5.7. 3-Dimesional finite element mesh for MMC with spherical fibre.

When considering the behaviour of the MMC under monotonic loading a finite
element model with spherical fibres containing 4583 nodal points and 9018 axi-

symmetric simplex finite elements was used as shown in Figure 5.7.
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When cyclic deformation was analysed, the meshes needed to be refined to
decrease approximation errors and to increase the stability of FE models during the
various steps of mathematical simulation. While analysing an MMC with spherical
fibres the number of nodes in the FE model during cyclic plasticity analysis was
above 7000.
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Chapter 6

6.0 Results

6.1 Aluminium Al 7075 and its Equivalent Metal Matrix
Composite Al 7075/ 12% SiCp

6.1.1 Strain Controlled Testing.
A spray formed aluminium zinc alloy was tested under four point bending. In this
series of tests, upper and lower strain levels were kept constant while the stress

levels and number of cycles were recorded. The results are shown below in Figure

6.1
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Figure 6.1 Strain controlled fatigue test on monolithic Al 7075

An equivalent metal matrix composite comprising a matrix of Al 7075 with 12%
SiCp particulates added during the spay forming processes, was tested in an

identical manner and these results are shown in Figure 6.2.

73



700 £ 004% Sirn
e e N R,

Stress Amplitude (MPa)
ol
.5

G500 -]
£ 003% Stoin
1 5 N ————
1 10 100 1000 10000 100000
Number of Cycles

Figure 6.2 Strain controlled fatigue tests on Al 7075/ 12 SiCp
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Figure 6.3 Strain controlled experimental S/n curve for monolithic
Al 7075 and MMC Al 7075 + 12% SiCp.

The results from Figure 6.1 and Figure 6.2 are used to construct Figure 6.3, which
is an S/n curve for both the matrix material and the equivalent metal matrix
composite. The maximum stresses shown in these curves are the maximum stresses

encountered in each individual test.
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Figure 6.4 Strain controlled experimental results of constant strain against Cycles to Failure for monolithic Al
7075 and MMC Al 7075 + 12% SiCp

Using the results from Figure 6.1 and Figure 6.2 a Strain against Fatigue Life curve
was plotted for both the matrix material and the metal matrix composite. This is
shown in Figure 6.4 with the strain being the maximum strain encountered in each
individual test.

As both the Young's Modulus and the yield stress can be predicted by the Theory
of Cells for any metal matrix composite, a comparison is made between the
prediction for this material and those obtained from experimental results. This

comparison can be seen in Table 6.1.

Young's Modwlus  Poisson’s Ratio Yield Siress
Experimental 84.1 Gap Mot Available 404 MPa
TOC 83.3 GPa 0.324 391 MPa

Table 6.1 Experimental and Theoretical values of Modulus and Poisson’s Ratio for metal matrix composite
Al 7075 + 12% SiCp

The comparison between experimental results for the composite Al 7075 + 12%
SiCp and the predictions for fatigue life given by the Theory of Cells is given in
Figure 6.5. This figure shows life against Maximum Stress while Figure 6.6 is a
similar prediction of Maximum Strain for the same material and the same

experimental results.
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Figure 6.5 S/n Curve of experimental results and TOC predicted
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Figure 6.6 Constant Strain against Cycles to Failure: experimental results and TOC predicted life of metal
matrix composite AI7075 + 12% SiCp
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6.1.2 Two Dimensional Finite Element Prediction for Strain Controlled
Testing on an Aluminium Metal Matrix Composite with SiC Inclusions.

A 2 dimensional model was generated for a metal matrix composite having a
perfectly elastic aluminium matrix whose Young’s Modulus was 72 GPa and SiC
inclusions whose volume fraction of the composite were varied from 10% to
32.5%. The aspect ratio for each of these varying fractions was, to a large degree,

dictated by the finite element mesh and is shown in Table 6.2

Aspect Ratio [ 2.5 2 1.66 143 1.25 1.0 1.1 1.2 1.3

Volume 0.1 0125 015 0175 020 025 0275 030 0325
Fraction

Table 6.2 Aspect ratio used in the 2-dimensional linite element analysis of the individual volume fractions

Because of the simplicity of the 2-D model it was possible to predict both the
Young’s modulus and the Poisson’s ratio for a series of metal matrix composites

with varying volume fractions of fibres. These results are shown in Figure 6.7 and

Figure 6.8.
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Figure 6.7 Prediction of Young's Modulus using different methods of analysis for a series of metal matrix
composites
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Figure 6.8 Prediction of Poisson’s ratio using different methods of analysis for a series of metal matrix
composites.

The two graphs not only show the change of Young's Modulus and Poisson’s ratio
over a range of volume fractions as predicted by the 2-dimension finite analysis but
also for a comparison similar predictions using Theory of Cells and Rule of
Mixtures. The results for the Poisson’s ratio have been smoothed and drawn as a
straight line for ease of reference.

As a comparison with events happening in the Al 7075/ 12% SiCp metal matrix
composite, a 2-D finite element analysis was carried out around a % fibre and its

surrounding matrix. The results are show in Figure 6.9.
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Figure 6.9 Stress Contour around e fibre using 2-D finite element simulation

The overall strain in this simulation was 1%, but due to mesh limitation the volume
fraction was 12.5 % and the aspect ratio used was 2. This compares with 12%

volume fraction and 1.4 aspect ratio for the results show in Figure 6.10 and 6.11.
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6.1.3 Three Dimensional Finite Element Prediction for Strain Controlled

Testing on Aluminium Al 7075 and its Equivalent Metal Matrix Composite Al
7075/ 12% SiCp.

A three-dimensional theoretical finite element model was generated for the
composite Al 7075/ 12% SiCp and the stress gradient, produced around a quarter
fibre after five half cycles, is shown in Figure 6.10. The maximum areas of stress
are labelled ‘Interface’, being one particular interfacial area between matrix and
fibre, and ‘Front’, being located ahead of the fibre in the direction of the applied

load. The elongation amplitude used in this case was 1% strain.

Interface

Figure 6.10. Distribution of the accumulated plastic strain in the composite after 5 half-cycles with elongation
amplitude of 1%. I denotes the concentration zone of accumulated plastic strain on the interface between fibre
and matrix. F denotes the concentration zone in the direction of load action

The Theory of Cells does not produce stress or strain contours but predicts average
stress over pre-defined areas called sub-cells. For comparison, these average

stresses are given in Figure 6.11 and this covers the same region of the metal

matrix composite as shown in the finite element plot of Figure 6.10.
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Matrix Matrix
Sub Cell2,1.1 Sub Cell 2.2.1
223 MPa 187 MPa

Fibre Matrix
Sub Cell 1,1,1, Sub Celll,2,1
269 MPa 213 MPa

Figure 6.1 1, Distribution of localised stress within and around the fibre as predicted by the Theory of Cells.
An overall strain of 0.24% was used in the TOC analysis,

Figure 6.12 Numerically (FE) simulated cyelic stress-strain curves interface zone

Figure 6.12 and Figure 6.13 presents the stress/ plastic strain diagram for both the
‘interface’ and ‘front” regions for the first five cycles of the finite element

simulation under a constant strain of 0.7%.
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Figure 6.13 Numerically (FE) simulated cyelic stress-strain curves frontal zone
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Figure 6.14 Relationship between the widih of cyclic deformation loop and the number of half-cycles for the
interface zone at different values of the specimen’s elongation amplitude:
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Figure 6.15 Relationship between the width of cyclic deformation loop and the number of half-cycles for the

frontal zone at different values of the specimen’s elongation amplitude,

A clearer view of what is happening in both the “interface’ and “front” zones during

load cycling is shown in Figure 6.14 and Figure 6.15. The graphs include results

over the full range of strain amplitudes and show the local strain differences

between each cycle.
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Figure 6.16 Results of the local strain against life for 3-D finite element simulation compared to Theory of

Cells analysis and experimental resulis,
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Figure 6.16 gives a summary of strain against cycles to failure results for
experimental, finite element and Theory of Cells. Results are given for low cycle

fatigue only.

6.2 Stress Controlled Testing on Aluminium AE 109 and its
Equivalent Metal Matrix Composite AE 109 with 15% SiC
Fibrefrax

\\ = Aluminium AE109
170 Matrix
\ — Aluminium AE109 +
15% SiC Fibrafax

‘\ \
150 \
140
130
120 J
10000 100000 1000000 10000000

Nf

Figure 6.17 Experimental ambient temperature S/m curve of AE 109 aluminium alloy

The material reported in this section was a commercially available metal matrix
composite used in the automotive diesel engine industry. Figure 6.17 shows a
comparison between the fatigue life of Aluminium AE109 and its equivalent metal
matrix composite. Both sets of results were obtained at ambient temperature and

under identical test methods.
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The Theory of Cells was then used to give a fatigue life prediction and the results
of this are given in Figure 6.18. For comparison the experimentally obtained

fatigue life of the composite is shown on the graph.
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—MM.C.

g

il

Figure 6.18 Experimental data for ambient temperature S/n curve of metal matrix composite AE 109
aluminium alloy with 15% Sic Fibrefrax fibres compared To TOC fatigue life predictions for the same
material,

Figure 6.19 is identical to Figure 6.18, except that for comparison purposes a
fatigue life prediction for a theoretical AE 109 metal matrix composite with fibres
whose Young’s Modulus is 300 GPa. instead of the actual value 105 GPa. All
other properties of both the matrix material and the fibres were assumed to be

identical with the actual original metal matrix composite.
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Figure 6.19 Two predictions of fatigue life of a metal matrix composite using Theory of Cells compared to
experimental data, The only variation in information used in the predictions is in fibre Young's Modulus
value,

6.3 Stress Controlled Testing on Aluminium Al 2618 and its
Equivalent Metal Matrix Composite with 20% SiC Fibres
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Figure 6.20 Experimental results of an Al 2618 aluminium and a metal matrix composite with a matrix of Al
2618 containing 20% SiC fibres. Test carried out under tension-tension loading at ambient temperature.

86



The Stress / Cycles to failure graph shown in Figure 6.20 was produced from

experimental results determined for Al 2618 and a metal matrix composite

comprising the same grade of aluminium with an addition of 20% SiC fibres.
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Figure 6.21 The 5/n Curve for the Al 2618 metal matrix composite containing 20% SiC fibres shown in
Figure 6.10 compared to the theoretical predictions of fatigue life using the Theory of Cells.

The experimental results for the metal matrix composite was then compared to a

prediction from the Theory of Cells and these results are shown in Figure 6.21
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Figure 6.22 Experimental results of an Al 2618 aluminium and a metal matrix composite with a matrix of Al
2618 containing 20% SiC fibres fatigue testing carried in 4-point bending at 200°C.
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Figure 6.23 The S/n Curve for the Al 2618 metal matrix composite containing 20% SiC fibres compared to
the theoretical predictions of fatigue life using the Theory of Cells.
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Figure 6.24 Experimental Results of an Al 2618 aluminium and a metal matrix composite with a matrix of Al
2618 containing 20% SiC fibres, Fatigue testing carried in 4-point bending at 300°C,
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Figure 6.25 The S/n curve for the Al 2618 metal matrix composite containing 20% SiC fibres shown in Figure
6,15 compared to the theoretical predictions of fatigue life using the Theory of Cells,

For this material, tests were carried out on both the matrix material and its
equivalent metal matrix composite at 200°C and 300°C. The results for this are

shown in Figure 6.22 and Figure 6.24. The comparison between the experimental
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results for the metal matrix composite and the Theory of Cells predictions is given
in Figure 6.23 and Figure 6.25.

A series of micrographs was taken of the fracture surface for both the monolithic
material and its equivalent metal matrix composite. These images were taken of
material tested under ambient temperatures and in the low cycle regime, with the

number of cycles to failure being 30,000 cycles or less.

Figure 6.26 Al 2618 + (20%)SiC x 30 Magnification showing fracture surface of metal matrix composite.
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Figure 6.28 Al 2618 + (20%) Sic. The same fracture surface at 1000 magnification.
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Figure 6.29 Al 2618 + (20%)SiC. The same fracture surface at 3000 magnification.
“Z” indicates a fractured fibre.

Figure 6.30 Al 2618 +20%SiC. The same fracture surface at 5000 magnification.
“A” indicates a fractured fibre and “B” indicates stepped features typical of fatigue fracture,
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Figure 6.31 Fracture surface of fatigue specimen with the magnification at 30 times. The material is monolithic
Al2618

Figure 6.32. The same surface of the same material at a magnification of 500.
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Figure 6.33 Al 2618 fracture surface at a magnification of 1000

Figure 6.34 Al 2618 fracture surface at 3000 magnification.
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Figure 6.35 Fracture surface of Al 2618 at 5000 magnification. “Y” indicates a circular feature at the centre of
which is a ferrite particle.

Some verification of the material has been made using an Energy Dispersion

Spectrograph and the results are given in Figure 6.34 to 6.36.
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Figure 6.36 Table of elements from an Energy Dispersion Spectrograph of Al 2618 + 20% SiC showing
typical chemical composition.
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Figure 6.37 Table of elements from an Energy Dispersion Spectrograph of Al 2618 showing typical chemical
composition.
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Figure 6.38 Energy Dispersion Spectrograph of AL 2618 + 20% SiC showing typical chemical composition.
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6.4 Stress Controlled Testing on Aluminium Al 2014 and its
Equivalent Metal Matrix Composite.
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Figure 6.39 Experimental obtained data showing Maximum Stress plotted against Cycles to Failure for aluminium
Al 2014 and a metal matrix composite with an identical matrix material +15% by volume Al, O, fibres.
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Figure 6.40. The fatigue data for the metal matrix composite compared to the fatigue life predictions given by the
Theory of Cells.
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The data presented in Figure 6.39 was obtained in a four point bend test and shows
the fatigue life of an Al 2014 compared to an equivalent metal matrix composite
tested under identical conditions. The fatigue life of the metal matrix composite was

then compared to the results obtained from a Theory of Cells analysis and the results

are given in Figure 6.40.
Test Max No of Cycles No of Cycles to % of Fatigue Life at
Number | Stress to Crack Failure Which Crack Initiated
Initiation

1 493 14250 16435 87

2 500 10000 11711 86

3 498 8500 10076 85

4 544 3000 3725 82

Table 6.3 Summary of test results using replica technique showing number of cycles to crack initiation and number
of cycles to failure.

During the experimental testing of the Al 2014 metal matrix composite the tests were
interrupted at regular intervals. A replica was taken of the top surfaces of each test
specimen and checked to ascertain the number of cycles to crack initiation and then
the rate of crack growth up to failure. The results from this replica technique testing
are given in Table 6.3

In almost all cases, once crack initiation had been detected it was only possible to
obtain one replica image before failure took place. Crack initiation was assumed to be

represented by the appearance of a small gas bubble as indicated in Figure 6.41. This
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image was obtained from test 1 after 14250 cycles. In the same test after 15000 cycles
the crack has grown and can clearly be seen on the next replica plate, Figure 6.42.

A number of micrographs were obtained from this material using a scanning electro-
microscope. An estimation of the fibre diameter can be obtained from Figure 6.43,
which shows a fracture fibre surrounded by matrix aluminium. The fibre failure
happened during the reported fatigue tests. Both the diameter and length of the

fractured fibre can be estimated from Figure 6.44.
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Figure 6.41. Optical micrograph showing the start of crack growth. Starts by showing a bubble,

Figure 6.42 Optical micrograph of crack growth. Crack was 2.3 mm length
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Figure 6.43. Scanning electron microscope micrograph showing fractured fibre.

Figure 6.44 Scanning electron microscope micrograph showing fibre length and diameter.

Some evidence of fibre clustering can be seen in Figure 6.45 while a typical fracture

surface is shown in Figure 6.46.
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Figure 6.46. Fracture surface showing fibre at the centre of circular features.

Two energy dispersion spectrographs are shown in Figures 6.47 and 6.48. The first is

of the base aluminium, the second is of the fibre itself.
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Figure 6.47 Energy Dispersion Spectrograph of Al 20014 showing typical chemical composition.

Figure 6.48 Energy Dispersion Spectrograph - of AlLO; fibre used in the metal matrix composite showing typical
chemical composition.
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Chapter 7

7.0 Discussion

7.1 Aluminium Al 7075 and its Equivalent Metal Matrix Composite
Al 7075/ 12% SiCp

Initially, a monotonic stress strain curve was generated for both the monolithic
material and its equivalent metal matrix composite, the results of which are given in
Section 5. However during fatigue testing the strain levels were kept constant and so
it was necessary to monitor the stress levels as each of the fatigue tests progressed.
The results of these tests are shown in Figure 6.1 and Figure 6.2, the former being for
the monolithic material and the latter for the metal matrix composite. From these
curves, results can be generated showing the fatigue life of both materials. In all but
the lowest stresses, the monolithic material exhibits a superior fatigue life to that of
the metal matrix composite. The difference in fatigue life is more apparent in the
strain plot shown in Figure 6.4 than the conventional S/n curve of Figure 6.3.

As reported in Chapter 5, the monolithic material had a 0.2% proof stress of 416 MPa,
and so the result for yield stress of 404 MPa for the metal matrix composite was
somewhat surprising. It might be expected that the inclusion of particulates in the
aluminium would improve both its yield and ultimate strength. However, it can be
seen from Table 6.1 that the experimental yield stress is at the level predicted by the
Theory of Cells; the experimental and theoretical values being 404 MPa and 391 MPa
respectively. The reason why the metal matrix composite yields at a lower stress than
the monolithic material is to do with the particulate inclusions. Under load, the
particulates will create stress gradients within the aluminium matrix. As predicted in
the Theory of Cells some areas of matrix will be yielding, other areas will still be at
sub-yield levels of stress. The overall stress of the metal matrix composite is the

average of the particulate stress and the stress experienced by each matrix sub-cell, so
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that while areas of the metal matrix composite may have started to exhibit plastic
behaviour, the overall stress may not have reached the value of the yield stress of the
monolithic material.®*** Although this is what has happened to this composite it may
not necessarily be the case for another composite of different particulate volume
fraction and different constituent mechanical properties.xs’86 Yield stress of a
composite is not only dependent on the yield stress of the matrix, but is a complex
relationship between particulate and matrix properties and particulate volume fraction,
aspect ratio and orientation.®” The overall stress of the metal matrix composite will,
of course be a summation of the stresses in the particulate or fibre and each sub-cell
of the matrix. So while one or two sub-cells of matrix material may be yielding other
sub-cells may be well below the yielding stress. In this case, the summed stress for
the metal matrix composite at yield was lower than the yield stress of the monolithic
material.

Table 6.1 also compares an experimentally derived Young's modulus with that
predicted by Theory of Cells. The experimental result indicating a modulus of 84.1
GPa. while the Theory of Cells gives 83.3 GPa. The TOC result, in this case, is within
1 % of the experimental result.

Both the S/n results given in Figure 6.5 and the Strain/N results given in Figure 6.6
show good agreement between Theory of Cells and the experimental results. At
stress levels below 450 MPa the agreement is well within the experimental error
of the test. However once stresses are in the plastic region of the metal matrix
composite, the prediction value of fatigue failure starts to deviate from the
experimental results. At these levels, the stress in the particulates is significantly
higher than those experienced in any sub-cell of the matrix. The matrix
accommodates the increase in overall loading on the metal matrix composite by
yielding, but the particulates are still deforming elastically. As the load increases
some of the weaker particulates fail and there is a redistribution of the load between
particulate and matrix. The theory predicts that, for this metal matrix composite, the

stress level in the individual particulates falls, causing a corresponding increase in the
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stress on the matrix. So failure throughout these tests should have been by matrix
fatigue failure.

It could be assumed that once a particulate has failed, the broken portion is then
available to take load. This could be true of inclusions that are of significant length,
but in this case we are not dealing with fibres but particulates and it would seem that
failed particulates are not available to take load. This would explain the significant
short fall in fatigue life in cyclic stresses above 450 MPa. The broken particulates,
rather than taking load, may be areas of weakness and could cause premature fatigue
failure of the composite. As the stress increases, more particulates break, causing
more fatigue damage to the material. Failure at these stresses could also be initiated
by imperfections in the matrix material itself.

Although this difference between experimental and theoretical fatigue life under gross
plastic deformation is of some importance, it must be remembered that this only
involves the first thousand cycles of the S/n curve. Once beyond this value the
predicted life from the Theory of Cells is in close agreement with that obtained from
experiment.

As a comparison to the predictions offered by the Theory of Cells a simple 2-D finite
element was used to predict both material properties and stresses around the inclusion
in the metal matrix composite. Due to the limitations of the finite element package
used, the number of mesh that could be used in any model was severely limited and as
a consequence the mesh around the inclusion was fairly coarse. Due to these
restrictions, for any volume fraction, the choice of aspect ratio was limited to a small
number of choices. For example for a volume fraction of 0.1 the aspect ratio could
have been chosen as 2.5 or 1.6. Ideally, identical aspect ratios would have been used
for comparing properties of metal matrix composites across the range of volume
fractions, instead because of the mesh constraints the aspect ratios used for each
volume fraction are shown in Table 6.2.

Because of the flexibility of the Theory of Cells it was possible to make a prediction
of the mechanical properties of each of the metal matrix composites with identical

volume fraction and aspect ratio as that used in the finite element prediction. This
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allows a simple evaluation between the two methods over a wide range of possible
metal matrix composite systems. A comparison of the predicted value of Young’s
Modulus, using both the Theory of Cells and this 2-D finite element model is shown
in Figure 6.7. In the Theory of Cells prediction, the Young’s Modulus rises in a linear
fashion up to a volume fraction of 0.2. After this point the rise is no longer linear but
shows some small amount of irregularity. A similar but not identical trend can be seen
in the results predicted by the finite element method. This is due to the varying aspect
ratio as, over this range, not only the volume ratio but also the aspect ratio is
increasing. Most material properties in metal matrix composites are affected not only
by the amount of fibres included in the structure but also by the length of fibre within
the composite.

The results predicted by both methods are in a large measure in good agreement with
one another, the maximum discrepancy being in the region of 9%. For comparison a
prediction using the Rule of Mixtures is shown plotted on the same graph. A brief
résumé of the Rule of Mixtures is given in Chapter 3. The results for this technique
show a linear increase in value of Young’s Modulus but compared to the other two
methods it over predicts the value by between 24% and 64%.

A prediction of the Poisson’s ratio was also made by the finite element method and
the results for this are show in Figure 6.8. Also shown on this graph are the
predictions given by the Theory of Cells and the Rule of Mixtures. At first glance it
appears as though the finite element prediction is at variance with the other two
methods and that the Rule of Mixtures and Theory of Cells prediction look in good
agreement. However, in general the change in the Poisson’s ratio is small over the
whole range of volume fractions, with small changes in any of the results being
capable of drastically altering the trend of the curve.

As the Theory of Cells compares stresses within the composite with known fatigue
failure stresses, it would be interesting to know the predicted stress distribution within
the metal matrix composite as forecast by the 2-D finite element prediction. This is
shown in Figure 6.9 with the overall strain on the composite being 0.1% and the
position of the fibre being outlined in red. It will be noticed that stress within the
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fibre ranges from 341 MPa and 161 MPa, which is way below the minimum failure
stress for a SiC fibre.

Within the aluminium matrix this finite element model predicts an area of high stress,
with a value of 234 MPa, in front of the fibre and another of 207 MPa at the
interface. These areas are marked Front and Interface in the figure.

The mesh limitations imposed by the 2-D finite element study could only be
overcome by moving to a more sophisticated programme. Developing such a program
was outside the capabilities of this study and so a method, developed by collaborators,
was used to compare with results produced by the Theory of Cells. By using a fully
3-D package, that also allows modelling the material in a non-linear fashion, the
solution to the problem then requires a special iterative procedure at every half cycle

of the loading or unloading.

The effective plastic strains were determined for different values of strain € y in the

direction of the cylinder axis. The effective plastic strain distribution in the cylinder

with an overall strain of £ =0.01after 5 cycles is shown in Figure 6.10. It can be

seen that the residual strains reach maximum value on the interface between the
inclusion and the matrix. There is a second area on the cylinder axis in front of the
inclusion where plastic strain reaches a maximum value.

The Theory of Cells, by using an analytical approached to the problems of stress and
strain within a metal matrix composite, allows simple, quick calculations to be
undertaken over a range of situations. For comparison between the methods already
described, Figure 6.11 is included and shows stresses predicted by the Theory of Cells
in the same orientation to those for the finite element methods given in Figure 6.10
and Figure 6.9. In each of the methods, an area of high stress just ahead of the fibre is
predicted. This area is marked ‘Front” for both of the finite element methods and is
the area sub-cell 2,1,1 in the Theory of Cells. In the finite element analysis, areas of
high stress are also predicted in the position marked ‘Interface’ in Figure 6.10 and
Figure 6.9. This corresponds with sub-cell 1,2,1 in the Theory of Cells. However in

the 3-D analysis it is the interfacial area that is forecast to have the higher stress,
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where as the other two methods indicate it is the frontal area with the higher stress.
The discrepancy as far as the Theory of Cells is concerned could be that this interface
area, as predicted by the 3-D finite element model, lies at the cross over point between
all 4 cells shown in the figure. We will see later that this ‘interfacial’ high stress
region presents a problem for the 3-D finite element model when compared to the
experimental model.

The numerical investigation of the composite was carried out in strain-controlled

tests for the following strain amplitudes of symmetric cycles: A€ a= 0.5%, 0.6%,

0.7%, 0.8%, 0.9%, 1%. At each calculation point the current values of y and damage

measure D were defined. The calculation process stops when D =1.

It follows from what has been said that it can be assumed that the first fatigue crack
forms on the inclusion matrix interface, but it is soon followed by a second crack that
forms in the frontal zone after a certain number of loading and unloading half-cycles.
Obviously these cracks precede the overall metal matrix composite's failure. As long
as some region of the composite is at high enough stress this process will occur at all
levels of strain amplitude.

In the zones marked ‘Interface’ and ‘Front’ in Figure 6.10, the process of alternating-
sign deformation occurs in different ways. Figure 6.12 and Figure 6.13 are two cyclic

diagrams of the global co-ordinates 0(8) for a strain amplitude of 0.7%. Figure 6.12

shows that the process of cyclic deformation on the interface between inclusion and
matrix is subject to greater strain levels than in the zone Front, shown in Figure 6.13.

Despite the fact that the overall loading process occurs at constant strain amplitude,
the zones, Interface and Face, see a different stress and strain range. However, as the
number of cycles increases the dimensions of the hysteresis loop stabilises. This is
confirmed by the results given in Figure 6.14 and Figure 6.15, showing the behaviour
of the loop's width versus the number of half-cycles. Initially, the cyclic behaviour of
the material is dependent on the value of the specimen's elongation amplitude.

However, by the tenth half-cycle the process of cyclic deformation may be considered

stabilised. In many respects, it depends on the value of the hardening parameter bx It
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should be noted that the process of cyclic elasto-plastic deformation brings an
essential non-homogeneity in the distribution of plastic strain in the region close to
the inclusion matrix interface (see Figure 6.10). Due to the non-uniformity of
aluminium’s hardening in the region near the interface, a zone with wave-like
distribution of plastic strain arises. However, with the number of half-cycles
increasing, such wave-like pattern is smoothed out. Thus maximum plastic strain on
the interface and frontal zones are not consistent from the cycle to cycle. This is
clearly indicated in Figure 6.14 and Figure 6.15.

On the basic assumption that the number of half-cycles before the appearance of a

low-cycle fatigue crack is defined by the condition D =1, the number of cycles for

crack initiation were calculated. Figure 6.16 is a plot of cycles before failure, versus
the localised strain for region within the metal matrix composite. Results from the 3-
D finite element analysis are indicated as ‘Front’ and ‘Interface’ and for comparison
both experimental and Theory of Cells results are shown.

It must be remembered that we are not strictly comparing like with like on this graph.
This finite element analysis only allows prediction of the number of cycles to crack
initiation, while the experimental and Theory of Cells results are for prediction of
fatigue failure. For this type of fatigue loading it would be expected that the number
of cycles from first crack until failure is around 70-80% of specimen cyclic lifetime. It
should be expected therefore that, for a given strain level, the finite element prediction
would under estimate the life of the material compared to results obtained
experimentally and it can be seen from Figure 6.16 that this is the case.

In the above section, experimental results for a series of constant strain fatigue tests
on Al 7075 were used along with the Theory of Cells to make a prediction of the
fatigue life of an equivalent Al 7075 metal matrix composite. These results were then
compared to constant strain fatigue tests of the metal matrix composite itself. The
results were then compared to the prediction made by the Theory of Cells with good
correlation in all but the low cycle fatigue regime.

A comparison has also been made of the results of Young’s modulus, Poisson’s Ratio

and Yield Stress of experimentally obtained values and those predicted by the Theory
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of Cells. Then using a simple 2-Dimensional finite element model the predicted
values of Young’s Modulus and Poisson’s ratio over a wide range of volume
fractions was compared to the results obtained from the Theory of Cells. For both
the experimental and finite element results there is good agreement with the Theory of
Cells. Although not the main point of the study, this correlation between experiment
and finite element with the Theory of Cells gives some confidence that the model can
predict a wide range of mechanical properties of metal matrix composites.

A crucial point about the Theory of Cells is that it can predict average stresses in and
around a fibre within a metal matrix composite. Comparison is shown of the stresses
predicted in this region by the Theory of Cells and by the simple 2-Dimensional finite
element model and a much more powerful 3-dimensionl non-linear finite element
model. The results from these studies are in agreement that there will be a highly
stressed area in the matrix material ahead of the fibre but there is disagreement about
the level of stress at the fibre-matrix interface.

The 3-dimensional finite element model was then used to forecast the fatigue life of
the metal matrix composite and the results were compared to the forecast made by the
Theory of Cells but due to computational limitation the comparison could only be
made at the low-cycle fatigue end of life prediction. The finite element method
indicated a high area of stress at the interface which was not shown using the Theory
of Cells. This would predict fatigue failure, for a given stress, at a lower number of
cycles to that given by the Theory of Cells or experimental evidence. The frontal area
of high stress indicated by the finite element gives a much close correlation to both
Theory of Cells and experimental evidence. Perhaps the simplification of the fibre
into a sphere has over predicted the stress in the interfacial area and thus forecast a
very pessimistic fatigue life compared to the other two results. Both the simple 2-
dimensional finite element model and the Theory of Cells use a model of the fibre
which is more in line with the real fibre than the more complex 3-dimensional

analysis.
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7.2 Stress Controlled Testing on Aluminium AE 109 and its
Equivalent Metal Matrix Composite AE 109 With 15% SiC
Fibrefrax

Aluminium AE109 and its associated metal matrix composite is a commercially
produced material used in diesel engine pistons. Although general information on this
material are available®® details of comprehensive mechanical data is difficult to obtain
due to both its commercial sensitivity and constant material development. The
material tested in this section was a standard AE109 alloy and an equivalent metal
matrix composite with a commercially available refractory fibre ‘Fibrefrax ‘. Both
composite and base materials were tested in tension-tension mode under constant
stress control.

The S/n curve generated from these tests can be seen in Figure 6.17. At high
maximum stress the aluminium alloy had superior fatigue strength to that of the metal
matrix composite, but at low stresses the fatigue strength of both materials was
identical. When the results from the metal matrix composite were compared to those
predicted by the Theory of Cells, as shown in Figure 6.18, the correlation of the two
was very close indeed. At the low-cycle end of the curve, the experimental results
correlated exactly with those of the prediction and only at a very high number of
cycles did prediction and experimental results differ by more than a few percent.
Although the deviation of the predicted values from those of the experimental is only
slight, it can be seen from Figure 6.17 that the experimental curve deviates from
linearity at the low stress section of the curve. This non-linearity could be a real effect
or in fact could be generated by a single result. Unfortunately, this issue could not be
resolved due to time and material limitations. If this was a spurious result and the S/N
curve was in fact linear, the correspondence between theory and experiment would be
more striking.

At ambient temperatures the difference between the fatigue strength of the composite
and that of the original alloy is comparatively slight. It might be felt, therefore, that
the accurate prediction of the Theory of Cells is only to be expected. Fatigue is
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predicted in this modification of the Theory of Cells by comparing the stress levels
around a fibre with known values of matrix material fatigue strength. Obviously, the
mis-matching in Young’s modulus between fibre and matrix could have a major effect
on the composite fatigue life. Figure 6.19 has the same information as that presented
in Figure 6.18 but also includes a prediction of a similar composite to the one used in
the study, but with the fibres having a Young’s modulus of 300 GPa. As can be seen,
for this composite, the fatigue life is greatly reduced over the whole stress range. This
is a significant result because it shows how important the relative stiffness of the fibre
and matrix can be in the fatigue life of the metal matrix composite. By selecting a
fibre and matrix of similar stiffness, a superior fatigue life was obtained for this
composite to that obtained by having a high fibre stiffness with an identical base
matrix. With materials of similar stiffness all components will experience similar
levels of stress during initial loading. This will mean that fatigue damage to the matrix
material occurs later in a loading sequence than would occur in a material with a high
fibre stiffness. In this manner, the similarity between the S/n curve of matrix and
composite can be explained.

Using a simple tension-tension series of tests the fatigue life of a metal matrix
composite and its equivalent aluminium alloy has been predicted and good correlation
is shown between the composite life and predictions made by the Theory of Cells.
This material also shows clearly the effects of fibre Young’s modulus on the fatigue

life of a metal matrix composite.

7.3 Stress Controlled Testing on Aluminium Al 2618 and its
Equivalent Metal Matrix Composite with 20% SiC Fibres

The test data shown in Figure 6.20 was obtained from a four-point bend test, with an
R ratio for all tests being 0.1. The fatigue life of the metal matrix composite was, in
all cases, inferior to that of the matrix material, with the low cycle fatigue life

showing a greater difference compared to that obtained in the high cycle testing.
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Compared to the material studied in the last section, the difference between the
fatigue life of the composite and the aluminium alloy is significantly different.
However when, we compare the results of the composite fatigue testing with the
prediction given by the Theory of Cells, as shown in Figure 6.21, a very good
correlation exists between the two. Again at high maximum stress the correlation
between Theory of Cells and experimental results are much better than at the lower
maximum stress fatigue region but even here the error difference between the
predicted value and experimentation is still only 6%.

For this material, fatigue testing on both the composite material and its associated
metal matrix composite were also carried out at elevated temperatures. Figure 6.22
shows fatigue results for both the matrix and composite at 200°C while Figure 6.24
shows the results at 300°C. In both cases we can see that the matrix material appears
to have superior fatigue properties to that of the metal matrix composite. The results
from the 200°C Theory of Cells analysis compared to the experimental results for
metal matrix composite are shown in Figure 6.23. In all cases, the Theory of Cells
underestimates the fatigue life of the composite. For example with a maximum stress
of 400 MPa the Theory of Cells predicts failure at 3000 stress reversals while the
composite in fact withstood 6000 stress reversals before failure. Although this result
was a disappointment at least the prediction was conservative and consistent as the
slope of both lines were virtually identical.

When we look at the results for the 300°C Theory of Cells prediction, a much more
confused picture emerges. The results of both the experimental data and the prediction
are shown in Figure 6.25. As can be seen the Theory of Cells has failed to predict the
fatigue life of the metal matrix composite at this temperature. The slopes of both lines
are different and nothing positive can be said about this result.

For both these results we must look at what is meant by fatigue failure. At room
temperature, failure occurs because of the fracture of the specimen. Crack initiation
and then growth has occurred and finally the material fails in a ductile or brittle
fashion, depending on the material type and the stress levels. However fatigue failure

at these elevated temperatures must be defined in a different way from the type of
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failure which occurs at ambient temperatures. Some elevated temperature tests fail in
a manner similar to that experienced at ambient temperature, but more often failure
occurs because displacement of the specimen is such that testing can no longer be
carried out. Some of the metal matrix composite specimens tested at 200°C failed by
simple fracture but all other specimens, both metal matrix composite and matrix
material, failed by excessive displacement. This excessive bending of the specimen is
a mixture of both fatigue and creep damage. It is not surprising, therefore, that the
predictions from the Theory of Cells do not match the results from experimentation.
With greater knowledge of the mechanical properties of both materials at higher
temperatures it may be possible to modify the Theory of Cells to accommodate both
creep and temperature effects but this was felt to be beyond the scope of this study.
Also, the monolithic matrix material and the metal matrix composite are subject to
different creep rates thus confusing the analysis even further. In these high
temperature tests both fatigue failure and creep failure are signified by gross
deformation of the test specimen. This deformation will be caused by creep and
fatigue damage but as the temperature rises, creep will be more prevalent in the
matrix than the metal matrix composite.

To better understand the events surrounding fatigue of both the aluminium alloy and
its associated metal matrix composite, a micrographic study was undertaken of some
of the failed specimens tested at ambient temperatures. The two lower power
micrographs, Figure 6.26 and Figure 6.31, of the metal matrix composite and the
matrix material do not show sufficient detail to reveal any difference in the way
fatigue has taken place in both materials. Once the magnification is increased
however, significant differences can be noticed. The metal matrix composite
micrograph, Figure 6.27, shows a non-uniform dimpled structure in which the bottom
of many of the dimples have fibre particles. Notice that these dimples are irregular in
both size and shape, the shape often being determined by the particle size and
orientation.

Compare this micrograph with Figure 6.32, which is one of similar magnification of

the matrix material. The dimples here are of a more uniform circular nature and many
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have a hollow bottom indicating that they were produced during extended plastic
deformation®.

With higher magnification of the metal matrix composite fracture surface, we see
more clearly both the uneven dimple effect and fibre particles. This is very evident in
Figure 6.28 where many SiC particles are observed. Figure 6.29 gives evidence of
particle fracture, this being marked by “Z” on the micrograph and “A” on Figure 6.30.
All of these micrographs are typical of a fatigue fracture in a metal matrix composite
including the stepped feature marked “B” on Figure 6.30.

The micrographs of the matrix material are also very typical of fatigue fracture
surfaces. Figure 6.33 and Figure 6.34 clearly show the circular nature of the fractured
surface. We also notice small particles protruding from many of the dimples and for a
clear view of this feature a micrograph at a higher magnification was obtained,
(Figure 6.35). A particle is labelled “Y” on this figure. In an earlier report™° a similar
feature was noted and it was stated that these features were eutectic silicon particles.
However the material under study in this section was a copper based aluminium alloy
with no silicon present. An energy dispersion spectrograph was obtained both for the
metal matrix composite, Figures 6.36 and 6.38, and for the base material, Figure 6.37.
This indicates that while the composite contained silicon from the fibres, none was
present in the base material. However as ferrite was an alloying element in the
aluminium it is likely that these inclusions were composed of particles of pure
ferrite’’ produced during material processing.

In the modified form of the Theory of Cells presented in this study, it has been shown,
that the fatigue life of a metal matrix composite over a wide range of stress/strain
levels can be predicted. At elevated temperature where creep damage may be
occurring, the predictive power of the Theory of Cells are somewhat restricted.
Results at both 200°C and 300°C are shown and compared to theoretical results
derived from the Theory of Cells.

To obtain some understanding of the failure process encountered for this alloy and its
associated metal matrix composite, a series of micrographs are shown and it was

noted that both the matrix material and the metal matrix composite had similar
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features at high magnification. The fracture surface of both materials are covered with
dimples but the reason for their being there is different for each of the materials. In
the composite, the centre of the dimple is of course the fibre, but in the matrix
material it is probably a ferrite particle.

One assumption made in the modified Theory of Cells is that fatigue failure occurs
when the matrix or fibre material reaches an appropriate stress caused by the elastic-
plastic interplay of fibre and matrix. In the current modification, no allowance is made
for pre-existing ‘faults’ in the material. These can take the form of cracks, inclusions
or problems associated with fibres and these are alternative areas from which fatigue
failure could be initiated. The micrographs from this section of the study do not
unfortunately indicate by which of these two methods fatigue initiation occurs. It
therefore became necessary to use more indirect means to ascertain whether the
assumption made by the modified Theory of Cells were correct. This is dealt with in

the next section of this study.

7.4 Stress Controlled Testing on Aluminium Al 2014 and its
Equivalent Metal Matrix Composite.

If a material is going to fail in fatigue by stress raisers such as cracks and inclusions,
or from problems associated with fibres, most of the cyclic fatigue life will be
involved in the process of crack growth. If, on the other hand, this is not the case,
most of the material’s life will be involved in causing enough fatigue damage to start
crack initiation, followed by a short period of crack growth and then failure. One
method of investigating crack initiation is the replica technique as described in
Section 5.3. This method has to be applied with some caution being both tedious and
time consuming. As a consequence only moderately low cycle tests could be
undertaken.

The first results from this section are S/n data, generated while using the replica
technique. Not only is the data from this technique shown, but for completeness a
number of high cycle tests were also undertaken and are included in the information

given in Figure 6.39. As with previous materials, we have a matrix material which in
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all cases has a fatigue life greater than its metal matrix composite counterpart. Figure
6.39 also shows the now familiar convergence of the two curves in the very high
cycle region.

When we come to compare the metal matrix composite results with the theoretical
prediction, shown in Figure 6.40, we again see a reasonable correlation between the
two. At high maximum stress levels the Theory of Cells over-predicts the life of the
composite and at lower stress levels it under-predicts the life of the composite. When
using the replica technique, the fatigue test must be constantly stopped and re-started
and it was felt that this might have some effect on the results of the fatigue test. When
these results are compared to others given in earlier sections there is little evidence
that this was the case.

The replicas produced in this series of tests were in every case taken from the top
surface of a four-point bend test specimen. This is of course the area of highest stress
and is where a fatigue crack would be expected to initiate. The results, which are
summarised in Table 6.3., show that for all these low cycle tests the fatigue crack did
not appear until quite late in the fatigue life of the specimen. The number of cycles to
failure range from 3725 to 16435, but on all occasions it took over 80% of the testing
time to initiate the fatigue crack. This is consistent with the Theory of Cells’
assumption that fatigue cracks are not growing from faults around the fibre or from
inclusions within the metal matrix composite but the crack that causes failure is
caused by the same initiation process as that experienced by the aluminium alloy.

Two pictures of replicates are shown in Figure 6.41 and Figure 6.42. These pictures
are taken from the same test. The Figure 6.41 shows the first signs of crack initiation,
and this is signified by a small bubble appearing on the replicate slide. Figure 6.42
shows the same area after 750 further stress reversals and, as we see, a crack has
appeared and grown to a length of 2.5mm. Failure followed quickly after this. In each
of the tests carried out in this section, a bubble was observed just prior to the
appearance of the fatigue crack. It was decided to define the point of crack initiation

to be co-incidental with the appearance of this bubble. In practical testing it was only
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after failure had occurred and the replicate slides were being reviewed that it was
realized that the bubble feature had occurred.

On close inspection of the fracture surface we can see a number of interesting
features. Use of a scanning electron microscope, detailed in Figure 6.43, shows a
fractured fibre surrounded by matrix material. The fibre shows a clear, brittle fracture
consistent with ALO3; with the matrix showing ductile failure By decreasing the
magnification, as shown in Figure 6.44, a good view of the length and diameter of the
fibre can be estimated. This gives an aspect ratio of approximately 6.5, which is close
to the reported average aspect ratio of 8. It is also likely that the fibre image shown in
the micrograph is slightly foreshortened which would give an aspect ratio closer to the
quoted average.

In the next micrograph, Figure 6.45, we see evidence of particle clustering that is
often quoted in the literature as phenomena causing composite weakness and an area
from which fatigue crack growth could occur. Clustering is a natural effect caused
during the production of the metal matrix composite. In a system like squeeze casting,
molten matrix material is mixed with a block of fibre material and although the design
of the whole system is arranged to allow maximum dispersion of the fibre, inevitably
this cannot be completely successful. The clustering we see here is only of two fibres
and is what would be expected in a well-dispersed metal matrix composite.
Statistically you would expect at least two or three fibres to be in close proximity at
intervals throughout the material. A weakening of the composite would only be
expected if there were large areas of clustering and other areas devoid of fibres.

As with the material reviewed in the previous section, Figure 6.46 shows us a dimpled
fracture surface and at the centre of the larger dimple is a fibre. This is what we would
expect from a metal matrix composite. Comments have been made on this type of
surface in the previous section.

The final two figures in this section are energy dispersion spectrographs of the matrix
material, Figure 6.47, and the fibre, Figure 6.48. The matrix material shows an
abundance of aluminium with significant levels of copper, manganese and silicon.

This analysis is consistent with the reported makeup of this particular alloy. One

121



surprising trace element is oxygen. This also occurs in the energy dispersion
spectrographs of the fibre, along with aluminium. However as the fibre is Al;0; this
was to have been expected. Also shown on this spectrograph are traces of all the
elements seen in the matrix spectrograph. As the fibre is small, and a difficult target to
isolate, it would seem that small amounts of matrix material are involved in the
analysis. The oxygen shown in the matrix analysis could have come from the fibre or
could have been defused into the matrix from the fibre during production.

In this section the Theory of Cells has been used once again to predict the fatigue life
of a metal matrix composite and again good correlation has been achieved between
the theory and experimental results. During the fatigue testing, replicas were taken of
the most highly stressed part of the test specimen and upon examination it was
determined that fatigue crack initiation did not occur until late in the fatigue life of the
metal matrix composite. This result was consistent with fatigue cracks not emanating
from pre-existing cracks or faults already present in the material before fatigue testing
was undertaken. Micrographs of the material show a typical failure mode of the fibres
and also some clustering of the fibres within the material but not enough to cause

weakness of the composite.

7.5 Overall Fatigue Behaviour of Metal Matrix Composite

In each test reported in this study, an analysis using the modified Theory of Cells has
been used to predict the fatigue life of a different metal matrix composite. Four
different aluminium alloys were used comprising a zinc-based alloy, two copper
based alloys and a silicon-based alloy. Both SiC and Al,O; fibres have formed the
reinforcement in the metal matrix composite and both stress controlled testing and
strain controlled testing have formed part of the study. Both tension/tension and four
point bending tests have been carried out. At ambient temperature the modified
Theory of Cells has demonstrated an ability to forecast, to close accuracy, the fatigue
life of all these metal matrix composites. Looking at the various results, no type of
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alloy or fibre reinforcement can be claimed to be favoured by the analysis. Neither
can it be said that strain testing produced closer correlation than stress testing. It
seems the theory works equally well for all the different parameters tested. The simple
assumption of the modified Theory of Cells is that fatigue failure will occur when
the matrix or the fibre reaches a critical stress and it is on this basis that the fatigue
predictions shown in this study are forecast. It may be inferred that when two
dissimilar materials such as aluminium alloy and a ceramic fibre are cast together
there must be many other possible candidates for initiating fatigue failure than the
simple assumption given above. The fibres themselves and the area around them are
likely areas of weakness, as are any inclusions which may be present when production
takes place. It has been reported”” that during the production of SiC fibres a round
inclusion called “shot” can be seen in the fibre mix.

All metal matrix composites examined in this study are either commercial materials or
candidate commercial materials. Such materials would be produced to minimise any
unwanted inclusions. Also such materials would be expected to have good adhesion
between fibre and matrix, in fact a lot of effort would have been expended to ensure
that matrix and fibre bonded well together. For these reasons the materials scrutinised
in this study would be expected to follow the fatigue assumption in the modified
Theory of Cells.

The Theory of Cells calculates the stress within and around a fibre by dividing this
area into eight sub-cells. By doing this, a fairly quick analysis can be carried out for a
range of composites over all nominal strains. To check that this was not an over-
simplification of the situation, some results were compared with both a 2-D and 3-D
finite element analysis. All methods forecast an area of high stress just in front of the
fibre within the composite but the 3-D finite element study also forecast a high
interfacial stress between fibre and matrix and this would more probably be the area
causing fatigue damage. When compared with experimental evidence it turned out
that, using the stress from this interfacial area, the fatigue life was grossly under
estimated compared to both the Theory of Cells and the stress from the frontal area
forecast by the 3-D finite element analyse.
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It was only possible to carry out a small number of tests at elevated temperatures and
these were only on one material. The results from this are disappointing, as the
Theory of Cells becomes less accurate in its prediction of fatigue life as the
temperature around the composite increases. This inaccuracy is a result of the
interaction of fatigue damage with creep of the material. Several attempts were made
by the Author to incorporate creep into the modified Theory of Cells, but with little
success.

It has been shown that the Theory of Cells can be used to forecast the fatigue life of a
range of aluminium composites at ambient temperature. The use of the computer
program used in the Theory of Cells predictions is not difficult and has been used by a
number of under-graduate students with only minimum training. Although only
aluminium alloys have been used in this study, there appears to be no reason why the
analysis cannot be tested with other types of metal matrix composite or indeed with

certain polymeric composites.
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Chapter 8

8.1 Conclusion

. For a range of aluminium metal matrix composites the prediction of modulus
and yield stress from the Theory of Cells was in good agreement with
experimental results.

. Using a modified version of the Theory of Cells with fatigue data obtained
from aluminium matrix materials and information on the failure stress of
fibres or particulates, it was possible to make a prediction of the fatigue life of
a variety of metal matrix composite materials.

. The Theory of Cells could be used successfully to predict constant stress and
constant strain fatigue life.

. At ambient temperature, the predicted fatigue lives of the metal matrix
composites were in close agreement with the experimental results in all cases
except for the low cycle fatigue regime of 1000 cycles or less.

. Failure when material life expectancy was below 1000 cycles may have been
due to failed particulates causing high stress concentrations, or to
metallurgical faults in the matrix material.

. In the low cycle fatigue regime, the fatigue life as predicted by the Theory of
Cells and a fatigue life prediction by a 3-D finite element analysis were
compared to experimental results. Both theoretical methods have a similar
accuracy in their predictive capabilities.

. The Theory of Cells indicated an area of high stress in the matrix ahead of the
fibre and this was confirmed using both a 2-D and 3-D finite element analysis.
. The fatigue life predictions using the Theory of Cells became less accurate as

the working temperature of the composite was increased.
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9.

A replica technique was used to show that fatigue crack initiation, for
commercial metal matrix composites, did not occur before 80% of the total

fatigue life of the composite.

10. A good agreement was obtained for the values of Young’s Modulus and

11.

Poisson’s ratio over a wide range of volume fractions for both a 2 dimensional
finite element model and the Theory of Cells.

The Theory of Cells has been used to show that the match between the
Young’s Modulus of the fibre and the matrix material has a significant effect

on the fatigue life of a metal matrix composite.

8.2 Suggestions for Future Work

. Further development of the Theory of Cells needs to be made to allow

accurate fatigue predictions at elevated temperatures. A creep component
needs to be incorporated into the theory and a consistent fatigue failure
criterion developed.

More investigation needs to be carried out into the low cycle —high stress
region of fatigue failure and, if possible, modifications made to the theory to

allow more accurate fatigue predictions in this region.
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Appendix A

Program for Predicting the Fatigue Life of Long Fibre

COMMON

Metal Matrix Composites

CcM(10,10),CF(10,10),V(2,2),B(10,10),E(10,10)

COMMON AS(3,3),ST(3,3),SA(3,3),PSI1(3,3),PSI2(3,3)

COMMON PSI3(3,3),FI1(3,3),FI2(3,3),FI3(3,3),SIB(3,3)
COMMON BD(10,10),BDT(10,10),B11(4,4),B22(4,4),B21(4,4 )
COMMON B12(4,4),N(2),Vl

COMMON H,H1,H2, DW1DX2,DW2DX1, DW1DX3, DW3DX1, DW2DX3, DW3DX2
COMMON T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15
COMMON T16,DELTA, DELTAL

DIMENSION FAT(4),WP(3,3),L11(3,3),L22(3,3),L12(3,3),L21(3,3),
1AM (2,2),HN(2,2),TN(2,2),DNOUGHT (2,2),BA(6,6),EPL(3,3)
DIMENSION J2(2,2),HK(3,3),T™M(2,2),20(2,2),21(2,2),L33(3,3)
,113(3,3),L23(3,3),S11(2,2),822(2,2),833(3,3),812(2,2)
DIMENSION S23(2,2),%Z(2,2),SL11(2,2),SL22(2,2),SL33(2,2),
SL12(2,2),S8L13(2,2),8L23(2,2),WPD(2,2),813(2,2)

REAL KM,KF,Jl,J2,J3,J4

CHARACTER DATE*12, TIME*12

sk %k Kk sk ke ke ke ok ke ok ok ok v g ok sk ok ok vk ke ket ke ok ke ok ok ok ke ke ko ok Sk sk ok vk sk ke sk ok ke ke sk ke ok ok ke ke ok

OPEN (UNIT=2,FILE='A5.DAT')
WRITE (*,*) ' '
WRITE(*,*) ' WHAT IS THE DATE '
WRITE (*,*) ' '

READ (*, *) DATE

WRITE (*,*) ' '

WRITE(*,*) ' WHAT IS THE TIME '
WRITE(*,*) ' '
READ (*,*) TIME

WRITE (2, *) ! '

WRITE(2,%*) ' EDITION 6.0’
WRITE (2, *) ! DATE: ',DATE
WRITE(2,*) ' TIME ',TIME
WRITE(2,*) ' '
WRITE (2, *) " '

WRITE(2,*) 'HELLO EVERYBODY'

WRITE(2,*) 'THE STRESS STRAIN CURVE PROGRAME'

e e ok ok ke ok ok e ok ke ok ok ok ok Sk ok ok ok R ok ok ok ok ok ok ok ke ke ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
THE PLASTIC PROGRAMME

EAM=72.5
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POSTM=.33

POSAM=.33
ETM=72.5
EAF=400.
POSTF=0.2
POSAF=0.2
ETF=400

GAM=31.

GAF=250.

MUF=0
TN(1,1)=0.000001
TN(1,2)=10
TN(2,1)=10
TN(2,2)=10
™(1,1)=0.000001
T™(1,2)=70

™™ (2,1)=70
T™M(2,2)=170

Z0(1,1)=0.0000001
Z0(1,2)=100
Z0(2,1)=100
Z0(2,2)=100
z1(1,1)=0.0000001
z1(1,2)=190
Z21(2,1)=190
Zz1(2,2)=190

DNOUGHT (1,1)=10E-15
DNOUGHT (1, 2)=10E-4
DNOUGHT (2,1)=10E-4
DNOUGHT (2,2)=10E-4
H1=1

DO 1 JJg=1,60
WRITE(*,*) ' '
CONTINUE

WRITE (*,*) ' '
WRITE (*,*) 'WHAT IS THE VOLUME FRACTION?'
WRITE (*,*) ' '
READ (*,*) VF

CALL MATPROPS (EAM,POSTM, POSAM, ETM, EAF, POSTF, POSAF, ETF,
*GAM, GAF, VF, ESTARA, POSTARA, ESTART, POSTART, GSTARA)
CALL PRINTPROP (VF, ESTARA, ESTART, POSTARA, POSTART,
*GSTARA)

V1=H**2

DO 470 Kl1=1,3

DO 472 JJ=1,3

ST (K1,JJ)=0

L11(K1,JJ)=0

L22 (K1,JJ)=0

L33 (K1,JJ)=0

L12(X1,JJ3)=0

L13(K1,JJ)=0
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L23(K1,JJ3)=0
WP (K1,3J)=0
472 CONTINUE
470 CONTINUE

T(1,1)=0.1
ST (2,2)=-ST(1,1)*POSTART
ST (3,3)=ST(2,2)
ST(1,2)=ST(1,1)
ST (1,3)=0.0
ST(2,3)=0.0
DW1DX2=8T (1, 2)
DW2DX1= ST(l 2)
DW1DX3=ST (1, 3)
DW3DX1=ST (1, 3)
DW2DX3=ST (2, 3)

DO 500 K=1,20

CALL ALL
MUM=CM (4, 4)
S1111=CF(1,1)*ST(1,1)+CF(1,2)*(FI2(1,1)+PSI3(1,1))
* —2*MUF*L11(1,1)
S1112=CM(1,1)*ST(1,1)+CM(1,2)*(FI2(1,2)+PSI3(1,2))
* ~-2*MUM*L12(1,1)

51122=CM(1,1)*ST(1,1)+CM(1,2)*(FI2(2,1)+PSI3(2,1))
* -2*MUM*L21(1,1)
$2211=CF(1,2)*ST(1,1)+CF(2,2)*FI2(1,1)+CF(2,3)*PSI3(1,1)
* —-2*MUF*L11(2,2)
52212=CM(1,2)*ST(1,1)+CM(2,2)*FI2(1,2)+CM(2,3)*PSI3(1,2)
* —2*MUM*L12(2,2)
$2221=CM(1,2)*ST(1,1)+CM(2,2)*FI2(2,1)+CM(2,3)*PSI3(2,1)
* —2*MUM*L21(2,2)
$2222=CM(1,2)*ST(1,1)+CM(2,2)*FI2(2,2)+CM(2,3)*PSI3(2,2)
* -2*MUM*L22(2,2)
S$3311=CF(1,2)*ST(1,1)+CF(2,3)*FI2(1,1)+CF(2,2)*PSI3(1,1)
* —-2*MUF*L11 (3, 3)
$3312=CM(1,2)*ST(1,1)+CM(2,3)*FI2(1,2)+CM(2,2)*PSI3(1,2)
* -2*MUM*L12 (3, 3)
S$3321=CM(1,2)*ST(1,1)+CM(2,3)*FI2(2,1)+CM(2,2)*PSI3(2,1)
* -2*MUM*L21 (3, 3)
$3322=CM(1,2)*ST(1,1)+CM(2,3)*FI2(2,2)+CM(2,2)*PSI3(2,2)
* —2*MUM*L22 (3, 3)
S1211=CF(4,4)* (DW2DX1+FI1(2,1))-2*CF(4,4)*L21(1,2)
81212=CM(4,4)* (DW2DX1+FI1(1,2))-2*CM(4,4)*L12(1,2)
S51222=CM(4,4)* (DW2DX1+FI1(2,2))=-2*CM(4,4)*L22(1,2)
S1311=CF(4,4)* (DW3DX1+PSI1(1,1))-2*CM(4,4)*L11(1,3)
S1312=CM(4,4)* (DW3DX1+PST1(1l,2))-2*CM(4,4)*L12(1,3)
S1321=CM (4,4)* (DW3DX1+PSI1(2,1))-2*CM(4,4)*L21(1,3)
S1322=CM(4,4)* (DW3DX1+PSI1(2,2))-2*CM(4,4)*L22(1,3)
82311=CF(6,6)*N(1)-2*CF(6,6)*L11(2,3)
52321=CM(6,6)*N(2)-2*CM(6,6)*L21(2,3)
52312=CM(6,6)*N(2)-2*CM(6,6)*L12(2,3)
S2322=CM(6,6)*N(2)-2*CM(6,6) *L22 (2, 3)
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504
502

S11(1,1)=(2*31111-52211~83311)/3
S11(1,2)=(2*31112-82212-83312)/3
S11(2,1)=(2*S1121-52221-83321)/3
511(2,2)=(2*%S1122~-82222~83322) /3
$22(1,1)=(2*$82211-83311-81111) /3
S22(1,2)=(2*82212~53312-81112) /3
822(2,1)=(2*82221-83321-81121) /3
S22(2,2)=(2*82222-53322-51122) /3

S12(1,1)=81211

812(2,1)=s81221

S12(1i,2)=s1212

S12(2,2)=81222

$23(1,1)=82311

$23(1,2)=82312

823(2,1)=82321

823(2,2)=82322

S13(1,1)=51311

S13(1,2)=81312

S13(2,1)=81321

S13(2,2)=81322
J2(1,1)=((S1111+82211)**2+(82211-83311)**2+(8S3311-S1111) **2)
J2(1,1)=(J2(1,1)+6*(S1211**2+82311**2+51311**2)) /6
J2(1,2)=(8S1112+82212) **2+(852212-83312) **2+ (S3312-S1112) **2
J2(1,2)=(J2(1,2)+6*(S1212%*2+52312**2+S51312**2)) /6
J2(2,1)=(81121+82221) **2+(S52221-S3321) **2+ (83321-S1121) **2
J2(2,1)=(J2(2,1)+6*(81221**2+832321**2+51321**2}) /6
J2(2,2)=(811224+82222) **2+(82222-53322) **2+ (S3322-51122) **2
J2(2,2)=(J2(2,2)+6*(81222**2+82322**2+51322**2)) /6
DO 502 Kl=1,2

DO 504 JJ=1,2

HN(K1,JJ)=0.5* (TN (X1, JJ)+1) /TN (K1, JJ)

EX=~TM (K1, JJ) *WP (K1, JJ) /20 (K1, JJ)
Z(K1,JJ3)=21(K1,JJ)+(Z0(K1,JJ)-21(K1l,JJ)) *EXP (EX)
XP=-HN(K1,JJ) * (Z (K1,JJ) **2/(3*J2 (K1,JJ)) ) ** (TN(K1,J))
XP=XP/J2(K1,JJ)**0.5

LAM (K1, JJ)=DNOUGHT (KJ, JJ) *EXP (XP)
SL11(K1,JJ)=LAM(K1l,JJ)*S11(K1,JJ)

SL22 (K1,JJ)=LAM(K1,JJ)*S22 (K1, JJ)
SL33(K1,JJ)=LAM(K1,JJ)*S33 (K1, JJ)
SL12(K1,JJ)=LAM(K1,JJ)*S12 (K1, JJ)
SL13(X1,JJ)=LAM(K1l, JJ)*S13 (K1, JJ)
SL23(K1,JJ)=LAM (K1, JJ)*S23 (K1, JJ)

WPD (K1, JJ)=LAM (K1, JJ) *2*J2 (K1, JJ)

CONTINUE

CONTINUE

HK(1,1)=2*Q1*MUM* (L12(2,2)-L22(2,2))+2*Q2* (MUM*L21 (2, 2)

* -MUF*L11(2,2))

HK(1,1)=HK(1,1)+(2*Q3* (MUM*L12(3,3)-MUF*L11(3,3))

*+2*Q4 *MUM* (121 (3,3)-L22(3,3)))

HK(1,1)=HK(1,1)+2* (MUF*V(1,1)*L11(1,1)+MUM*(V(1,2)*L12(1,1)

*+V(2,1)*L21(1,1)+V(2,2)*L22(1,1)))

HK(1,1)=HK(1,1)/V1
HK(2,2)=2*QD1*MUM* (L12(2,2)-1L22(2,2))+2*QD2* (MUM*L21 (2, 2)
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* -MUF*L11(2,2))
HK(2,2)=HK(2,2)+2*QD3* (MUM*L12 (3, 3)-MUF*L11 (3, 3)
*+2*QD4*MUM* (L21(3,3)-1L22(3,3)))

HK(2,2)=HK(2,2)+2* (MUF*V(1,1)*L11(2,2)+MUM* (V(1,2)*L12(2,2)
*+V(2,1)*L21(2,2)+V(2,2)*L22(2,2)))

HK(2,2)=HK(2,2)/V1

HK (3, 3)=HK(2,2)
HK(1,2)=2*(V(1,1)*CF(4,4)*L11(1,2)+CM(4,4)*(V(1,2)*L12(1,2)
*+V(2,1)*L21(1,2)+V(2,2)*L22(1,2)))
HK(1,2)=HK(1,2)-2*(V(1,1)*H2*CF(4,4)-V(2,1)*H1*CM(4,4))

* *(CF(4,4)*L11(1,2)-CM(4,4)*L12(2,1))

HK(1,2)=HK(1,2)/V1

HK(2,3)=2*CF(6,6)*CM(6,6)

HK(2,3)=HK(2,3)*(V{(1,1)*L11(2,3)+V(1,2)*L12(2,3)+V(2,1)*L21(2,3)
*+V(2,2)*L22(2,3))/DELTAL
A=B(2,2)**2*B (1,1)+(2*B(1,2)**2*B(2,3))
A=RA- (2*B(1,2)**2*B(2,2))-(B(2,3)**2*B(1,1))
BA(1l,1)=(B(2,2)**2-B(2,3)**2) /A
BA(1,2)=B(1,2)*(B(2,2)-B(2,3))/A
BA(1,3)=B(1,2)*(B(2,3)-B(2,2))/A
BA(2,2)=(B(1,1)*B(2,2)-B(1,2)**2) /A
BA(4,4)=1/B(4,4)
BA(6,6)=1/B(6,6)
BA(3,2)=(B{(1,2)**2+B(1,1)*B(2,3))/A
EPL(1,1)=BA(1,1)*HK(1,1)+BA(1,2)*HK(2,2)+BA(1,3)*HK (3, 3)
EPL(2,2)=BA(1,2)*HK(1,1)+BA(2,2)*HK(2,2)+BA(3,2) *HK (3, 3)
EPL(3,3)=BA(1,1)*HK(1,1)+BA(3,2)*HK(2,2)+BA(2,2)*HK(3,3)
EPL(1,2)=BA(4,4)*HK(1,2)
EPL(1,3)=BA(4,4)*HK(1,3)
EPL(2,3)=BA(6, 6)*HK (2, 3)
AS(1,1)=E(1,1)*(ST(1,1)-EPL(1,1))+E(1,2)*(ST(2,2)-EPL(2,2))
AS(1,1)=AS(1,1)+E(3,2)*(ST(3,3)-EPL(3,3))
AS(2,2)=E(1,2)*(ST(1,1)-EPL(1,1))+E(3,2)*(ST(2,2)-EPL(2,2))
AS(2,2)=AS(2,2)+E(2,2)*(ST(3,3)-EPL(3, 3))
AS(3,3)=E(1,2)*(ST(1,1)-EPL(1,1))+E(3,2)*(ST(2,2)-EPL(2,2))
AS(3,3)=AS(3,3)+E(2,2)*(ST(3,3)-EPL(3,3))
AS(1,2)=E(4,4)*(ST(1,2)-EPL(1,2))
AS(1,3)=E(4,4)*(ST(1,3)-EPL(1,3))
AS(2,3)=E(6,6)*(ST(2,3)-EPL(2,3))

DO 510 Kil=1,2
DO 512 JJ=1,2
L11(K1,JJ)=L11(K1,JJ)+SL1l1l (K1,JJ)
L22(K1,JJ)=L22 (K1,JJ)+SL22 (K1, JJ)
L33(K1,JJ)=L33(K1,JJ)+SL33 (K1, JJ)
L12(K1,JJ)=L12(K1,JJ)+SL12 (K1, JJ)
L13(K1l,JJ)=L13(K1,JJ)+SL13 (K1, JJ)
L23(K1,JJ3)=L23(K1,JJ)+SL23 (K1, JJ)
WP (K1,JJ)=(WP(K1,JJ)+LAM(K1,JJ) *.01*2*J2 (K1, JJ))
512 CONTINUE
510 CONTINUE
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Appendix B

Program for Predicting the Fatigue Life of Short Fibre

QQ

Qoo 000

C

Metal Matrix Composites

PROGRAM SHORT51
THREE DIMENSIONAL METHOD OF CELLS FOR ISOTROPIC PHASES
IMPLICIT DOUBLE PRECISION (A-H,O0-Z)

% sk kK kK ok ke kb ok % sk ok sk sk sk sk sk Sk ok ke ok ok ke ok sk ke ok ok ok ok ok ok ke ke ok

* *
* SHORT FIBRE PROGRAMME *
* RANDOM FIBERS *
* EDITION 6R.0.1 *
* July 17th 2000 *
* *
* Modified Plastic deformation *
* *
* *

included and Cleaned up
%k %k %k kK Rk ok kb ke ke ke e ke ok ke d ok ok s ok b ok ke ok ke ke ko ok ke ok

COMMON /PLASTIC/ El1P(2,2,2), E2P(2,2,2), E3P(2,2,2)
REAL L1,L2,N1,N2,MU1,MU2

DIFINE THE GEOMETRICAL DIMENSIONS OF THE SUBCELLS
VOL=INCLUSION VOLUME RATIO,ASP=ASPECT RATIO= DI/HI

VOL=0.35

ASP=1.3

H1=ROOT (-VOL* (ASP-1) /ASP, ~VOL/ASP)
L1=H1

D1=ASP*H1

H2=1-H1

L2=1-L1

D2=H2

DEFINE THE PROPERTIES OF MATERIAL 1 (INCLUSION)IN

SUBCELL(1,1,1),

c
C

AND MATERIAL 2 (MATRIX ) IN THE OTHER 7 SUBCELLS
E=YOUNG , FN= POISSON , ALPHA= CTE
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E1=468.0E9

FN1=0.25

ALPHAl=5.0E-6
Y IS THE MATERIAL YIELD STRESS
N IS THE PLASTIC INDEX
MU IS THE PLASTIC MODULUS

[oNeNe!

Y1=111200.E6
N1=4.0
MU1=2.0ES8

E2=72.E9
FN2=0.33
ALPHA2=5.1E~-6

Y2=3591.E6
N2=1.03
MU2=4.E9

OPEN (UNIT=2, FILE="t029.DAT")

WRITE (2, *) 'RESULTS USING DATA FROM'
WRITE (2,*) 'Stokes '

WRITE (2,*) 'ASP=2.5 '
WRITE(2,*) 'July 1 2002 '
WRITE(2,*) 'e 72 GPa '
WRITE (2,*) ' '

c SET THE PLASTIC STRAINS OF THE 8 SUBCELLS = 0
(INITIALIZATION)
bo 1 I=1,2
DO 1 J=1,2
DO 1 K=1,2
E1P(I,J,K)=0.
E2P(I,J,K)=0.
1 E3P(I,J,K)=0.

o DETERMINE THE EFFECTIVE STIFFNESS MATRIX [B] OF THE COMPOSITE
c SEE EQN. (3.101) IN THE BOOK.

E1B=1.

E2B=0.

E3B=0.

TEM=0.

E4B=0.

E5B=0.

E6B=0.

II=1

CALL MOC3D (D1,H1,Ll,D2,H2,L2,El,FN1,ALPHAl,E2,FN2,ALPHAZ,

1 E1B, E2B, E3B, TEM, S1B, S2B, S3B,
2 E4B, E5B, E6B, S4B, S5B,86B, II
3 ,¥Y1,N1,MUL,Y2,N2,MU2)

B11=S1B/E1B
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N

N

B21=S2B/E1B
B31=S3B/E1B

E1B=0.
E2B=1.
E3B=0.
TEM=0.
E4B=0.
E5B=0.
E6B=0.
IT=2

CALL MOC3D (D1,H1i,ILl1,D2,H2,L2,El,FN1,ALPHAl,E2,FN2,ALPHAZ,

B12=S1B/E2B
B22=S2B/E2B
B32=S3B/E2B

E1B=0.
E2B=0.
E3B=1.
TEM=0.
E4B=0.
E5B=0.
E6B=0.
II=3

CALL MOC3D

B13=S1B/E3B
B23=S2B/E3B
B33=S3B/E3B

EFFECTIVE
E1B=0.
E2B=0.
E3B=0.
TEM=0.
E4B=1.
E5B=1.
E6B=1.

I1=4

E1B,EZ2B, E3B, TEM, S1B, S2B, S3B,
E4B,E5B,E6B, 54B, S5B, S6B, IT
,Y1,N1,MUL1,Y2,N2,MU2)

(D1,H1,1L1,D2,H2,L2,E1l,FN1,ALPHAl, E2, FN2, ALPHA2,
E1B,E2B,E3B, TEM, S1B, S2B, S3B,
E4B,E5B,E6B, S4B, S5B, S6B, IT
,Y1,N1,MU1,Y2,N2,MU2)

SHEAR MODULI

CALL MOC3D (Di,H1,11,D2,H2,L2,E1l,FN1,ALPHAl,E2,FN2,ALPHAZ,

E1B,E2B, E3B, TEM, S1B, S2B, S3B,
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2 E4B,E5B, E6B, S4B, S5B, S6B, IT
3 ,Y1,N1,MU1,Y2,N2,MU2)

B44=S4B/ (2*E4B)
B55=S5B/ (2*E5B)
B66=S6B/ (2*E6B)

AAA=(B11+B22+B33)/3
BBB=(B23+B13+B12)/3
CCC=(B44+B55+B66) /3
RB11=(3*ARAA+2*BBB+4*CCC) /5
RB12=(AAA+4*BBB-2*CCC) /5
RB66=(AAA-BBB+3*CCC) /5

E1B=3.

E2B=2

E3B=1
RS11=RB11*E1B+RB12*E2B+RB12*E3B
RS22=RB11*E2B+RB12*E1B+RB12*E3B
RS33=RB11*E3B+RB12*E1B+RB12*E2B
XODR=RB66* (3*RB12+2*RB66) / (RB12+RB66)
POSR= RB12/(2* (RB12+RB66))

WRITE (2,*) 'RESULTS USING THE OVERALL B MATRIX'

WRITE(2,*) ' '

WRITE(2,*) ' !

WRITE (2,*) 'RMOD RPOS ', XODR, POSR

WRITE(2,*) ' '

C WORK OUT THE RANDOM STRESS ON THE CELLS

WRITE(2,*) ' FIBRE MATRIX OVERALL OVERALL'
WRITE(2,*) ' STRESS STRESS STRESS
WRITE(2,*) ' MPa MPa MPa

DO 345 XCT=.00001,.0002,.00001
E1B=XCT

E2B=-E1B*POSR

E3B=EZB

TEM=0.

E4B=0.

E5B=0.

EéB=0.

II=5

CALL MOC3D (D1,H1,1L1,D2,H2,L2,El,FN1,ALPHAl,E2,FN2,ALPHAZ,

1 E1B,E2B, E3B, TEM, S1B, S2B, S3B,
2 E4B,E5B, E6B, 34B, S5B,S6B, 1T
3 (Y1,N1,MU1,Y2,N2,MU2)

345 CONTINUE
C DETERMINE THE EFFECTIVE GAMA AND CTE
E1B=0.
E2B=0.
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N

E3B=0.
TEM=1.
E4B=0.
E5B=0.
E6B=0.
II=0

CALL MOC3D
E1B, E2B, E3B, TEM, S1B, S2B, S3B,
E4B,E5B,E6B, S4B, S5B, S6B, IT
,Y1,N1,MU1,Y2,N2,MU2)

GAMA1S=-S1B/TEM
GAMA2S=-52B/TEM
GAMA3S=-S3B/TEM

ALPHA2S=(GAMA1S*B12-GAMA2S*B11) / (2*B12**2-B11* (B22+B23))

ALPHA1S5=(GAMA1S-2*B12*ALPHA2S) /B11

Ell=Bl1

E12=B12

E13=FE12
E22=0.75*%B22+0.25*B23+0.5*B66
E33=E22
E23=(B22+B33) /8.
E23=E23+0.75*B23
E23=E23-B66/2.
E44=(B44+B55) /2.
E55=E44
E66=(E22-E33)*0.5

ESTARA=B11-2*B12**2/(B22+B23)
POSTARA=B12/ (B22+B23)

ESTART=B11* (B22+B23)-2*B12**2
ESTART=ESTART* (B22-B23) / (B11*B22-B12**2)
POSTART=(B11*B23-B12**2)
POSTART=POSTART/ (B11*B22-B12**2)

(p1,H1,L1,D2,H2,L2,El, FN1,ALPHAl, E2, FN2, ALPHA2,

GSTARA=B44
WRITE (2, *) ° '
WRITE (2, *) ' '
WRITE (2,*) 'THIS IS THE NON RANDOM FIBER RESULTS'
WRITE (2, *) 'ORIGINAL MODUL FIBRE ',E1
WRITE (2, *) 'ORIGINAL MU FIBRES ', EFN1
WRITE (2, *) 'ORIGINAL MODUL MATRIX ',E2
WRITE (2, *) 'ORIGINAL MU MATRIX ', FN2
WRITE (2, *) 'PLASTIC MODULUS ', MU2
WRITE(2,*) 'N2 ', N2
WRITE(2,*) 'WIDTH OF FIBRE = ',nl
WRITE(2,*) 'LENGTH OF FIBRE = ',L1
WRITE(2,*) "HEIGHT OF FIBRE = ',Hl
WRITE(2,*) 'MATRIX H2 = ',H2
WRITE(2,*) 'MATRIC L2 = ',L2
WRITE (2, *) 'MATRIX D2 = ',D2
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WRITE (2,*) 'ASPECT RATIO = ',ASP

WRITE (2, *) 'VOLUME RATIO OF FIRBRE = ',VOL

WRITE (2,*) 'AXIAL YOUNGS MODULUS = ',ESTARA

WRITE (2,*) "TRANSVERE YOUNGS MODULUS= ', ESTART

WRITE (2, *) 'AXIAL POSIONS RATIO = ',POSTARA

WRITE (2,*) 'TRANSVERE POSIONS RATIO = ', POSTART
)

WRITE(2,*) 'AXIAL SHEAR MODULUS = ',GSTARA
WRITE(2,*) 'THIS IS THE END OF THE NON RANDOM FIBER RESULTS'

NOW DETERMINE THE STRESS CONCENTRATION MATRIX BY SETTING
ALL STRESSES TO ZERO EXCEPT ONE ( PAGE 114)

END

SUBROUTINE MOC3D

(b1,H1,11,D2,H2,L2,El,FN1,ALPHAl,E2, FN2, ALPHAZ,

aaoaaoaaoaoaoaoaaQ

Qo
Z
=
]

Q

1
2
3

E1B, E2B, E3B, TEM, S1B, S2B, S3B,
E4B,E5B,E6B, S4B, S5B, 568, IT
,Y1,N1,MU1,¥Y2,N2,MU2)

THE 3-D VERSION OF THE METHOD OF CELLS
REF: JACOB ABOUDI MECHANICS OF COMPOSITE MATERIALS

El1B,E2B,E3B, E4B,E5B,E6B ARE THE APPLIED TOTAL STRAINS

TEM= TEMPERATURE

S1B,S2s,83B, S4B, S5B,S6B ARE THE RESULTING AVERAGE STRESSES
SI, s2, S3 ,S4, S5, 86 ARE THE STRESSES IN THE 8 SUBCELLS
NOTE : PLASTICITY IS INCORPOBATED IN THE NOR@Wil. DIRECTIONS

I.E., NO PLASTICITY EFFECTS EXIST IN SHEAR
IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION A(24,25), B(24)

COMMON /PLASTIC/ E1P(2,2,2), E2P(2,2,2), E3P(2,2,2)
DIMENSION S1(2,2,2), S2(2,2,2), S3(2,2,2)

DIMENSION S4(2,2,2), S5(2,2,2), S6(2,2,2)

DIMENSION VN(2,2,2), WN(2,2,2), XN(2,2,2)

DIMENSION B111(6,6),B112(6,6),B122(6,6),B222(6,6)
DIMENSION B212(6,6),B221(6,6),B121(6,6),B211(6,6)
DIMENSION RB111(6,6),RB112(6,6),RB122(6,6),RB222(6,6)
DIMENSION RB212(6,6),RB221(6,6),RB121(6,6),RB211(6,6)
DIMENSION RS1(2,2,2),RS2(2,2,2),RS83(2,2,2)

REAL L1,L2,N1,N2,MU1,MU2

FL, FM=LAME CONSTANTS
FL1=E1*FN1/ ((1+FN1)* (1-2*FN1))
FM1=0.5*E1/ (1+FN1)

GAMAl=(3*FL1+2*FM1) *ALPHAL
FL2=E2*FN2/ ( (1+FN2)* (1-2*FN2) )
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333

FM2=0.5*E2/ (1+FN2)
GAMAZ= (3*FL2+2*FM2) *ALPHA2

DO 1 I=1,24
B(I)=0
DO 1 J=1,24
A(I,J)=0
DO 333 I=1,2
DO 333 J=1,2
DO 333 KM=1
E1P (I, J,KM)
E2P(I,J,RM)=
E3P (I, J, KM)
CONTINUE

.0
.0
.0

EQNS. (3.95)
A(l,1)=FL1+2*FM1

A(1,9)=FL1
A(1,17)=FL1
A(l,5)=-(FL2+2*FM2)

A(1,13)=-FL2
A(l,21)=-FL2

A(2,2) =FL2+42*FM2
A(2,10)=FL2
A(2,18)=FL2
A(2,6)=—-(FL2+2*FM2)
A(2,14)=-FL2
A(2,22)=-FL2

A(3,3)=FL2+2*FM2
A(3,11)=FL2
A(3,19)=FL2
A(3,7)=—(FL2+2*FM2)
A(3,23)=-FL2
A(3,15)=-FL2

A(4,4)=FL2+2*FM2
A(4,12)=FL2
A(4,20)=FL2
A(4,8)=—(FL2+2*FM2)
A(4,16)=-FL2
A{4,24)=-FL2

A(5,9)=FL1+2*FM1

A(5,1)=FL1
A(5,17)=FL1
A(5,11)=—(FL2+2*FM2)
A(5,3)=-FL2

A(5,19)=-FL2

A(6,10)=FL2+2*FM2
A(6,2)=FL2
A(6,18)=FL2



A(6,12)=-(FL24+2*FM2)
A(6,4)=-FL2
A(6,20)=-FL2

A(7,13)=FL2+2*FM2
A(7,5)=FL2
A(7,21)=FL2
A(7,15)=—(FL242*FM2)
A(7,7)=—-FL2
A(7,23)=-FL2

A(8,14)=FL2+2*FM2
A(8,6)=FLZ2
A(8,22)=FL2
A(8,16)=-(FL2+2*FM2)
A(8,8)=-FL2
A(8,24)=-FL2
A(9,17)=FL1+2*FM1
A{9,1)=FL1
A(9,9)=FL1
A(9,18)=-(FL2+42*FM2)
A(9,2)=-FL2
A(9,10)=-FL2

A(10,19)=FL2+2*FM2
A(10,3)=FLZ2
A(10,11)=FL2
A(10,20)=-(FL2+2*FM2)
A(10,4)=-FL2
A(10,12)=-FL2

A(11,21)=FL242*FM2
A(11,5)=FL2
A(11,13)=FL2
A(11,22)=- (FL2+2*FM2)
A(11,6)=-FL2
A(11,14)=-FL2

A(12,23)=FL2+2*FM2
A(12,7)=FL2
A{12,15)=FL2
A{12,24)=-(FL2+2*FM2)
A(l12,8)=-FL2
A(l2,16)=—FL2

EQNS. (3.90)

A(13,1)=D1
A(13,5)=D2

A(14,2)=D1
A(14,6)=D2

A(15,3)=D1
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A(15,7)=D2

A(l6,4)=D1
A(16,8)=D2

A(17,9)=H1
A(17,11)=H2

A(18,10)=H1
A(18,12)=H2

A(19,13)=H1
A(19,15)=H2

A(20,14)=H1
A(20,16)=H2

A(21,17)=1L1
A(21,18)=L2

A(22,19)=L1
A(22,20)=L2

A(23,21)=L1
A(23,22)=L2

A(24,23)=L1
A(24,24)=L2

R.H.S.
B(l)=(GAMAl-GAMAZ) *TEM+2*FM1*E1P(1,1,1)-2*FM2*E1P(2,1,1)
B(2)=2*FM2* (E1P(1,1,2)~E1P(2,1,2))
B(3)=2*FM2* (E1P(1,2,1)-E1P(2,2,1))
B(4)=2*FM2* (E1P(1,2,2)-E1P(2,2,2))

B(5)=(GAMA1-GAMAZ) *TEM+2*FM1*E2P(1,1,1)-2*FM2*E2P(1,2,1)
B(6)=2*FM2* (E2P(1,1,2)-E2P(1,2,2))

B(7)=2*FM2* (E2P(2,1,1)-E2P (2,2,1))

B(8)=2*FM2* (E2P(2,1,2)-E2P(2,2,2))

B(9)=(GAMA1-GAMAZ) *TEM+2*FM1*E3P(1,1,1)-2*FM2*E3P (1,1, 2)
B(10)=2*FM2* (E3P(1,2,1)-E3P(1,2,2))
B(11)=2*F¥M2* (E3P(2,1,1)~E3P(2,1,2)}))
B(12)=2*FM2* (E3P(2,2,1)~E3P(2,2,2))

B(13)=(D1+D2)*E1lB
B(14)=(D1+D2)*E1lB
B(15)=(D1+D2) *E1B
B(16)=(D1+D2)*E1B

B(17)=(H1+H2)*E2B
B(18)=(H1+H2) *E2B
B(19)=(H1+H2) *E2B
B(20)=(H1+H2) *E2B
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B(21)=(L1+L2)*E3B
B(22)=(L1+L2)*E3B
B(23)=(L1+L2) *E3B
B(24)=(L1+L2)*E3B

SOLUTION OF THE 24 EQNS.:
CALL SOLVEQ(A,B,24,B,DTR)

THE STRESSES IN THE 8 SUBCELLS (SEE EQNS. (8.76))
FIRST CALCULATE THE PLASTIC COMPONENT

S1(1,1,1)=(FL1+2*FM1)*B(1)+FL1*(B(9)+B(17))-2*FM1*E1P(1,1,1)

-GAMA1*TEM
S1(1,1,2)=(FL2+2*FM2)*B(2)+FL2*(B(10)+B(18))-2*FM2*E1P(1,1,2)
-GAMA2*TEM
S1(1,2,1)=(FL2+2*FM2)*B(3)+FL2* (B(11)+B(19))-2*FM2*E1P(1,2,1)
-GAMAZ2*TEM
S1(1,2,2)=(FL2+2*FM2)*B(4)+FL2* (B(12)+B(20) )-2*FM2*E1P (1,2,2)
~GAMAZ2 *TEM
S1(2,1,1)=(FL2+42*FM2) *B(5) +FL2* (B(13) +B(21) )-2*FM2*E1P(2,1,1)
~GAMA2*TEM
51(2,1,2)=(FL242*FM2) *B(6)+FL2* (B(14)+B(22) )-2*FM2*E1P(2,1,2)
—-GAMAZ*TEM
S1(2,2,1)=(FL2+2*FM2) *B(7)+FL2* (B(15)+B(23) ) -2*FM2*E1P(2,2,1)
-GAMAZ2*TEM
81(2,2,2)=(FL2+42*FM2) *B(8)+FL2* (B(16)+B(24) )-2*FM2*E1P (2,2, 2)
-GAMAZ*TEM

S2(1,1,1)=(FL1+2*FM1)*B(9)+FL1*(B(1)+B(17))-2*FM1*E2P(1,1,1)

~GAMA1*TEM
852(1,1,2)=(FL2+2*FM2) *B(10) +FL2* (B(2)+B(18))~-2*FM2*E2P(1,1,2)
—-GAMA2*TEM
S2(1,2,1)=(FL2+2*FM2) *B(11) +FL2* (B(3)+B(19) )-2*FM2*E2P (1,2,1)
~GAMA2*TEM
S2(1,2,2)=(FL2+2*FM2) *B(12) +FL2* (B(4)+B(20) ) -2*FM2*E2P (1,2, 2)
-GAMA2*TEM
52(2,1,1)=(FL2+2*FM2) *B(13) +FL2* (B(5) +B(21) ) -2*FM2*E2P (2,1, 1)
-GAMA2*TEM
S2(2,1,2)=(FL2+2*FM2) *B(14) +FL2* (B(6)+B(22) ) -2*FM2*E2P (2,1, 2)
~GAMA2*TEM
852(2,2,1)=(FL2+2*FM2) *B(15) +FL2* (B(7)+B(23) ) =2*FM2*E2P (2,2, 1)
~GAMAZ2*TEM
52(2,2,2)=(FL2+2*FM2) *B(16) +FL2* (B(8)+B(24) ) -2*FM2*E2P (2,2, 2)
-GAMA2*TEM
$3(1,1,1)=(FL1+2*FM1)*B(17)+FL1*(B(9)+B(1))—-2*FM1*E3P(1,1,1)
~GAMA1l*TEM
S3(1,1,2)=(FL2+2*FM2) *B(18) +FL2* (B(10)+B(2) ) -2*FM2*E3P(1,1,2)
-GAMA2*TEM
$3(1,2,1)=(FL2+2*FM2) *B(19) +FL2* (B(11)+B(3) ) -2*FM2*E3P(1,2,1)
—-GAMA2*TEM

$3(1,2,2)=(FL2+2*FM2) *B(20) +FL2* (B(12)+B(4) ) -2*FM2*E3P(1,2,2)
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& ~GAMAZ *TEM
S$3(2,1,1)=(FL2+2*FM2) *B(21)+FL2* (B(13)+B(5))-2*FM2*E3P (2,1, 1)

& —~GAMA2*TEM
S3(2,1,2)=(FL2+42*FM2) *B(22) +FL2* (B(14)4B(6) ) ~2*FM2*E3P(2,1,2)
& —GAMAZ*TEM
S53(2,2,1)=(FL2+2*FM2) *B(23)+FL2* (B(15)+B(7) ) -2*FM2*E3P (2,2, 1)
& -GAMAZ2*TEM
S$3(2,2,2)=(FL2+2*FM2) *B (24)+FL2* (B(16) +B(8) ) -2*FM2*E3P (2,2, 2)
& —GAMA2*TEM

23 CONTINUE
C THE RESULTING AVERAGE STRESSES ,SEE EQNS. (3.97)

S1B=(D1*H1*L1*S1(1,1,1)+D1*H1*L2*S1(1,1,2)+D1*H2*L1*31(1,2,1)+
1 D1*H2*L2*S1(1,2,2)+D2*H1*L1*S1(2,1,1)+D2*H1*L2*S1(2,1,2)+
2
D2*H2*L1*81(2,2,1)+D2*H2*1L2*S1(2,2,2))/ ((D1+D2)* (H1+H2)* (L1+L2) )
S2B=(D1*H1*L1*S2(1,1,1)+D1*H1*L2*S2(1,1,2)+D1*H2*11*S2(1,2,1)+
1 DIl1*H2*L2*32(1,2,2)+D2*H1*L1*S2(2,1,1)+D2*H1*L2*S2(2,1,2)+
2
D2*H2*L1*52(2,2,1)+D2*H2*1L2*S2(2,2,2) )/ ((D1+D2)* (H1+H2) * (L1+L2))
S3B=(D1*H1*L1*S3(1,1,1)+D1*H1*L2*3S3(1,1,2)+D1*H2*L1*33(1,2,1)+
1 D1*H2*L2*S3(1,2,2)+D2*H1*L1*S3(2,1,1)+D2*H1*L2*S3(2,1,2)+
2
D2*H2*L1*S3(2,2,1)+D2*H2*L2*S3(2,2,2))/((D14D2)* (H1+H2) * (L1+L2) )

C SHEAR EFFECTIVE MODULT

Cc REF: J. ABOUDI , SOLID MECH. ARCHIVE ,VOL.1l1l, PP.141-183
(1986)

C SEE EQNS. 67,68,69,70 IN THIS PAPER (GIVEN FOR EPS12B)

C E4B= EPS12B , S4B=S12B

COF1=(D1+D2) * (H1+H2) *2*E4B
VN(1,1,1)=COFl/(D1*H1+D2*H2*FM1/FM2+D2*H1*FM1/FM2+D1*H2*FM1/FM2

VN(2,2,2) =COF1l/(D2*H2+D1*H1+D2*H1+D1*H2)
VN(1,1,2)=VN(2,2,2)
VN(1,2,1)=FM1*VN(1,1,1)/FM2
VN(1,2,2)=VN(2,2,2)
VN(2,1,1)=FM1*VN(1,1,1)/FM2
VN(2,1,2)=VN(2,2,2)

VN(2,2,1)=FM1*VN(1,1,1)/FM2

S4(1,1,1)=FM1*VN(1,1,1)

S4(1,1,2)=FM2*VN(1,1,2)

S4(1,2,1)=FM2*VN(1,2,1)

S4(1,2,2)=FM2*VN(1,2,2)

S4(2,1,1)=FM2*VN(2,1,1)

S4(2,1,2)=FM2*VN(2,1,2)

S4(2,2,1)=FM2*VN(2,2,1)

S4(2,2,2)=FM2*VN(2,2,2)
S4B=(D1*H1*L1*S4(1,1,1)+D1*H1*L2*34(1,1,2)+D1*H2*L1*S4(1,2,1)+
1 D1*H2*L2*S4(1,2,2)+D2*H1*L1*S4(2,1,1)+D2*H1*L2*S4(2,1,2)+
2

D2*H2*L1*S4 (2,2,1)+D2*H2*L2*S4(2,2,2) )/ ((D1+4D2) * (H1+H2) * (L1+L2) )
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E5B= EPS13B , S5B=S13B
COF2=(D1+D2) * (L1+L2) *2*E5B
WN(1l,1,1)=COF2/(D1*L1+D2*L2*FM1/FM2+D1*L2*FM1/FM2+D2*L1*FM1/FM2

WN(2,2,2)=COF2/(D2*L2+D1*L1+D2*L1+D1*L2)
WN(1,1,2)=FM1*WN(1,1,1)/FM2

WN(i,2,1)=WN(2,2,2)

WN(1,2,2)=WN(2,2,2)

WN(2,1,1)=FM1*WN(1,1,1)/FM2

WN(2,1,2)=FM1*WN(1,1,1)/FM2

WN(2,2,1)=WN(2,2,2)

S5(1,1,1)=FM1*WN(1,1,1)

S5(1,1,2)=FM2*WN(1,1,2)

S5(1,2,1)=FM2*WN(1,2,1)

S5(1,2,2)=FM2*WN(1,2,2)

85(2,1,1)=FM2*WN(2,1,1)

85(2,1,2)=FM2*WN(2,1,2)

85(2,2,1)=FM2*WN(2,2,1)

$5(2,2,2)=FM2*WN(2,2,2)
S5B=(D1*H1*L1*S5(1,1,1)+D1*H1*L2*S5(1,1,2)+D1*H2*L1*35(1,2,1)+
1 DI1*H2*L2*S5(1,2,2)+D2*H1*L1*S5(2,1,1)+D2*H1*L2*35(2,1,2)+
2

D2*H2*L1*85(2,2,1)+D2*H2*L2*S5(2,2,2) )/ ((D1+D2) * (H1+H2) * (L1+L2))

C

E6B= EPS23B , S6B=S23B
COF3=(H1+H2) * (L1+L2) *2*E6B
XN(1,1,1)=COF3/ (H1*L1+FM1* (H2*L2/FM2+H2*11/FM2+H1*L2/FM2) )
XN(2,2,2)=COF3/ (H2*1L2+H1*L1+H2*L1+H1*L2)
XN(1,1,2)=FM1*XN(1,1,1)/FM2
XN(1l,2,1)=FM1*XN(1,1,1)/FM2
XN{(1,2,2)=FM1*XN(1,1,1)/FM2
XN(2,1,1)=XN(2,2,2)

XN(2,1,2)=XN(2,2,2)

XN(2,2,1)=XN(2,2,2)

S6(1,1,1)=FM1*XN(1,1,1)
S6(1,1,2)=FM2*XN(1,1,2)
S6(1,2,1)=FM2*XN(1,2,1)
S6(1,2,2)=FM2*XN(1,2,2)
S6(2,1,1)=FM2*XN(2,1,1)
S6(2,1,2)=FM2*XN(2,1,2)
$6(2,2,1)=FM2*XN(2,2,1)
S6(2,2,2)=FM2*XN(2,2,2)

S6B=(D1*H1*L1*S6(1,1,1)+D1*H1*L2*S6(1,1,2)+D1*H2*L1*S6(1,2,1)

1 D1*H2*L2*S6(1,2,2)+D2*H1*L1*S6(2,1,1)+D2*H1*L2*56(2,1,2) +
2

D2*H2*L1*S6(2,2,1)+D2*H2*L2*S6(2,2,2) )/ ((D1+D2)* (H1+H2) * (L1+L2))

QOO0

WORK OUT THE STRESS CONCENTRATION MATRIX

FOR EACH OF THE EIGHT SUB CELLS

NOTE MUST ONLY HAVE ONE OVERALL STRESS IN ONE DIRECTION
EACH TIME
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IF (II.EQ.1) THEN

B11i(1,1)=
B112(1,1)=
B122(1,1)=
B222(1,1)=
B212(1,1)=
B221(1,1)=
B121(1,1)=
B211(1,1)=

B111(2,1)=
B112(2,1)=
Bl122(2,1)=
B222(2,1)=
B212(2,1)=
B221(2,1)=
B121(2,1)=
B211(2,1)=

B111(3,1)=
B112(3,1)=
B122(3,1)=
B222(3,1)=
B212(3,1)=
B221(3,1)=
B121(3,1)=
B211(3,1)=

S1(1,1,1)/E1B
S1(1,1,2)/E1B
s1(1,2,2)/E1B
51(2,2,2)/E1B
$1(2,1,2)/E1B
S1(2,2,1)/E1B
51(1,2,1)/E1B
s$1(2,1,1)/E1B

S2(1,1,1)/E1B
52(1,1,2)/E1B
S2(1,2,2)/E1B
sS2(2,2,2)/E1B
s52(2,1,2)/E1B
$2(2,2,1)/E1B
s2(1,2,1)/E1B
s2(2,1,1)/E1B

$3(1,1,1)/E1B
$3(1,1,2)/E1B
S3(1,2,2)/E1BR
53(2,2,2)/E1B
53(2,1,2)/E1B
$3(2,2,1)/E1B
S3(1,2,1)/E1B
53(2,1,1)/E1B

ELSE IF (II.EQ.2) THEN

B111i(1,2)=
B112(1,2)=
B122(1,2)=
B222(1,2)=
B212(1,2)=
B221(1,2)=
B121(1,2)=
B211(1,2)=

B111(2,2)=
Bl112(2,2)=
B122(2,2)=
B222(2,2)=
B212(2,2)=
B221(2,2)=
B121(2,2)=
B211(2,2)=

B111(3,2)=
B112(3,2)=
B122(3,2)=
B222(3,2)=

$1(1,1,1)/E2B
S1(1,1,2)/E2B
51(1,2,2)/E2B
S1(2,2,2)/E2B
51(2,1,2)/E2B
S1(2,2,1)/E2B
51(1,2,1)/E2B
$1(2,1,1)/E2B

52(1,1,1)/E2B
S2(1,1,2)/E2B
S2(1,2,2)/E2B
52(2,2,2)/E2B
s2(2,1,2)/E2B
S2(2,2,1)/E2B
S2(1,2,1)/E2B
s2(2,1,1)/E2B

$3(1,1,1)/E2B
$3(1,1,2)/E2B
S$3(1,2,2)/E2B
$3(2,2,2)/E2B
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B212(3,2)= 83(2,1,2)/E2B
B221(3,2)= $83(2,2,1)/E2B
B121(3,2)= S83(1,2,1)/E2B
B211(3,2)= 83(2,1,1)/E2B

ELSE IF (II.EQ.3) THEN

B111(1,3)= S1(1,1,1)/E3B
B112(1,3)= S1(1,1,2)/E3B
B122(1,3)= S1(1,2,2)/E3B
B222(1,3)= S1(2,2,2)/E3B
B212(1,3)= S81(2,1,2)/E3B

B221(1,3)= S1(2,2,1)/E3B
B121(1,3)= S81(1,2,1)/E3B
B211(1,3)= s81(2,1,1)/E3B

B111(2,3)= S$2(1,1,1)/E3B
B112(2,3)= S52(1,1,2)/E3B
B122(2,3)= S2(1,2,2)/E3B
B222(2,3)= 82(2,2,2)/E3B
B212(2,3)= S2(2,1,2)/E3B
B221(2,3)= S2(2,2,1)/E3B
B121(2,3)= S2(1,2,1)/E3B
B211(2,3)= S2(2,1,1)/E3B

B111(3,3)= S3(1,1,1)/E3B
B112(3,3)= S3(1,1,2)/E3B
B122(3,3)= S3(1,2,2)/E3B
B222(3,3)= S3(2,2,2)/E3B
B212(3,3)= S3(2,1,2)/E3B
B221(3,3)= 83(2,2,1)/E3B
B121(3,3)= S3(1,2,1)/E3B
B211(3,3)= S3(2,1,1)/E3B

ELSE IF (II.EQ.4) THEN

B111(4,4)= S4(1,1,1)/(2*E4B)
Bl12(4,4)= S4(1,1,2)/(2*E4B)
B122(4,4)= S4(1,2,2)/(2*E4B)
B222(4,4)= S4(2,2,2)/(2*EAB)
B212(4,4)= S4(2,1,2)/(2*E4B)
B221(4,4)= S4(2,2,1)/(2*EAB)
B121(4,4)= 84(1,2,1)/(2*E4B)
B211(4,4)= S4(2,1,1)/(2*E4B)

B111(5,5)= 85(1,1,1)/(2*E5B)
B112(5,5)= 85(1,1,2)/(2*E5B)
B122(5,5)= S85(1,2,2)/(2*E5B)
B222(5,5)= 85(2,2,2)/(2*E5B)
B212(5,5)= S85(2,1,2)/(2*E5B)
B221(5,5)= 85(2,2,1)/(2*E5B)
B121(5,5)= 85(1,2,1)/(2*E5B)
B211(5,5)= 85(2,1,1)/(2*E5B)
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QOO0

B111(6,6)= S6(1,1,1)/(2*E6B)
B112(6,6)= S6(1,1,2)/(2*EéB)
B122(6,6)= S6(1,2,2)/(2*E6B)
B222(6,6)= S6(2,2,2)/(2*EéB)
B212(6,6)= S6(2,1,2)/(2*E6B)
B221(6,6)= S6(2,2,1)/(2*E6B)
B121(6,6)= S6(1,2,1)/(2*E6B)
B211(6,6)= S6(2,1,1)/(2*E6B)

ELSE IF (II.EQ.5) THEN

RANDOMIZE THE STRESS INTESITY MATRIX

AAA=(B111(1,1)+B111(2,2)+B111(3,3))/3
BBB=(B111(2,3)+B111(1,3)+B111(1,2))/3
CCC=(B111(4,4)+B111(5,5)+B111(6,6))/3
RB111(1,1)=(3*ARA+2*BBB+4*CCC) /5
RB111(1,2)=(ARA+4*BBB-2*CCC) /5

RB111 (6, 6)=(AAA-BBB+3*CCC) /5
RS1(1,1,1)=RB111(1,1)*E1B+RB111(1,2)*E2B+RB111(1,2)*E3B
RS2(1,1,1)=RB111(1,1)*E2B+RB111(1,2)*E1B+RB111(1,2)*E3B
RS3(1,1,1)=RB111(1,1)*E3B+RB111(1,2)*E2B+RB111(1,2)*E1B

XODR=RB111(6,6)* (3*RB111(1,2)+2*RB111(6,6))
XODR=XODR/ (RB111(1,2)+RB111(6,6))
POSR= RB111(1,2)/(2*(RB111(1,2)+RB111(6,6)))

ADA=(B112(1,1)+B112(2,2)+B112(3,3))/3
BBB=(B112(2,3)+B112(1,3)+B112(1,2))/3
CCC=(B112(4,4)+B112(5,5)+B112(6,6))/3
RB112 (1, 1)=(3*AAR+2*BBB+4*CCC) /5
RB112(1,2)=(ABDA+4*BBB-2*CCC) /5

RB112 (6, 6)=(AAA-BBB+3*CCC) /5

RS1(1,1,2)=RB112(1,1)*E1B+RB112(1,2)*E2B+RB112(1,2) *E3B
RS2(1,1,2)y=RB112(1,1)*E2B+RB112(1,2)*E1B+RB112(1,2)*E3B
RS3(1,1,2)=RB112(1,1)*E3B+RB112(1,2)*E2B+RB112(1,2)*E1B

XODR=RB112 (6, 6) * (3*RB112(1,2)+2*RB112(6,6))
XODR=XODR/ (RB112(1,2)+RB112(6,6))
POSR= RB112(1,2)/(2*(RB112(1,2)+RB112(6,6)))

AAA=(B122(1,1)+B122(2,2)+B122(3,3))/3
BBB=(B122 (2, 3)+B122(1,3)+B122(1,2))/3
CCC=(B122(4,4)+B122(5,5)+B122(6,6))/3
RB122(1,1)={(3*ARA+2*BBB+4*CCC) /5
RB122 (1, 2)=(ARA+4*BBB-2*CCC) /5

RB122 (6, 6)=(ARA-BBB+3*CCC) /5
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RS1(1,2,2)=RB122(1,1)*E1B+RB122(1,2)*E2B+RB122(1,2) *E3B
RS2(1,2,2)=RB122(1,1)*E2B+RB122(1,2) *E1B+RB122 (1, 2) *E3B
RS3(1,2,2)=RB122(1,1)*E3B+RB122(1,2) *E2B+RB122(1,2) *E1B
XODR=RB122 (6, 6) * (3*RB122(1,2)+2*RB122(6,6))
XODR=XODR/ (RB122 (1,2)+RB122(6,6))

POSR= RB122(1,2)/(2*(RB122(1,2)+RB122(6,6)))

AAA=(B222(1,1)+B222(2,2)+B222(3,3))/3
BBB=(B222(2,3)+B222(1,3)+B222(1,2))/3
CCC=(B222(4,4)+B222(5,5)+B222(6,6))/3
RB222(1,1)=(3*AAR+2*BBB+4*CCC) /5
RB222 (1, 2)=(AAR+4*BBB~2*CCC) /5

RB222 (6, 6)=(AAA-BBB+3*CCC) /5

RS1(2,2,2)=RB222(1,1) *E1B+RB222(1,2) *E2B+RB222 (1, 2) *E3B
RS2(2,2,2)=RB222(1,1) *E2B+RB222 (1, 2) *E1B+RB222 (1, 2) *E3B
RS3(2,2,2)=RB222(1,1)*E3B+RB222(1,2) *E2B+RB222 (1, 2) *E1B
XODR=RB222 (6, 6) * (3*RB222 (1,2)+2*RB222(6,6))
XODR=XODR/ (RB222 (1, 2) +RB222 (6,6) )

POSR= RB222(1,2)/(2* (RB222(1,2)+RB222(6,6)))

AAA=(B211(1,1)+B211(2,2)+B211(3,3))/3
BBB=(B211(2,3)+B211(1,3)+B211(1,2))/3
CCC=(B211(4,4)+B211(5,5)+B211(6,6))/3
RB211(1,1)=(3*AAA+2*BBB+4*CCC) /5

RB211 (1, 2)=(AAA+4*BBB-2*CCC) /5

RB211 (6, 6)=(AAA-BBB+3*CCC) /5
RS1(2,1,1)=RB211(1,1)*E1B+RB211(1,2)*E2B+RB211(1,2)*E3B
RS2(2,1,1)=RB211(1,1)*E2B+RB211(1,2)*E1B+RB211(1,2)*E3B
R83(2,1,1)=RB211(1,1)*E3B+RB211(1,2)*E2B+RB211(1,2)*E1B
XODR=RB211(6,6) *(3*RB211(1,2)+2*RB211(6,6))

XODR=XODR/ (RB211(1,2)+RB211(6,6))

POSR= RB211(1,2)/(2*{RB211(1,2)+RB211(6,6)))

AAA=(B221(1,1)+B221(2,2)+B221(3,3))/3
BBB=(B221(2,3)+B221(1,3)+B221(1,2))/3
CCC=(B221(4,4)+B221(5,5)+B221(6,6))/3
RB221 (1,1)=(3*AAA+2*BBB+4*CCC) /5
RB221 (1, 2)=(AAR+4*BBB-2*CCC) /5

RB221 (6, 6)=(AAA-BBB+3*CCC) /5

RS81(2,2,1)=RB221(1,1)*E1B+RB221(1,2)*E2B+RB221 (1, 2)*E3B
RsS2(2,2,1)=RB221(1,1)*E2B+RB221(1,2)*E1B+RB221(1,2) *E3B
RS3(2,2,1)=RB221(1,1)*E3B+RB221(1,2)*E2B+RB221(1,2)*E1B
XODR=RB221 (6, 6) * (3*RB221(1,2)+2*RB221(6,6))

XODR=XODR/ (RB221(1,2)+RB221(6,6))

POSR= RB221(1,2)/(2* (RB221(1,2)+RB221(6,6)))

AAA=(B212(1,1)+B212(2,2)+B212(3,3))/3
BBB=(B212(2,3)+B212(1,3)+B212(1,2))/3
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CCC=(B212(4,4)+B212(5,5)+B212(6,6))/3
RB212(1,1)=(3*AAA+2*BBB+4*CCC) /5
RB212 (1,2)=(ARA+4*BBB-2*CCC) /5

RB212 (6, 6)=(AAA-BBB+3*CCC) /5

RS1(2,1,2)=RB212(1,1)*E1B+RB212(1,2)*E2B+RB212(1,2)*E3B
RS2(2,1,2)=RB212(1,1)*E2B+RB212(1,2)*E1B+RB212(1,2) *E3B
RS3(2,1,2)=RB212(1,1)*E3B+RB212(1,2)*E2B+RB212(1,2) *ELB
XODR=RB212 (6, 6) * (3*RB212 (1, 2)+2*RB212(6,6))
XODR=XODR/ (RB212 (1,2)+RB212 (6, 6))

POSR= RB212(1,2)/(2*(RB212(1,2)+RB212(6,6)))

ARAA=(B121(1,1)+B121(2,2)+B121(3,3))/3
BBB=(B121(2,3)+B121(1,3)+B121(1,2))/3
CCC=(B121(4,4)+B121(5,5)+B121(6,6))/3
RB121(1,1)=(3*AAA+2*BBB+4*CCC) /5
RB121(1,2)=(ARA+4*BBB-2*CCC) /5

RB121 (6, 6)=(AAA~-BBB+3*CCC) /5

RS1(1,2,1)=RB121(1,1)*E1B+RB121(1,2)*E2B+RB121(1,2)*E3B
RS2(1,2,1)=RB121(1,1)*E2B+RB121 (1, 2)*E1B+RB121(1,2)*E3B
RS3(1,2,1)=RB121(1,1)*E3B+RB121(1,2)*E2B+RB121(1,2)*ELlB
XODR=RB121 (6, 6) * (3*RB121(1,2)+2*RB121(6,6))

XODR=XODR/ (RB121(1,2)+RB121(6,6))

POSR= RB121(1,2)/(2* (RB121(1,2)+RB121(6,6)))

JKL=0
IF(IT.EQ.5) THEN
DO 22,1I=1,2
DO 22,J=1,2
DO 22 K=1,2
JKL=JKL+1
IF(JKL.EQ.1) THEN
MUST DO FIBRE FIRST
IF(RS1(1,1,1).GT.Y1l) THEN
YOUNG=FM1* (3*FL1+2*FM1) / (FM1+FL1)
RS1(1,1,1)=(E1B+(Y1/MU1l))/(1/E1+1/MUL)
ENDIF
ELSE
YOUNG=FM2* (3*FL2+2*FM2) / (FM2+FL2)
IF(RS1(I,J,K).GT.Y2) THEN
YYY=Y2
RRSS11=YYY
TEST=1.0
EEE2=E2
UUUMMM=MU2
RRSS11=RRSS11+1E6
TEST=RRSS11/EEE2-E1B+ ( (RRSS11-YYY) **N2) /UUUMMM
EAT=RRSS11/EEE2+ ( (RRSS11~-YYY) **N2) /UUUMMM
WRITE (2, *) 'TEST ', TEST
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Qa0

22

25

99

N =

1

WRITE (2, *) 'STRESS,Y,MU ', RRSS11,YYY, UUUMMM
WRITE (2,*) 'IJK ', I,J,K
WRITE(2,*) 'STRain EAT N2 ', E1B, EAT, N2

IF ( TEST .LT. 0.0 ) GOTO 15
RS1(I,J,K)=RRSS11 '
RS1(I,J,K)=(E1B+(Y2/MU2))/(1/E2+1/MU2)
ENDIF
ENDIF
CONTINUE
ENDIF

S1B=(D1*H1*L1*RS1(1,1,1)+D1*H1*L2*RS1(1,1,2)+D1*H2*L]1
*RS1(1,2,1)+D1*H2*L2*RS1(1,2,2)+D2*H1*L1*RS1(2,1,1)
+D2*H1*L2*RS1(2,1,2)+D2*H2*L1*RS1 (2,2,1)+D2*H2*1L2
*RS1(2,2,2))/((D1+4D2)* (H1+H2)* (L1+L2))

S2B=(D1*H1*L1*RS2(1,1,1)+D1*HI1*L2*RS2(1,1,2)+D1*H2*L1
*RS2(1,2,1)+D1*H2*L2*RS2(1,2,2)+D2*H1*L1*RS2(2,1,1)
+D2*H1*L2*RS2(2,1,2) +D2*H2*L1*RS2 (2,2, 1) +D2*H2*1L2
*RS2(2,2,2))/((D1+D2) * (H1+H2) * (L1+L2))

S3B=(D1*H1*L1*RS3(1,1,1)+D1*H1*L2*RS3(1,1,2)+D1*H2*L1
*RS3(1,2,1)+D1*H2*L2*RS3(1,2,2)+D2*H1*L1*RS3(2,1,1)
+D2*H1*L2*RS3(2,1,2) +D2*H2*L1*RS3 (2,2, 1) +D2*H2*L2
*R33(2,2,2))/((D1+D2) * (H1+H2) * (L1+L2))

RPOS=( (S1B/E1B) - (S2B/E2B) )/ ( (S2B+S3B) /E1B- (S1B+S3B) /E2B)
RYOUNG= (S1B-RPOS* (S2B+S3B) ) /ELB
XSTRESS=0.0
KOUNT=0
DO 25,I=1,2
DO 25,J=1,2
DO 25 K=1,2
KOUNT=KOUNT+1
IF(KOUNT.EQ.1) GOTO 25
IF(XSTRESS.LT.RS1 (I, J,K)) THEN
XSTRESS=RS1 (I, J,K)
III=I
JJJ=J
KKK=K
ENDIF
CONTINUE

WRITE(2,99) RS1(1,1,1)/1E6,XSTRESS/1E6,S1B/1E6,
E1B
FORMAT (F14.2,F14.2,F14.2,F14.4)

ENDIF

END

SUBROUTINE SOLVEQ (A, E,N, X, DTR)
TO SOLVE A(N,N) *X (N)=E (N)
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NEED A STOBAGE OF A(N,N+1

IMPLICcIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION A (N, *),E(N),X(N)
=N+1
DO 1 I=1,N
A(I,M)=E(I)
N1=N-1
DO 20 K=1,N1
CALL PIVOT (A,K,N)
K1=K+1
DO 20 I=K1,N
EM=A(I,K)/A(K,K)
B(I,K)=0
DO 20 J=K1,M
A(I,J)=A(I,J)-EM*A(K,J

DO 2 I=1,N
E(I)=A(I,M)
X (N)=E (N)/A(N,N)
DO 6 K=1,N1
I=N-K
T1=I+1
SUM=0
DO 7 J=I1,N
SUM=SUM+ A(I,J)*X(J)
X(I)=(E(I)~-SUM)/A(I,I)

RETURN
END

SUBROUTINE PIVOT (A,K,N)
IMPLICIT DOUBLE PRECISION
DIMENSION A (N, *)
M=N+1
K1=K+1
1=K
DO 2 I=K1,N
IF (ABS(A(I,K))-ABS(A(L,K
L=I
CONTINUE
IF(L-K) 5,5,3
DO 4 J=K,M
TT=-A(K, J)
A(K,J)=A(L,J)
A(L,J)=TT
RETURN
END

FUNCTION ROOT (A, B)

)

)

))) 2,2,1
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TO SOLVE THE CUBIC EQN.: X**3+A*X+B=0
IMPLICIT DOUBLE PRE@ISION (A-H,O0-Z)

DEL=B**2/4+A**3/27

IF(DEL) 2,1,1
SD=SQRT (DEL)

R1=-B/2+SD

R2=-B/2-SD

P=1./3.

IR1=1

IR2=1

R1P=(ABS (R1) ) **P

R2P=(ABS (R2) ) **P

IF(R1.LT.0.) IR1=-1

IF(R2.LT.0.) IR2=-1

ROOT=IR1*R1P+IR2*R2P

RETURN

R=SQRT (-A**3/27)
TE=ACOS (-0.5*B/R)
ROOT=2*R** (1./3)*COS (TE/3)
RETURN
END
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WRITE (2, *) 'STRAIN(1,1)=',ST(1,1)

WRITE (2, *) 'STRAIN(2,2)=',ST(2,2)
WRITE (2,*) 'STRAIN(3,3)=',ST(3,3)
WRITE (2,*) 'STRAIN(1,2)=',ST(1,2)
WRITE (2, *) 'STRAIN(2,3)=',ST(2,3)
WRITE (2, *) 'STRAIN(1,3)=',ST(1,3)
WRITE(2 *y '

WRITE (2,*) 'STRESS(1,1)=',AS(1,1)
WRITE (2, *) 'STRESS(2,2)=',AS(2,2)
WRITE (2, *) 'STRESS(3,3)=',AS(3,3)
WRITE (2, *) 'STRESS(1,2)=',AS(1,2)
WRITE (2, *) 'STRESS(2,3)=',AS(2,3)
WRITE (2,*) 'STRESS(1,3)=',AS(1,3)
WRITE (2, *) '
ST(1,1)=ST(1,1)+.01

500 CONTINUE
END

SUBROUTINE MATPROPS (EAM, POSTM, POSAM, ETM, EAF, POSTF, POSAF, ETF,
*GAM, GAF, VF, ESTARA, POSTARA, ESTART, POSTART, GSTARA)
COMMON CM(10,10),CF(10,10),V(2,2),B(10,10),E(10,10)
COMMON AS(3,3),8T(3,3),8A(3,3),PSI1(3,3),PSI2(3,3)
COMMON PSI3(3,3),FI1(3,3),FI2(3,3),FI3(3,3),SIB(3,3)
COMMON BD(10,10),BDT(10,10),B11(4,4),B22(4,4),B21(4,4 )
COMMON Bl12(4,4),N(2),V1
COMMON H,H1,H2,DW1DX2,DW2DX1, DW1DX3, DW3DX1, DW2DX3, DW3DX2
COMMON T1,T2,T3,T4,T5,T6,T7,78,79,T10,T11,T12,T13,T14,T15
COMMON T16, DELTA,DELTAL
REAL KM, KF,J1,J2,J33,J4

H2=SQRT ( (H1**2) /VF)-H1

MATERIAL PROPERTIES EQUATIONS

Ok kX ok % %

KM= 0.25*EAM/ (0.5% (1~POSTM) * (EAM/ETM) —POSAM* *2)
CM(1,1)= EAM+ (4*KM*POSAM**2)

CM (1, 2)=2*KM*POSAM

CM(2,2)=KM+0.5*ETM/ (1+POSTM)

CM (2, 3)=KM-0.5*ETM/ (1+POSTM)

CM (4, 4)=GAM

CM(6,6)=(CM(2,2)-CM(2,3))/2
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KF= 0.25*EAF/ (0.5% (1-POSTF) * (EAF/ETF) —POSAF**2)
CF(1l,1)= EAF+ (4*KF*POSAF**2)

CF (1, 2)=2*KF*POSAF

CF(2,2)=KF+0.5*ETF/ (1+POSTF)
CF(2,3)=KF-.5*ETF/ (1+POSTF)

CF (4, 4)=GAF

CF(6,6)=(CF(2,2)-CF(2,3))/2

Al=CM(2,2)* (1+(H2/H1))

A2=CM(2,3)* (H1/H2)

A3=CM (2, 3)

A4=CM(2,2)* (H1/H2)+CF (2, 2)

A5=CF (2, 3)

A6=H2*CM (2, 3) /H1

A7=CF (2, 3)

A8=R6

A9=RA4

A10=H1*CM(2,3)/H2

Al1=A3

Al12=A1

D=Al* (Al2* (A5*A7-A4*A9) +A6*A9*A10)
D=D+A2* ( (A4*A8*A12)+A6* (A7*A11~-A8*A10))
D=D+A3* (A4*A9*A11+A5* (A8*A10-A7*All))
Tl=- (AS*A8*A12+A6*A9*A11) /D
T2=(A2*A8*A12+A3*A9*A11-A1*A9*A12) /D
T3=(AL*A5*A12+A2*A6*A11~-A3*A5*A11) /D
T4=(A1*A6*A9+A8* (A3*A5-A2*A6)) /D
T5=(A6*A9*A10+A12* (A5*A7-A4*A9)) /D

T6=- (A2*A7*A12+A3*A9*A10) /D
T7=(A3*A5*A10+A2* (A4*A12-A6*A10)) /D

T8= (A2*A6*A7+A3* (A4*A9-A5*A7)) /D
T9=(A4*A8*A12+A6* (A7*A11-A8*A10)) /D
T10=(A1*A7*A12+A3* (A8*A10~AT7*All1))/D
T1l=(A3*A4*A11+Al1* (A6*A10-A4*Al12)) /D
T12=— (A1*A6*A7+A3*A4*A8) /D
T13=(R4*A9*A11+A5* (A8*A10-A7*Al1l1)) /D
T14=(A1*A9*A10+A2* (A7*A11-A8*A10)) /D
T15=- (A1*A5*A10+A2*A4*A11) /D

T16=(Al* (A5*A7-A4*A9)+A2*A4*A8) /D
H=H1+H2

V1=H**2

V(1,1)=H1*H1

V(1l,2)=H1*H2

V(2,2)=H2*H2

V(2,1)=H2*H1

Q1=V(1,1)*CF(1,2)*(T1+T9)
Q1=Q1-V(1,2)*CM(1,2)* (H2*T5/H1+H1*T9/H2)
Q1=Q1-V(2,1)*CM(1,2)* (H1*T1/H2+H2*T13/H1)
Q1=Q1+4V(2,2)*CM(1,2)* (T5+T13)
02=V(1,1)*CF(1,2)*(T2+T10)
02=02-V(1,2)*CM(1,2)* (H2*T6/H1+H1*T10/H2)
Q2=Q2-V(2,1)*CM(1,2) * (H1*T2/H2+H2*T14/H1)
Q2=Q2+4V (2,2)*CM(1,2)*(T6+T14)
03=V(1,1)*CF(1,2)*(T3+T11)
03=0Q3-V(1,2)*CM(1,2)* (H2*T7/H1+H1*T11/H2)
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Q3=Q3-V(2,1)*CM(1,2)* (H1*T3/H2+H2*T15/H1)
Q3=Q3+V(2,2)*CM(1,2) * (T7+T15)

Q4=V (1,1)*CF(1,2)* (T4+T12)

Q4=Q4-V(1,2)*CM(1,2)* (H2*T8/H1+H1*T12/H2)
Q4=0Q4-V(2,1)*CM(1,2)* (H1*T4/H2+H2*T16/H1)

Q4=Q4+V (2,2) *CM(1,2)* (T8+T16)

QD1=V (1,1)*(CF(2,2)*T1+CF(2,3) *T9)

QD1=QD1~V (1,2)* (CM(2,2) *H2*T5/H1+CM (2, 3) *H1*T9/H2)
QD1=QD1-V(2,1)* (CM(2,2) *H1*T1/H2+CM(2,3) *H2*T13/H1)
QD1=QD1+V (2,2)* (CM(2,2) *T5+CM (2, 3) *T13)

QD2=V (1,1)* (CF(2,2)*T2+CF(2,3) *T10)

QD2=QD2-V (1,2)* (CM(2,2) *H2*T6/H1+CM (2, 3) *H1*T10/H2)
QD2=QD2-V(2,1) * (CM(2,2) *H1*T2/H2+CM (2, 3) *H2*T14/H1)
QD2=QD2+V (2,2) * (CM(2,2) *T6+CM (2, 3) *T14)

QD3=V (1,1)*(CF(2,2)*T3+CF(2,3)*T11)
QD3=0D3-V(1,2)* (CM(2,2) *H2*T7/H1+CM (2, 3) *H1*T11/H2)
QOD3=QD3-V(2,1) * (CM(2,2) *H1*T3/H2+CM (2, 3) *H2*T15/H1)
QD3=QD3+V (2,2) * (CM(2,2) *T7+CM (2, 3) *T15)

QD4=V {1,1)*(CF(2,2)*T4+CF(2,3)*T12)

QD4=QD4~V (1,2) * (CM(2,2) *H2*T8/H1+CM (2, 3) *H1*T12/H2)
QD4=QD4-V (2,1) * (CM(2,2) *H1*T4/H2+CM (2, 3) *H2*T16/H1)
QD4=QD4+V (2,2) * (CM(2,2) *T8+CM (2, 3) *T16)
DELTA=H1*CM (4, 4) +H2*CF (4, 4)

DELTA1=V (1,1)*CM(6,6)+(V(1,2)+V(2,1)+V(2,2))*CF(6,6)
B(1,1)=V(1,1)*CF(1,1)+CM(1,1)*(V(1,2)+V(2,1)+V(2,2))
B(1,1)=(B(1,1)+(CM(1,2)-CF(1,2))*(Q2+Q3))/V1
B(1l,2)=(H/H1)* (CM(1,2)*V(1,2)+Q1*CM(2,2)+03*CM(2,3))
X=CM(1,2)*V(2,1)+Q2*CM(2,2)+Q4*CM(2,3)

X=(H/H2)*X

B(1,2)=(B(1,2)+X)/V1

B(1,3)=B(1,2)

X=H/H1* (CM(2,2)*(V(1,2)+QD1)+QD3*CM(2,3))

Y=(H/H2)* (CM(2,2)*(V(2,1)+QD2)+QD4*CM (2, 3))
B(2,2)=(X+Y)/V1

X=(H/H1)* (CM(2,3)*(V(2,1)+0D2)+QD4*CM(2,2))
Y=(H/H2) * (CM(2,3) *(V(1,2)+QD1)+QD3*CM(2,2))
B(2,3)=(X+Y) /V1

B(3,3)= B(2,2)

X=H* (V(1,1)+V(2,1))+H2* (V(1,2)+V(2,2))
B(4,4)=CF(4,4)*X

X=CM(4,4)*(V(1,2)+V(2,2))*H1
B(4,4)=(CM(4,4)*(B(4,4)+X))/ (V1*DELTA)
B(5,5)=B(4,4)

B(6,6)=CF(6,6)*CM(6,6)*H*H/DELTAL

BDT (2, 2)
BDT (2, 3)
BDT (6, 6)

nn

0.0
0.0
0.0

ANG=0.0

DO 22 J=1,18

X=(COS (ANG) ) **4+ (SIN (ANG) ) **4

Y=( (SIN(ANG) ) **2) * ( (COS (ANG) ) **2)
BD(2,2)=B(2,2)*X+2*(B(2,3)+2*B(6,6))*Y
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BD(2,3)=B(2,3) *X+2* (B(2,2)-2*B(6,6))*Y
BD(6,6)=B(6,6)*X+2* (B(2,2)-B(2,3)-B(6,6))*Y
BDT (2, 2)=BDT (2, 2) +BD (2, 2)

BDT (2, 3)=BDT (2, 3) +BD (2, 3)

BDT (6, 6)=BDT (6, 6) +BD (6, 6)
ANG=ANG+10*3.142/180
ANGLE=ANG*180/3.142

CONTINUE

B(2,2)=BDT(2,2)

B(2,3)=BDT(2,3)

B(6,6)=BDT(6,6)

B(2,2)=B(2,2)/18
B(2,3)=B(2,3)/18
B(6,6)=B{(6,6)/18
WRITE (2,*) ! '
WRITE (2,*) 'SUMMED QUANITITY'

WRITE(Z,*) 'B(2,2)=',B(2,2),'B(2,3)=",B(2,3),'B(6,6)"',B(6,6)

E(1,1)=B(1,1)

E(1,2)=B(1,2)

E(2,2)=0.75*B(2,2)
E(2,2)=E(2,2)+B(2,3)/4
E(2,2)=E(2,2)+B(6,6)/2
E(2,3)=B(2,2)*.25+.75*B(2,3)-B(6,6)*.5
E(4,4)=B(4,4)

E(6,6)=(E(2,2)-E(2,3))/2

ESTARA=E (1,1)-2*E(1,2)**2/(E(2,2)+E(2,3))
POSTARA=E (1,2)/(E(2,2)+E(2,3))
ESTART=E(1,1)*(E(2,2)+E(2,3))-2*E(1,2)**2
ESTART=ESTART*(E (2,2)-E(2,3))
ESTART=ESTART/(E(1,1)*E(2,2)-E(1,2)**2)
POSTART=(E(1,1)*E(2,3)~E(1,2)**2)
POSTART=POSTART/(E(1,1)*E(2,2)-E(1,2)**2)
GSTARA=E (4,4)
RETURN
END

SUBROUTINE PRINTPROP (VF,ESTARA,ESTART, POSTARA, POSTART,
*GSTARA)
COMMON CM(10,10),CF(10,10),V(2,2),B(10,10),E(10,10)
COMMON AS(3,3),S8T(3,3),SA(3,3),PSI11(3,3),PSI2(3,3)
COMMON PSI3(3,3),FI1(3,3),FI2(3,3),FI3(3,3),SIB(3,3)
COMMON BD(10,10),BDT(10,10),B11(4,4),B22(4,4),B21(4,4 )
COMMON B12(4,4),N(2),V1
COMMON H,H1,HZ2,DW1DX2,DW2DX1,DW1DX3, DW3DX1, DW2DX3, DW3DX2
COMMON T1,TZ2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15
COMMON T16,DELTA,DELTAL

WRITING RESULTS
MATERIAL PROPERTIES

* ok Kk F %
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WRITE(2,*) ° '

WRITE(2,*) ! '

WRITE(2,*) ! '

WRITE (2,*) 'DIAMETER OF FIBRE = ',Hl
WRITE(2,*) 'DIMENSIONP OF MATRIX = ',H2
WRITE(2,*) '"VOLUME RATIO OF FIBRE = ', VF
WRITE(2,*) 'AXIAL YOUNGS MODULUS = ' ESTARA
WRITE(2,*) 'TRANSVERE YOUNGS MODULUS= ', ESTART
WRITE(2,*) 'AXIAL POSIONS RATIO = ',POSTARA
WRITE(2,*) 'TRANSVERE POSIONS RATIO = ',POSTART
WRITE (2, *) 'AXIAL SHEAR MODULUS = ',GSTARA
RETURN

END

SUBROUTINE ALL

COMMON CM(10,10),CF(10,10),V(2,2),B(10,10),E(10,10)
COMMON AS(3,3),87(3,3),8A(3,3),PSI1(3,3),PSI2(3,3)

COMMON PSI3(3,3),FI1(3,3),FI2(3,3),FI3(3,3),SIB(3,3)
COMMON BD(10,10),BDT(10,10),B11(4,4),B22(4,4),B21(4,4 )
COMMON B12(4,4),N(2),V1

COMMON H,H1,H2,DW1DX2,DW2DX1,DW1DX3, DN3DX1, DW2DX3, DW3DX2
COMMON T1,T2,T3,T4,T5,T6,77,T78,T9,T10,T11,T712,T13,T14,T15
COMMON T16,DELTA, DELTAL

REAL KM, KF,J1,J2,33,J4

CHARACTER A*3,K1*1

sk sk ke ke ke ke ek ek ke ok ke e Sk gk ok sk ke ok sk gk vk sk ke ok gk b ok e Sk sk ke ok ke ke ok ke ke ke ok ke ok ke ok ko ok ok

J1=H*CM(2,2)*ST(2,2) /H1+H*CM(2,3) *ST(3,3) /H2
J2=(CM(1,2)-CF(1,2))*ST(1,1)+(CM(2,2)*H*ST(2,2))/H2
J2=J2+CM(2,3) *H*ST (3, 3) /H1
J3=(CM(1,2)~CF(1,2))*ST(1,1)+H*CM(2,3)*ST(2,2) /HL
J3=J3+H*CM (2, 2) *ST (3, 3) /H2
J4=H*CM(2,3) *ST (2,2) /H2+4H*CM(2,2) *ST(3,3)/H1
FI1(1,1)=DW1DX2*H*CM (4, 4)

WRITE(*,*) DELTA

FI1(1,1)=(FI1(1,1)~ (DW2DX1l* (CF(4,4)-CM(4,4)))*H2)/DELTA
FI1l(2,2)=DW1DX2

FI1(1l,2)=(H*DW1DX2-H2*FI1(2,2))/H1
FI1(2,1)=(H*DW1DX2-H1*FI1(1,1))/H2
PSI1(1,1)=DW1DX3*H*CM(4,4)

PSI1(1,1)=PSI1(1,1)~-DW3DX1* (CF(4,4)~-CM(4,4))*H2
PSI1(1,1)=PSI1(1,1)/DELTA
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PSI1(2,2)=DW1DX3
PSI1(1,2)=(H*DW1DX3-H1*PSI1(1,1))/H2
PSI1(2,1)=DW1DX3

N(1l)=2*H*H*CM(6,6)*ST (2, 3) /DELTA1
N(2)=CF(6,6)*N(1l)/CM(6,6)

PSI3(2,2)=(T13*J1+T14*J2+T15*J3+T16*J4)
PSI3(2,1)=(H*ST(3,3)-H2*PSI3(2,2))/H1
PSI3(1,1)=(T9*J1+T10*J2+T11+J3+T12*J4)
FI2(1,1)=(T1*J1+T2*J2+T3*J3+T4*J4)
FI2(2,2)=(T5*J1+T6*J2+T7*J3+T8*J4)
PSI3(1,2)=(H*ST(3,3)-H1*PSI3(1,1))/H2
FI2(2,1)=(H*ST(2,2)-H1*FI2(1,1))/H2
FI2(1,2)=(H*ST(2,2)~-H2*FI2(2,2))/H1

RETURN
END
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Prediction of the Fatigue Life of an Aluminium Metal
Matrix Composite Using the Theory of Cells

"W J Fleming, ?A L Dowson

Abstract

An analytical micromechanical model is employed to predict the fatigue life of an aluminium SiC metal matrix
composite. From data obtained from the monolithic matrix material and the individual SiC fibres theoretical
S/N and Strain/N curves were produced. This was possible by assuming that the matrix material in the composite
fails at the same fatigue stress level as does the monolithic matrix material or, if fibres fail, this will be at the
failure level of the individual fibres. These curves were then compared to experimental data and good agreement
was obtained for all but the low cycle fatigue regime.

1. Introduction

The introduction of fibres into a base metal will give greatly enhanced mechanical properties to the resultant metal
matrix composite. These will be dependent on both the properties of the base matrix and the fibre used. The
volume ratio of fibre to matrix will of course also be important as will the interface between fibre and matrix.
Some early attempts were made to forecast the resultant composite properties using known properties of the
constituents.(1)(2)(3)4). All these theories were initially formulated for continuous fibre composites in which it
was assumed the interface played no part.

In a series of papers, Aboudi(5)(6)(7) has extended his Theory of Cells to include both short and particulate fibres.
The range of properties that can be predicted is Young’s Modulus, Poisson’s ratio and shear modulus. It is
also possible to predict the composite yield stress and by modelling the plastic behaviour of the matrix to predict
the failure stress and the composite stress-strain curve.

Aboudi (8) has given some indication of how the Theory of Cells may be extended to include fatigue behaviour of
a composite material. The work reported here has developed these ideas to estimate the fatigue life of a SiC
particulate reinforced aluminium alloy. The assumptions made is that the fatigue behaviour of the matrix will be
the same as the fatigue behaviour of the bulk homogeneous material, whilst the fibres will fail statistically as they
reach their overall failure stress. At most stresses, it is expected that fatigue failure will be due to matrix failure
and only at high stresses, when plastic deformation is encountered in the matrix will failure be caused by the

fibres failing.
2. Theory of Cells.

The Theory of Cells (TOC) for short fibre and particulate metal matrix composites has been developed by Aboudi
(9). In the method an elastic matrix is considered which is reinforced by unidirectional fibres of short length.
The fibres are assumed rectangular with dimensions of d;, 1; and h; and arranged in the matrix as shown in Fig.
1.
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Fig.1 Schematic of an MMC with periodic array of fibres
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In a particulate metal matrix composite h, will have a similar value to I;

Given that the arrangement of fibre and matrix are periodic, only one fibre and its surround matrix need be

analysed to give a representative section of the composite material. This area is called a cell and is shown in
Fig.2.
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Fig.2 A representative cell of the composite showing the eight sub cells

As can be seen each cell comprises eight sub cells, one of fibre, labelled 1,1,1, and seven of matrix material. It

is assumed, initially, that both fibres and matrix are perfectly elastic materials and the stresses are related to
the strains as follows

O-(OE,B,Y) =C @) @by T @BY) AT

where
O“PY) peing the stress matrix of each sub cell
C®P") the stiffness matrix representing mechanical properties of each sub cell
I ©@P") 4 matrix representing thermal properties of each sub cell

AT the temperature difference between a reference stress free temperature and
the working temperature

whilst  Z, the strain microvariables is given by

Z(OY-B‘Y) =@, (aﬁv)’XZ(an),\PS(aﬁv), Xl(qu) + q)z(aﬁv)’
\_pl(aﬂv) _@3(!131)’\};2(&57) +X3(¢!B7)

with O, @B , ¢,2(aﬁv)’ (D3(an)’ X 1(41137) ,Xz (an), X3 (aﬁv), ¥, @By) ,
W, @BV @ @BY) representing strain microvariables

Note that when discussing the position of a sub cell a super script notation is used, i.e., o " refers to the fibre
whilst, for instance ¢ ®*" is the matrix material to the right of the fibre and subscript notation is used for the
stress direction, e.g. oy, is the direct stress in the x; direction.

Using a first order approximation the displacement component at any point in the sub cell can be expressed as
ui(aBY) =W, @By) 4 xl(a) (Di(aﬂv) -+ XZ(B) Xi(aﬁv) -+ Xs(v) \I;i(a By)
where
'W; represents the displacement component of the centre of the sub cell and

D, X i, W; characterises the linear dependence of the displacements on the local
co-ordinates. X, , X,® and X,



and the displacement can be connected to strain using the expression

Sij(a,B”Y) — 1/2 [ ajul(a,B’Y) + ail]j(a’ﬁ,Y)]

and 8, = 8/6x,"
0, =0 8%
d; _0loxs"

If continuity of traction and displacement between appropriate sub cells is assumed, it is possible to calculate the
26 strain microvariables generated by the theory. Once the stresses in each sub cell is calculated the overall
stresses can be found as follows

2

o= 1/V > (V(a,s,y) o @PD )

a,By=1

V represents the total volume of the cell and
V@Y the volume of a particular sub cell.

3. Inelastic Behaviour of Metal Matrix Composites

A typical MMC comprises a fibre that behaves in an elastic manner up to the breaking stress and a matrix that
will show the typical elastoplastic behaviour of a ductile material. To model a composite an allowance must be
made for the plastic deformation of the ductile matrix. In Aboudi's development of the theory of cells (10) he
used the unified theory of plasticity developed by Bodner and Pardom.(11) In this theory, plasticity is assumed to
be always present throughout the loading process. Although rigorous, the Bodner et al. approach adds a level of
complexity to the analysis that may not be necessary. In the present study, this has been abandoned in favour of a
theory of plasticity proposed by Mendelson (12), in which the total strain experienced by a stressed material is
made up of both elastic and plastic strains. Using this approach, plastic strain can be assumed to approximate to

zero whilst the material is within the elastic region. Therefore if O ij < Y the total strain can be written as
&jj (total) = Eij (elastic)= O l_,/E for a one dimensional direct stress system.

Once the material suffers plastic deformation the relationship changes to:

€jj (total) = &ij (elastic) + Eij (plastic)
and &;j (plastic) can be defined as (O -Y)"/ [

and therefore for O ij > Y the total strain is now

g = Gij/E +(C5-Y)7 1
where

Gjj represents the total stress in the ij direction
Y  is the material yield stress

n and | are factors which characterise the plastic behaviour of the material.

This approach assumes simple elastic breakdown at the yield stress. For a biaxial loading system the failure theory
can be modified to include a shear yield component. (13)

4. Randomly Reinforced Metal Matrix Composites



The theory developed so far is for unidirectional short fibre and particulate composites where the fibres are
aligned in the X, direction as shown in fig. 1. This places severe limitations on the type of systems it is possible
to analyse. However a transformation can be made on the stiffness matrix of each sub cell, using a method first
suggested by Arridge (14). It is found that for a material with randomly distributed fibres, the stiffness matrix
reduces to three non-zero elements which are related to the aligned fibre matrix in the following manner

B, ®M=(3A,+2A, +4A5)/ 5
B *PP= (A, +4A, +2A5)/ 5
B ™#0= (A, - 4A; +3A5)/ 5

where
A= (C“(u.ﬁ.v) +C22(a,B,v) + C”(u,B.v)) /3
Ay =(Cr®80 +C o0 1+ C B0y /3
A= (Cu(“’ﬁ”) +C55(a,ﬁ,7) + C“(a,ﬁﬂ)) / 3

B, PP i the transformed stiffness matrix, allowing for a fully random
fibre distribution in the composite.

C;P is the stiffness matrix for aligned fibres

Using this modified stiffness matrix in the stress strain matrix, the strain in all three dimensions can be calculated
for each sub cell in the MMC with randomly distributed fibres.

5. Fatigue Failure and the Theory of Cells

It can be assumed that fatigue failure will occur when one or more of the sub cells reaches a critical stress level. In
a one-dimensional loading system the fatigue failure stress for the matrix material can be obtained from an S/N
curve. It can be assumed that failure of the composite will occur, for a similar number of cycles, when any
matrix sub cell reaches this cyclic stress level providing the fibre has not reached its critical level. Therefore the
matrix is assumed to fail by fatigue similar to the homogenous material.

The fibres however may behave differently. Silicon carbide fibres are brittle and do not exhibit fatigue failure

(15). In the case of the individual fibres, their critical fatigue stress is assumed to be identical to their tensile
failure stress. However similar fibres exhibit a wide range of tensile failure stresses as can be seen in Fig.3. This

has important implications on the fatigue life of an MMC containing such brittle fibres
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When the cyclic loading is high enough to break fibres, the outcome will be one of two possible behaviour
patterns.. First is that only a certain percentage of fibres break due to the fatigue loading and the resulting
redistribution of stresses ensures no more fibre breakage. In this event, the composite will eventually fracture by



matrix fatigue failure. The second possibility is that as the fibres break the stress redistribution ensures more
fibres will fail. Fatigue failure of the MMC is then by fibre failure.

In the present study the theory of cells is used to calculate stresses in the eight sub cells for an increasing load.
At each increment of load a check is made to see if any matrix sub cell has reached its fatigue limit for a given
number of cycles or that the stress level in the fibres is such that fibre failure is encountered. If the former is the
case, the overall composite stress is recorded as the fatigue failure stress for that load. If fibre failure has taken
Place, the stress on each subcell is recalculated, assuming a lower density of fibres ,and the possibility of more
fibre breakage ascertained. An iterative recalculation of stress is then performed until the mode of fatigue failure is
determined.

6. Material

The materials under consideration in this report are an aluminium alloy Al 7075 and a metal matrix composite
with an identical material for the matrix plus 12% SiC fibres, in particulate form. The chemical composition of
the composite was 6.2% Zn, 1.5% Cu, 2.3% Mg, 0.2% Cr, 0.3% Fe and the remainder aluminium. The
monolithic material had a Young's modulus of 72 GPa, a Possions ratio 0.33, a 0.2% proof stress of 416 MPa,
a UTS of 565 MPa and an elongation at failure of 14%.

The SiC particles had the following specification (17). Diameters range from 0.25 to 20 microns with an average
diameter of 3 micron to 4 microns. The average effective aspect ratio was 1.3 whilst the Young's modulus was
468 GPa and the Poisson's ratio was 0.25. The particulate strength was assumed to be statistical in nature, 5% of
the particulates failing at a stress of 1.6 GPa and 90% having failed at an average stress of 3.1 GPa.

The MMC's were produced by spray forming followed by extrusion. Heat treatment of the material consisted
of an initial high temperature solution treatment at 465 °C held for 45 minutes followed by a cold water
quench and the material aged for 16 hr at 135 °C. The measured Young's modulus was then 84 GPa, the 0.2%
Proof stress 404 MPa, the UTS 490 MPa and its elongation at failure was 2%.

7. Testing Procedure

Tests were carried out on a PC driven 50 kN. capacity Dartec servo hydraulic testing machine. All tests were
conducted under strain control and constant amplitude. Tests were conducted in air at a frequency of 0.25 Hz using
fully reversed loading (R=-1.0) with stress and strain data being recorded for each cycle.

8. Results

The tests were catried out at a constant strain rate with the stress being allowed to vary. Fig.4 and Fig. 5 show
how the stress varied over the life of the specimen, Fig. 4 being for the monolithic material and Fig.5 being
for the MMC. In both cases, for the low strain rates the stress was fairly constant throughout each
individual experiment. However once the material was strained into the plastic region, work hardening took place
and therefore the stress increased throughout the life of the test
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Fig.4 Strain controlled fatigue test on monolithic Fig.5 Strain controlled fatigue test on Al 7075/ 12 SiCp
Al 7075

All results from the tests on both monelithic and MMC materials were plotted on an S/N curve as shown in Fig.6.
The stress in all cases being the initial stress recorded after one cycle. The same test results are also shown in
Fig. 7, only this time, strain is plotted as one of the axes instead of stress. Note that in Fig. 7 both axis of the
graph are logarithmic.
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Fig. 6 Strain controlled experimental S/N curve for monolithic
A17075 and MMC A17075 + 12% SiCp.

01

0014

Strain

0.001 L
1.00E+00 1.00E+01 1006402 100E+403  100E+04  1.00E+05 1.00E+06

Nf

Fig.7 Strain controlled experimental results of constant strain against
cycles to failure for monolithic Al 7075 and MMC Al 7075 + 12% SiCp

During the experiment cartied out on the MMC the Young's modulus was monitored. Fig.8 gives the average
experimental value of modulus, the Poisson’s ratio and the Yield stress against the predicted values produced
from the Theory of Cells (TOC)

Young's Modulus  Poisson’s Ratio  Yield Stress
Experimental 84.1 GPa Not Available 404 MPa
TOC 83.3 GPa 0.324 391 MPa

Fig.8 Experimental and Theoretical values of Modulus and Poisson’s Ratio

Using the data experimentally obtained on the monolithic material it was possible to predict the fatigue life of



the MMC using the Theory of Cells. These predictions are shown in Fig.9 and Fig.10. In Fig.9, a conventional
S/N curve is produced and both the TOC prediction and experimental results are shown. In both cases the stress
plotted on the graph is the stress measured after one cycle of the test. In Fig. 10, the same TOC predictions
and experimental data are used as in Fig. 9 but this time, strain is plotted against fatigue life for both
experimental and predicted results.
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Fig.9 S/N Curve of experimental results and TOC predicted
life of MMC A17075 + 12% SiCp
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Fig.10 Constant Strain against Cycles to failure experimental results
and TOC predicted life of MMC A17075 + 12% SiCp



10. Discussion

Comparing the monolithic material with the MMC we find that both the experimentally obtained yield stress and
failure stress of the MMC were inferior to that of the monolithic material (see section 6). Similarly at all but
the lowest stresses, the monolithic material exhibits a superior fatigue life to that of the MMC. The difference in
fatigue life is more apparent in the strain plot shown in Fig.7 than the conventional S/N curve of Fig.6.

The results for yield and failure stress were somewhat surprising, as it would be expected that the inclusion of
particulates in the aluminium would improve both its yield and ultimate strength. However it can be seen from
Fig.8 that the experimental yield stress is at the level predicted by the theory of cells; the experimental and
theoretical values being 404 MPa and 391 MPa respectively. The reason why the MMC yields at a lower stress
than the monolithic materials is to do with the particulate inclusions. Under load, the particulates will create
stress gradients within the aluminium matrix. This means that whilst some areas of matrix will be yielding other
areas will still be at sub yield levels of stress. The overall stress of the MMC is the average of the particulate
stress and the stress experienced by each matrix sub cell. So that whilst areas of the MMC may have started to
exhibit plastic behaviour the overall stress may not have reached the value of the yield stress of the monolithic
material. Although this is what has happened to this composite it may not necessarily be the case for another
composite of different particulate volume fraction and different constituent mechanical properties. Yield stress of
a composite is not only dependent on the yield stress of the matrix but is a complex relationship between
particulate and matrix properties and particulate volume fraction and orientation. The overall stress of the MMC
will of course be a summation of the stresses in the fibre and each sub cell of matrix. In this case the summed
stress at yield was lower for the MMC than that of the monolithic material.

Fig. 8 also compares experimentally derived Young's modulus with that predicted by TOC. The experimental
result indicating a modulus of 84.1 GPa. whilst TOC gives 83.3 GPa. This result is 1 % of the experimental
result.

Both the $/N results given in Fig.9 and the Strain/N results given in Fig.10 show good agreement between TOC
and the experimental results. At stress levels below 450 MPa the agreement is well within the experimental
error of the test. However once stresses are in the plastic region of the MMC, the prediction value of fatigue
failure starts to deviate from the experimental results. At these levels, the stress in the particulates is
significantly higher than those experienced in any sub-cell of the matrix. The matrix accommodates the increase in
overall loading on the MMC by yielding but the particulates are still deforming elastically. As the load increases
some of the weaker particulates fail and there is a redistribution of the load between particulate and matrix. The
theory predicts that, for this MMC, the stress level in the individual particulates falls causing a corresponding
increase in the stress on the matrix. So failure throughout the test should have been by matrix fatigue failure.

It could be assumed that once a particulate has failed, the broken portion is then available to take load. This could
be true of inclusions that are of significant length but in this case we are not dealing with fibres but particulates
and it would seem that failed particulates are not available to take load. This would explain the significant short
fall in fatigue life in cyclic stresses above 450 MPa. The broken particulates, rather than taking load, are areas of
weakness and cause premature fatigue failure of the composite. As the stress increases, more particulates break,
causing more fatigue damage to the material. Failure at these stresses could also be initiated by imperfections in
the matrix material itself.

Although this difference between experimental and theoretical fatigue life under gross plastic deformation is of
some importance, it must be remembered that this only involves the first thousand cycles of the S/N curve. Once
beyond this the predicted life from the theory of cells is in close agreement with that obtained from experiment.

Conclusion

1. For this particular aluminium metal matrix composite the prediction of Young’s modules and yield stress from
the theory of cells was in good agreement with experimental results.

2. Using fatigue data obtained from the matrix material and information on the failure stress of the particulate, it
was possible to make a prediction of the fatigue life of a metal matrix composite material.

3. The predicted fatigue life of the MMC was in close agreement with the experimental results for life outside of
the low cycle fatigue regime of 1000 cycles or less.

4. Failure when material life expectancy was below 1000 cycles may have been due to failed particulates causing
high stress concentrations or to metalturgical faults in the matrix material.
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ABSTRACT

Models of strain cyclic plasticity and strain-accumulated damage were employed
to analysis an aluminium SiC metal matrix composite behaviour under cyclic
loading. From the data obtained from the monolithic matrix material, a model for
the mathematical simulation of matrix material response under monotonic and
cyclic loading was produced. This model and data from individual SiC inclusions
was employed to an FE simulation of cyclic plasticity to prediction low fatigue
lives of composite. It was shown that cyclic damage of matrix material on the
interface between Al and SiC is responsible for the number of cycles to
composite failure. Theoretical Strain/N curve is compared with experimental data
for an MMC in low cyclic fatigue.

1. INTRODUCTION

The introduction of inclusions into a base metal will give greatly enhanced mechanical properties to
the resultant metal matrix composite. However, these properties will depend on the properties of
both the base matrix and the inclusions used. The inclusion volume ratio and its geometrical form
will, of course, also be important. These parameters and the parameters of the interface between
matrix and inclusion define both the composite ultimate strength under monotonic loading and
fatigue strength under cyclic loading. The main problem facing the material designer is to create
composite materials or structure with superior mechanical properties. To solve this problem
experimental research is mainly employed. This method is expensive and it does not allow an easy
optimisation of the material or component properties. The use of mathematical simulation methods
appears to offer scope for focusing onto the more likely material and inclusion combinations and
thus limiting the amount of experimentation necessary to produce successful materials.
Simultaneously this method will allow more accurate predictions of the mechanical behaviour of
any components and structure that may go into production.

Mathematical and numerical procedures which are capable of modelling the physical processes that
underwrite the fracture behaviour of engineering materials and structures have become essential
tools in both the both the design process and in defining the philosophies of life prediction of a
material. As such, they promote the concepts of safe-life design and can reduce the need for
investment in expensive materials and component evolution trials. For future development of these
procedures it is necessary to further improve the mathematical models so that they more fully
conform to the complex stress and strain histories associated with testing or in-service loading.

One of these models based on the theory of cells was employed to predict the fatigue life of an
aluminium metal matrix composite with short SiC inclusions'. As was shown, the prediction of
Young's modulus and yield stress by the theory of cells was in good agreement with experimental



results. Also the predicted fatigue failure life of the aluminium SiC MMC was in close agreement
with the experimental results for life outside of the low cycle fatigue regime of 1000 cycles or less.
The high stress concentration on the interface between matrix and inclusion in the low cycle zone
exerts an influence on material cyclic behaviour. On the base of this theory alone the prediction of
low cyclic failure is difficult because the definition of material cyclic behaviour subject to the
stress-strain distribution inhomogeneity inside the cell is needed. Such a problem requires a detailed
analysis of the stress-strain history on the base of cyclic plasticity theory. A theory of cyclic strain
plasticity accompanied by damage model based on the concepts of ultimate accumulated plasticity
strain®> has been successfully employed for the prediction of fatigue lives in highly stressed Ti
components®. In the current paper, an application of the theory of cyclic strain plasticity and the
cyclic damage model to the lifetime prediction of MMC in the area of low fatigue is considered.

2. TESTING, MATERIAL AND FE MODEL

Testing procedure

The testing of the material has been previously reported’ and comprise an aluminium alloy, Al
7075, and a metal matrix composite with an identical matrix material plus 12% SiC by volume, of
particulate inclusions. Tests were carried out on a PC driven 50 kN capacity Dartec servo-hydraulic
testing machine. All tests were conducted under strain control and constant amplitude. Tests were
conducted in air at ambient temperature (20-25°C) using a frequency of 0.25 Hz with fully reversed
loading (R= - 1.0) the stress and strain data being recorded for each cycle. The tests were carried out
at a constant strain rate with the stress being allowed to vary. In every case tests were not terminated
until fracture of the material took place.

The main aim of the present paper is to compare previously reported results with a finite ele-
ment simulation based on the accumulated strain cyclic plasticity theory and connected damage
model.

MMC material parameters
In all studies the inclusion are approximated to an elastic body with a Young's modulus of
468 GPa and a Poisson's ratio of 0.25. The Al 7075 had a Young's modulus of 72 GPa, a Poisson's
ratio of 0.33, a yields stress of 416 MPa and an ultimate stress of 565 MPa with an elongation of
14%.
The SiC, which was introduced into the matrix as particles, had the following specification ’.
Diameter range of inclusion changed from 0.25 to 20 microns with an average diameter of 3 micron
to 4 microns. The average aspect
" 0,MPa ratio was 1.3.
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Fig.1 Stress-strain curve of B95 Al alloy.
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The Al 7075 matrix material in the following analysis was assumed, as far as cyclic plasticity
properties are concerned, to be equivalent to its Russian counterpart, aluminium alloy B95. Both
alloys are manufactured under similar technical conditions and the chemical composition of Al
7075 and B95 ® are shown for a comparison in the Table.1. Further figure 1 shows the stress strain
curve for the B75 aluminium alloy with values of yield and ultimate tensile stress for the Al 7075
alloy superimposed upon it. From these reasons it is assumed equivalence exists between the two
material for the purpose of plastic analysis.

Table 1.
Al 7075 and B95 alloys chemical formulae
Material Zn Cu Mg Cr Fe Mn
Al 7075 6.2% 1.5% 2.3% 0.2% <0.5% -
B95 3.0%-7.0% | 1.4%-2.0% | 1.8%-2.8% | 0.1%-0.25% | 0.3% | 0.2%-0.6%
Model of structure

Fig.2 Scheme of the MMC structure with periodic array

0.46

of fibers.

In general the stress-strain analysis of
both the MMC and the individual cells within
it are a 3D plasticity problem. However in the
present report, as a first approach, the
inclusions were approximated to a spherical
body surrounded by a cylinder of matrix
material (see Fig.2). The cylinder represented
one cell of the MMC. The cylinder
dimensions were defined from the condition
that it was inscribed in the parallelepiped with
height H and the base side 2R. Taking into
account that the inclusion volume ratio is 0.12
and that the inclusions are approximated to a
sphere of radius r, we get
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/4
and therefore, all calculations were conducted
for model with H =2- R, where R = 20 mm
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Fig.3 Poisson's ratio for Al 7075 - SiC MMC in plasticity area
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calculated as its value varies with increasing strain. For the first approach we shall calculate v,
onthe base of volume mixed model.

\% e, +0.5%¢
Ve = —Rda e 2 %088+ v *0.12.

€y

Here ¢, is elastic part of matrix material strain, ¢, is plastic part of material strain, ¢

=g, +¢€,.
y ~%eT®p
Fig.3 shows the Poisson's ratio of the MMC calculated in the plastic region on the bases of the
stress-strain curve presented in Fig.1 These values of the Poisson's ratio were used in the boundary

conditions of FE model.

FE model

When considering the behaviour of the MMC under monotonic loading a FE model with
spherical inclusions containing 4583 nodal points and 9018 axisymmetric simplex finite elements
was used (Fig.4).

When cyclic deformation was
analysed the meshes needed to be
refined to decrease approximation
errors and to increase the stability
of FE models during the various
steps of mathematical simulation
Whilst analysing an MMC with
spherical inclusions the number of
nodes in the FE model during
cyclic plasticity analysis was
above 7000.

On the Dboundary AD
displacements in the x (radial)
direction were fixed whilst
) displacements on the boundary AB
were fixed in the y (cylinders
axial) direction. On the boundary
DC displacements v=¢,R in the

D C

A B y direction  were given.
. NODES 4583 ELEMENTS 9018 Corresponding displacements
X u=-Vpce,R were given in the

Fig.4 Finite element mesh for MMC with spherical fibre. x direction on the boundary BC.

3. CYCLIC STRAIN PLASTICITY

Model of material response under cyclic loading.
Using a model described elsewhere”” the cyclic stress-strain response of the matrix material can be

developed in terms of the simple relationships. The stress o, and strain £, co-ordinates may be
related during any half-cycle n by

o, =f(£), 3.1
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Fig.5. Scheme of stress-strain material response under cyclic loading; a) cyclic stress-strain curve

parameters; b) stress-strain curve for n+1 loading step; c) unified deformation curve on the
n+1 step.

* . - . e, . .
where f,(e,) represents some modification of the initial stress-strain response of the matrix

material under monotonic loading f(¢)(i.e. n=0). However other parameters describing the
material cyclic stress-strain curve vary depending on the cyclic history and the number of applied
cycles but as was shown in previous works*® these changes may not only be dependent on the
number of half cycles. To take this into account an alternative approach is used with the parameters
describing the cyclic strain curve dependent on the cumulative plastic strain .

This is defined as

r=3as,, (3.2)

n=0

The relationship between stress o, and strain &, (Fig. 5) is represented in the form
E. £ <g,

Oj:ﬁ * 8*—8* * *
E. e, +bldl{f[es +(__..b_f!_)i]_o.s} £ >,

X

» (3.3)

N

a

|22, -

&, = E—Jgs, dZ_EZ/E
X

where o, and &, are the initial stress and strain values at 0.02% offset yield; a,, b, and d, are

material-sensitive parameters describing plastic deformation response of the material under cyclic

load; E, is a plastic strain path y-dependant modulus such that £ = E (z=0)+ 10t practice due to the

Bauschinger effect a, may be defined as a, =0, /0,, d is defined as stated above and a
transformation coefficient b, relates the non-linear portion of the stress—strain curve under

monotonic loading to that observed under cyclic loading conditions.

This relationship is valid for the matrix material, which under cyclic load has an alternating elasto—
plastic strain whilst the inclusion material remains elastic. Material constants describing the above
mentioned parameters of cyclic stress-strain were defined on the base of experimental data obtained
for B95 Al alloy'®, whose parameters are equivalent to that of the Al 7075 alloy. The aluminium
alloy B95 under cyclic loading shows a decrease in the amplitude of plastic strain and the hardness
effect with an increase in the number of cycles. The results from this previous work'? are shown in

5



Fig.6 and Fig.7. The parameter, describing Baushinger effect under cyclic loading, is shown in
Fig.6. In Fig.7 the parameter d, , corresponding to the Young's modulus changing under cycling

loading, is shown. It should be noted that the Young's modulus of the Al alloy under cyclic loading
decreases in the first cycles and recovers its value with increasing number of cycle.
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Fig.6. Baushinger parameter in Al alloy
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Fig.7. Cyclic modulus of elasticity d,

The non-linear parts of cyclic stress-strain diagram for different numbers of cycles are shown in
Fig.8, which demonstrates Al alloy hardening under increasing number of cycle. This effect
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influences the parameter b, . Follows from Fig.8, the main changes in the non-linear part of the Al

alloy stress-strain curve take place in the first few half-cycles with maximum change taking place
between the first and the third cycles. After the third cycle the modulus slowly increases until the
100th cycles when the change in modulus ceases.

1.7

clo

——m  first cycle
[P third cycle

1.2 | «—-4—-~ cycle 100

1.1

1.0

Fig.8. Nonlinear parts of stress-strain curves for B95 Al alloy different loading cycles

61

H i 1 1 L 1 i 1 . 1 1 1 2 1 " 1 L 1

0O 10 20 30 40 &0 &) 70 80 90 100
x %

Fig.9. b, versus the accumulated plastic strain
On the base of this information about cyclic parameters of Al alloy and using the least-squares
method the following results were obtained: d, =095 a, =1.86; for all values y. Only average
values of d, and a, are used because the experimental data presented in Fig.7 and Fig.8 was
obtained over a limited number of cycles and a similar method was used to obtain b, 6. From the
results presented in Fig.8 values of b, were calculated. Fig.9 shows the relationship of b, with
regards to ¥ the accumulated plastic strain.



Hypothesis
Cyclic strain plasticity relationships are based on the classical strain plasticity theory hypotheses '~
12 which are accepted as valid for any loading and unloading half-cycle. Unlike the usual approach,
the hypothesis of unified deformation curve is replaced at any half-cycle by the hypothesis of

unified cyclic deformation branch in the local co-ordinates oy,,, &, where n is the half-cycle

number (Fig. 5). The cyclic deformation curve is plotted on the basis of the material test analysis at
the cyclic deformation.

Let us consider that the position of the local co-ordinates of the origin of &, & are specified in
the global co-ordinates by the stress tensor o; and the strain tensor ¢, these tensors may be

regarded as the initial stresses and strains for the »+1 loading half-cycle.

For the n+1half-cycle, the point representing the deformation process must lie on one of the cyclic
deformation curve branches that emerge from the point o, &, - Depending on the loading

direction, the n+1 loading phase may coincide with the previous loading direction or the stress
increments are directed opposite to the vector {5, }.

Depending on the load direction, the unified deformation curve for each calculated point coincides
either with the curve o, or with the curve o, , both curves are shown in Fig. 5b, which
represents the relationship between the effective stress & and the strain .

In the local co-ordinates the following hypotheses of the strain plasticity theory are valid
1. The mean stress and strain lies in the elasticity area

* * E
oc =Ke, K=—2%——,
31-2v,)
* 1 * * ]. *
O =70, & =7&
3 3
2. Stress and strain deviators are related by the following relationships
. E .

V4

5, =0,-00,,e=6-¢€0,
Thus, on the basis of the unified curve hypothesis and taking into account that & "= (3/ 2 S,;-S ; )1/2
and £ = (2/ 3 e;.e; )1/2 , we get
3E, &
2(1+v,) &

Here E, and v, are the Young's modulus and the Poisson's ratio.

[//:

These constitutive equations lead to the non-linear FE problem, solution of which requires special
iterative procedure at every half cycle of the loading or unloading. A more complete development
of this theory and solution methodology of non-linear FE equations are described elsewhere. > 1> 14,



4. DAMAGE MODEL
Tests conducted for different engineering materials show >® that for constant—amplitude stress,

constant-amplitude strain and stress random—amplitude loading the number of half-cycles n;

before failure at alternating—sign plastic deformation is related to the limiting value y__ by the

power law:
e
n, :(lm%) : @.1)

here & is the constant depending on the residual plastic strain value, Y is the parameter that
characterises the material ability “to cure” the cyclic loading damage.

The model based on the relationship (3.3) allows simulating the cyclic life exhaust process of
the specimens under all conditions. At the same time, the accumulated plastic strain may be plotted
on the co-ordinate plane y, n by the function In(y) of In(n). Moreover, if Ag, does not change

sign in going from half-cycle to half-cycle, then y increases and #, remains constant. If in the two

adjoined half-cycle Ag, changes sign then 7 increases by one. If the value D = y(n)/y,. (n) is

taken as the measure of damage, D=1 defines the amount of half-cycle loading where the
alternating—sign plastic deformation takes place until a fatigue crack occurs. If for different loading
processes the parameters defining the material mathematical model at cyclic deformation are
equivalent to the same damage measure D, all functions of y in (3.3) may be replaced by the

functions of the dimensionless parameter D. The possibility of applying this approach has been
studied experimentally >,

The values of parameters to
be used in (4.1) were calculated
on the base of experimental data
from the results of constant
strain  controlled low-cycle
> fatigue studies that were
» conducted on  un-notched
- d specimens. Taking into account
that parameter y in these tests
; i i i ; can be obtained by the following
; relationship:

X max

x=n,| 2As, - a,c (2Asay)

01 nf x y

the results of which are shown in

Fig.10. Experimental and analytical relationship between the ultimate ~Fig.10 where n f is the number

accumulated plastic strain and the number of half-cycles before

g of half-cycles to failure for un-
failure.

notched Al specimens and Ag -

is the specimen's elongation amplitude. Fig. 10 is an approximation of these experimental points.
The point of intersection with the Y-axis gives the value of §=0.1328. The line tangent is 3=2.005.



S. RESULTS OF NUMERICAL SIMULATION

Monotonic loading.
As a first step in this study, the behaviour of the MMC in the plasticity area under monotonic
loading was simulated. The effective plastic strains were determined for different values of strain

€, in the direction of cylinder axis. The effective plastic strain distribution in the cylinder with an

overall strain of €, =0.01 is shown in Fig.11. It can be seen that the residual strains reach

maximum value on the interface between the inclusion and the matrix. There is a second area on the
cylinder axis in front of the inclusion where plastic strain reaches a maximum value. Plastic strains
in these two zones are shown in Fig.11 where localised strain in these two regions is plotted against
overall material strain.

18

|

16

14

121

10 F

)
€, %

Fig.11. Maximal effective plastic strains £_ in the interface and frontal zones versus

the specimen's strain € y

If it is assumed that failure of the composite will develop from a localised area of maximum strain,
it is possible to determine the upper boundary of overall composite strain, by incrementally

increasing the value of € y to determine those areas within the composite that reach these high

strain areas. Using results obtained from Fig.11 we see that with an effective plasticity strain in the
MMC of 1.9%-2% certain areas within the composite have strains that have become equal to the
failure strains of A17075. This result is in good agreement with those determined experimentally in
which the failure of an MMC's occurs at a strain value of 0.02 . Thus, the above mathematical
model is a good estimate of the experimental results and gives some encouragement that this
approach may be used in the development of a lifetime prediction model for MMC with short
inclusions under cyclic loading. Failure under cyclic loading may be related to the beginning of
crack propagation at the interface between inclusion and matrix.
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Numerical simulation of MMC behaviour under cyclic loading.

Fig.12. Distribution of the accumulated plastic strain
in the composite after 5 half-cycles with elongation
amplitude of 1%. I denotes the concentration zone of
accumulated plastic strain on the interface between
fiber and matrix. F denotes the concentration zone in
the direction of load action

The numerical investigation of the composite
was carried out in strain-controlled tests for the
following strains amplitudes of symmetric cy-

cles, Asay= 0.5%, 0.6%, 0.7%, 0.8%, 0.9%,

1%. As for static loading simulation, it was as-
sumed in the analysis that the inclusions in the
composite were spherical. Results for the first
half-cycle at the deformation amplitude of 1%
coincide with results of the monotonic loading
presented in Fig.11. At each calculation point
the current values of % and damage measure D
were defined. The calculation process stops
when D =1. Fig.12 represents the accumulated
plastic strain distribution after the fifth deform-
ing half-cycles with an elongation amplitude of
1%. One can easily see that two zones (I and F)
appear where the accumulated plastic strain is at
a maximum. The first zone 1, is on the interface
between inclusion and matrix. The second zone
F is formed at some distance from the inclusion
in the direction of deformation, on the cylinder
axis. It follows from what has been said that the

first fatigue crack forms on the inclusion matrix interface but it is soon followed by a second crack
that forms in the frontal zone after a certain number of loading and unloading half-cycles.
Obviously these cracks precede the overall MMC's failure. As long as some region of the
composite is at high enough stress this process will occurs at all other levels of strain amplitude.

In the zones marked I and F in Fig 12 the process of alternating-sign deformation occurs in different
ways. Fig.13 is two cyclic diagrams of the global co-ordinates 0'(6) for a strain amplitude of 0.7%.

Fig.13a shows that the process of cyclic deformation on the interface between inclusion and matrix
is subject to greater strain levels than in the zone F, shown in Fig.13b.
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Fig.13. Numerically (FE) simulated cyclic stress-strain curves: a) interface zone; b) frontal zone
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Despite the fact that the overall loading process occurs at constant strain amplitude, zones I and F
see different a different stress and strain range. However, as the number of cycles increase the
dimensions of the hysteresis loop stabiles. This is confirmed by the results given in Fig.14 showing
the behaviour of the loop's width versus the number of half-cycle. Initially the cyclic behaviour of
the material is dependent on the value of the specimen's elongation amplitude. However, by the
tenth half-cycle the process of cyclic deformation may be considered stabilised. In many respects it

depends on the value of the hardening parameter b

It should be noted that the process of cyclic elasto—plastic deformation brings an essential non-
homogeneity in the distribution of plastic strain in the region close to the inclusion matrix interface
(see Fig.12). Due to the non-uniformity of aluminium’s hardening in the region near the interface a
zone with wave-like distribution of plastic strain arises. However, with the number of half-cycles
increasing, such wave-like pattern is smoothed out. Thus maximal plastic strain on the interface and
frontal zones are not consistent from the cycle to cycle (Fig.14).
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Fig.14. Relationship between the width of cyclic deformation loop and the number of half-cycle at different
values of the specimen's elongation amplitude: a) interface zone I; b) frontal zone F.
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On the basic assumption that the number of half-cycles before the appearance of a low-cycle
fatigue crack is defined by the condition D=1 number of cycles for crack beginning were
calculated. Fig.15 is a plot of cycles before failure versus the localised strain for region within the
MMC with the interface area of high stress indicated with an I and the highly stressed frontal zone
is mark with an F. Experimental results shown on Fig 15 are taken from previous results."

It must be remembered that this finite element analysis only allows prediction of the number of
cycles to crack initiation. For this type of fatigue loading it would be expected that number of
cycles from first crack until failure lies around 50-80% of specimen cyclic lifetime. It should be
expected therefore that, for a given strain level, theoretical predictions would under estimate the
life of the material compared to results obtained experimentally and it can be seen from figure 15
that this is the case.
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Fig.15. MMC's fatigue diagram.

CONCLUSIONS

A procedure for mathematical modelling the elasto-plastic deformation processes in an MMC
with inclusions under cyclic loading is presented. The results obtained show that the failure of the
MMC occurs in several steps. First, an internal crack arises on the interfaces between matrix and
inclusion. Then, it is possible for further cracks to appear in a frontal zone, situated between
inclusions. These two set of cracks do not appear at the same time in the cyclic history of the
material but the frontal zone must experience a far larger number of half-cycles before a crack
appears compared to the interface area. However, material failure will occurs provided that the
system of cracks on the interface is integrated with the cracks in the frontal zones and that the
cracks progresses further in the radial direction from interface to the cylinder's surface. The
presented results predict time to failure of only some composite's parts and therefore give a low
estimate of fatigue lives in comparison with experimental data. Perhaps, a further development of
the proposed technique and its application to the bodies with cracks would enable us to simulate the
whole process of MMC's failure under cyclic loading.
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