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Abstract    

There is an increasing awareness, policies and an incentive landscape, which 

are encouraging and starting to shape future transport to be seen as part of a wider 

ecosystem of infrastructure, use, behavior and sustainability. However, one of the 

main barriers for the wider uptake by both fleet and individual users of electric 

vehicles is the concern of the uncertainties of Total Cost of Ownership (TCO). 

 

This contribution, based on a mix of original modelling, simulation and labora-

tory experimentation studies as well as a review of the academic and policy litera-

ture, will focus on vehicle design and the battery and energy management in the 

EV/PHEV. EV users express concern about the longevity of the electric battery 

and hence the life cycle (especially with frequent fast charging), which amounts to 

a major part of the costs and value of the vehicle. Using the battery to provide an-

cillary services will add more value to the EV and reduce the effective TCO. 

 

1  Introduction 

The growing requirement to produce increasingly more energy efficient ultra-low 

carbon vehicles (ULCVs) represents a major technical and financial challenge for 

major vehicle manufacturers and component suppliers. Some of the current limita-

tions of battery technology in terms of energy, density, power density, weight and 

cost [1] have led automakers to focus not only on the development of electric and 
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hybrid powertrains but also on the optimization of other critical vehicle technical 

areas aimed at enhancing the vehicle overall energy efficiency, such as reducing 

the weight and drag [2]. The use of on-board ancillary systems (heating, lights, 

etc.) - in addition to the driver’s driving style, vehicle speed and the type of jour-

ney  - are also key factors to improve the vehicle energy efficiency, range and per-

formance [3]. 

 

This chapter provides an overview of the main vehicle design advancements to in-

crease Electric Vehicles (EVs) and Plug in Hybrid EVs (PHEVs) market penetra-

tion by offering vehicles with an increased range and consequently becoming a 

more attractive business proposition to prospective buyers or users. Some key 

technical constraints are also discussed as EV and PHEV technology is not at a 

mature stage yet [4]. In addition, an account of the design and operation of the bat-

tery, smart charging, eco-driving, vehicle energy consumption and management 

are provided. Finally, this chapter presents an evaluation, based on modelling, 

simulation and laboratory experimentation studies, on how these may be designed 

to lower the total cost of ownership (TCO), since this is critical for take-up. 

 

2  EV/PHEV design to reduce energy demand during driving conditions 

2.1 EV/PHEV Body Aerodynamics 

Aerodynamics plays a prominent role in the overall efficiency of a vehicle. Most 

of the EVs and PHEVs available on the market feature an optimised aero package 

specifically designed to lower their drag coefficient (Cd) caused by airflow turbu-

lence. It is common for vehicles such as the Toyota iQ EV to feature aerodynamic 

enhancements applied to the front grille opening and body panels to separate and 

improve air flow, as well as underfloor covers to minimise turbulence [5]. 

 

Similarly, the 2013 Fiat 500e low-volume EV is characterised by a reshaped front 

and rear end, revised wing mirror covers, small spats on the wheel wells, and un-

der-trays to even out airflow [6, 7]. Aero improvements are also applied to some 

Internal Combustion Engine (ICE) vehicles in the shape of the special low carbon 

edition models, badged for instance Blue efficiency [8] by Mercedes-Benz, or 

DRIVe [9] by Volvo.  From a comparative analysis, shown in Table 1, it follows 

that EVs and PHEVs are marginally more aerodynamically efficient than their 

ICE based counterparts.  

 

 

 

 

http://www.greencarreports.com/news/1083528_2013-fiat-500e-electric-car-first-drive
http://www.greencarreports.com/news/1068832_electric-cars-some-are-real-most-are-only-compliance-cars--we-name-names
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Table 1.  Vehicles’ Cd comparison between ICE models and derived LCVs models 

[7,8,9,10,11,12,13] 

Make Model Drive Year Cd ΔCd ΔCd% 

Fiat 500 ICE 2007-present 0.36   

 500e EV  2013-present 0.31 -0.05 -13% 

Honda Mk7 Civic 

Sedan 

 

ICE 

 

2001-2005 

 

0.30 

  

 Mk7 Civic 

Sedan 

Hybrid 2003-2005 0.28 -0.02  -6% 

Scion iQ ICE 2008-present 0.31   

(Toyota) iQ EV 2012-present 0.31 0   0% 

 

This trend generally applies to the latest breed of EVs and PHEVs which have 

been designed as electrified ULCVs right from the outset rather than being deriva-

tive versions of their existing ICE models. However, the latest BMW i3 and Nis-

san Leaf feature low drag bodies which are not significantly better than ICE vehi-

cles of their respective size. The compared Cd figures suggest that some of the 

latest ICE models perform surprisingly well against the most evolved EVs availa-

ble on the current market.  

Table 2.  LCVs Cd comparison [10, 14, 15, 16, 17, 18] 

Make Model Drive Year Cd ΔCd ΔCd% 

Honda Mk1 Insight Hybrid 2000-2006 0.25   

 Mk2 Insight Hybrid 2010-present 0.28 +0.03 +12% 

Toyota Mk2  Prius Hybrid 2004-2009 0.26   

 Mk3  Prius Hybrid/ 

PHEV 

2010/12-  

present 

0.25 -0.01 

 

   -4% 

   

Nissan Mk2 Note ICE 2013-present 0.30   

BMW i3 EV 2012-present 0.29 -0.01    -4% 

Mercedes 

Benz 

 

Mk2 B Class 

 

ICE 

 

2012-present 

 

0.26 

  

Nissan Leaf EV 2011-present 0.29 +0.02   +8% 

 

Although there are some after-market PHEVs aero body kits such as the Aero Pri-

us YuraStyle [19, 20], for the Toyota Prius, those designs are too extreme in terms 

of styling to be accepted by the vast majority of Prius owners [18]. Allegedly their 

improved Cd figures, obtained by further covering of the car rear end and wheels 

[21], may provide some tangible gain in terms of the vehicle extended range [20, 

22] compared with the standard PHEV model, driven in everyday variable driving 

conditions.   
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2.2 EV/PHEV Kerb Weight 

Air friction is not the only key parameter responsible for reducing vehicle range. 

The overall car kerb weight is another major technical challenge for auto makers 

as they aim to lower the vehicle mass as much as possible.  

 

The lithium-ion traction battery in the Tesla Roadster weighs about 453Kg [23]. 

However, designers managed to offset the battery weight with the adoption of a 

full aluminium frame and plastic body panels to keep the EV car weight down to 

1220kg [24]. This valid technical approach normally proves to be more costly 

when it is applied to conventional ULCVs designed for daily use.  

 

However, there are different approaches towards increasing the vehicle range and 

efficiency of ULCVs. Chevrolet managed to increase the range of its Volt PHEV 

by reducing its aerodynamic drag which can be advantageous when regaining en-

ergy through regenerative braking [25]. BMW adopted a radical design of the i3, 

which is the first mass-produced vehicle in the world to feature a carbon-fibre re-

inforced plastic (CFRP) body structure [26, 27]. It is likely that future LCVs will 

also make use of this new chassis construction method as a common platform onto 

which an aluminium frame is mounted to house the battery and powertrain.  

 

In the typical daily use of an EV/PHEV, predominantly in an urban environment, 

where low speed limits are enforced, the vehicle gross weight counts more than its 

drag. In simple terms energy calculations can be easily deducted from the follow-

ing Newton’s inertial force equation [28]: 

F =m a        (1) 

Where F is the Force needed to move the ULCV; m is the mass of the ULCV; and 

a the vehicle acceleration. If the mass value increases more force will be then re-

quired to obtain a given acceleration. This is why urban driving is less energy effi-

cient than driving on motor ways, where acceleration is reasonably constant. In a 

different driving situation, e.g. an ULCV driving up a gradient is heavily affected 

by its weight, therefore reducing its driving range. For the above-mentioned con-

ditions a lightweight ULCV is preferable. On the contrary, the increase in weight 

has its benefits after the ULCV acquires a certain speed, which is being kept rea-

sonably constant (e.g. driving on a motorway) as the vehicle will carry more mo-

mentum (kinetic energy) to move along. 

 

In the case of an ULCV used primarily for journeys beyond the city boundaries, at 

higher speeds, typically above 50 mph, the vehicle air drag begins to affect the 

amount of power required to propel the vehicle forward and maintain or increase 

its speed. This is due to the fact that [29]: 
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F =
1

2
r v2 Cd A        (2) 

Where F is the drag force needed to move the ULCV; 𝜌 is the air density, v the 

velocity, Cd is the coefficient of drag, and A is the vehicle cross sectional area.  

Assuming that 𝜌 , Cd and A are constant (a specific vehicle), the change in the 

drag force (F) that results from a small change in vehicle velocity can be derived 

as: 
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which gives:  

DF
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v
        (4) 

That is, a relative change in vehicle speed results in twice the relative change in 

the drag force needed to move the vehicle. This means that every time the vehicle 

speed doubles, the drag force value quadruples [29] as the amount of energy 

(Wh/mile) absorbed in aerodynamic losses. The other variable that greatly affects 

the ULCV range is the Cd, which depends on A. Thus, a low drag ULCV is the 

better option. With existing EV/PHEV battery technology, the increase in battery 

capacity, to extend the EV range, results in a larger battery mass and heavier vehi-

cle [30]. 

 

It is foreseeable that in the future EVs/PHEVs will feature more sophisticated on-

board control which will be able to optimize the ULCV efficiency and range using 

satellite navigation and maps to predict the vehicle journey continuously taking in-

to account all the factors mentioned above. The ability to inform the driver of the 

vehicle’s real time consumption also taking into account the wind speed and direc-

tion through constant updates from the Met Office, for instance, are part of the 

overall energy optimization which will be likely to be introduced in future 

ULCVs. Even apparently negligible power gains still have a significant summa-

tive effect on the overall performance of the vehicle.  

2.3  EV/PHEV on-board or off-board charging 

Today’s battery technology constraints have led automakers to produce the ma-

jority of EVs with a limited range similar to the pioneering EVs produced in 1910 

[31]. This, in addition to cost and charging which still presents a number of obsta-

cles [32], are the main factors limiting the proliferation of EVs and PHEVs.  
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On-board charging enables EV/PHEV users to plug their cars in any domestic 

socket [33] or a power supply in various locations that are not necessarily in the 

proximity of a public charging point. However, Level 1 AC charging, running on 

110V in the US, means that a PHEV/EV could take from 6+ hours (for a PHEV) 

to 24+ hours (for an EV) to charge [34]. The answer would be to upgrade to a 

Level 2 AC charging station, employing 220V supply, installed at home or nearby, 

to allow a PHEV to be charged from 2+ hours to 8+ hours for an EV [34]. This fa-

cility is also appropriate for charging vehicles at work, around shopping centres 

and supermarkets.   

 

The very latest edition of the Nissan LEAF makes on-board charging more com-

patible with today’s frantic lifestyle as its battery can be refilled within 4 hours 

through the adoption of a dedicated 6.6 kW charger option powered by 32 A cir-

cuit [36]. In order to further reduce ‘filling up’ times, Level 2 DC charging has 

been introduced which uses an off-board charger. The off-board charger is rated 

between 20 kW and 80 kW, which gives 3-5 miles’ range for every minute of 

charge [34]. Fast chargers are expensive to install and therefore are not used for 

domestic charging; rather, they are popular for public and commercial charging 

stations.  

 

Another viable solution to facilitate the use of EVs is represented by the concept 

of swapping the battery at a charging station, though the recent financial collapse 

of BetterPlace appears to be related to both the fact that Original Equipment Mak-

ers (OEMs) of EVs do not seem to be willing (other than Renault in this case) to 

standardise their batteries in an easy and cost efficient manner, and that some gov-

ernments (Israel in this case) insisted on large-scale and extensive initial infra-

structure investment.  

3  Demand from Auxiliary (Non Power Train) Loads/Functions 

Ancillary systems constitute an additional power load on the running of an EV and 

PHEV [39] which can significantly affect the range of the vehicle in various oper-

ating conditions. Typical functions as climate control (heat ventilation, air condi-

tioning (AC)), lights, info entertainment (radio, CD player, centre console display, 

satellite navigation, etc.) are to be accounted as they can reduce the PHEV/EV 

travel range. The battery management system (BMS) and other primary auxiliary 

circuits (instruments binnacle electronics, central locking, electric windows, im-

mobilizer, etc.) used to govern vehicular operations, add an imperceptible energy 

demand. This auxiliary power demand (𝑃Aux. Load ) may be represented as: 

 

𝑃Aux. Load = P AC + P Lights + P Info Entert. + P BMS + P Aux. Circuits (5) 
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The first three variables are particularly relevant to an EV as its driving range de-

pends only on the main battery pack whereas a PHEV rely on an ICE unit to ex-

tend its range. An electric air conditioner with a peak load of 3 kW can reduce the 

EV range by 16-38% depending on the driving cycle [40]. Its power absorption 

may vary between 0.2-2.2kW. To compensate for such a power drain the latest 

2013 Leaf adopts a new heat pump-based heating system, which is designed to use 

considerably less battery power [41]. 

 

The combined effect of internal and external lights is about 80 W [39] as efficient 

LED lights, used for turning signals, daytime running lights or brake lamps [42] 

are increasingly replacing traditional automotive bulbs and are commonly coupled 

with halogen and xenon headlights. In terms of audio equipment, manufacturers 

try to considerably reduce the auxiliary power consumption [43]; for example, the 

2013 Nissan Leaf features a new premium Bose Energy Efficient audio [44] 

which uses about half of the electrical current than standard systems [45] whereas 

the Toyota Prius is fitted with a 120 W audio system that is comparable to 600 W 

systems [44]. The power consumption of BMS units, which consume on average 

between 15-40mA (3-8 W) [46, 47], and all other auxiliary electrical systems is 

negligible.  

 

The overall power consumption of EV ancillary systems is 10-33% of the traction 

battery power, depending on the driver’s choice and use of heat or air conditioning 

[48]. To compensate for such a load, an EV may be equipped with photovoltaic 

panels, where a 200 watts system returns about 1 km of electric range for each 

hour of full direct sun exposition [49].  

 

Future LCVs will be adopting a 42 V electrical system standard [53] in order to 

save weight and cost of the electrical components and improve energy efficiency. 

Manufacturers like Audi are planning to implement high voltage technology on 48 

V mild-hybrid platform [54] in the short term.  

4  Battery Cycle Life and State of Health 

The battery is the most expensive part in an EV and accounts for over 50% of the 

total production costs of the vehicle [55]. Current EVs/HPEVs are usually pow-

ered by high capacity Lithium ion batteries, which vary in size from few kWh to 

few tens of kWh capacity. The battery capacity determines the vehicle electric 

range and, with current battery technologies, this is limited to around 200 km or 

less for commercial EVs/PHEVs. These two factors (cost and range) emphasize 

the importance of maintaining the battery in a healthy state for as long as practi-

cally possible in order to reduce the TCO. 

 

Another area that will help reduce the TCO of EVs/PHEVs (with market growth 

and high deployment) is their use to support the grid. This can be in their use as a 

http://en.wikipedia.org/wiki/42-volt_electrical_system
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controllable load during charging or as storage in what is called Vehicle to Grid 

(V2G), where the EV could be used to store surplus output from renewable gener-

ation and release this back to the grid during peak demand [56-58]. Such applica-

tion requires appropriate control and communication with the grid, vehicle user 

and battery management system [56] and may be implemented as part of the 

‘smart grid’ concept [59]. However, providing this service by the EV/BHEV has 

negative impact on the battery cycle life and consequently on the vehicle TCO. 

 

Battery State of Health (SOH) is defined as the difference between the usable ca-

pacity and the end of life capacity and is usually expressed as a percentage of the 

rated capacity [60]. EV manufacturers define the end of life capacity of the battery 

as the state when the battery capacity reaches 80% of the rated (fresh) capacity 

[60]. Therefore, it is important to understand the factors that affect battery degra-

dation and provide the means to optimize battery SOH, not only reduce the TCO 

but also conserve vehicle range. Battery performance depends not only on the bat-

tery chemistry but also on external factors, such as surrounding temperature and 

the way the battery is being used. Capacity loss in Lithium-ion batteries may be 

attributed to two reasons: “calendar life” loss and “cycle life” loss. 

 

The calendar life is the continuous slow degradation of the battery due to the pas-

sage of time, whether the battery is being used or not. It is largely affected by the 

storage temperature and the charge state. Extreme ambient temperatures and high 

average State of Charge (SOC) result in fast degradation. This type of degradation 

can be attributed to permanent chemical change and thus follows Arrhenius law 

[61]: 

         

dC

dT
= AekT         (6) 

 

Where T is the absolute temperature, C is the battery capacity. A and k are numer-

ical constants that depend on battery chemistry and are usually determined by ex-

perimental tests. The cycle life depends on the chemistry of the battery as well as 

the way the battery is being used during charging and discharging. It is affected 

and hence determined by four main factors which are interlinked. These are: the 

charging/discharging current rate, battery temperature, SOC and depth of dis-

charge (DOD). The significance of each parameter and its impact on the cycle life 

is usually estimated through experimental cycling tests, with varying accuracy. 

Usually, degradation caused by cycling is much faster than that caused by calen-

dar loss (storage), but obviously this depends on the EV (battery) usage.  

 

Test results show that battery cycle life drops with increased charging/discharging 

current rates, e.g. if the current rate goes up from 0.74 C to 1 C, the battery cycle 

life drops from around 1,000 to around 200 [62]. Test results demonstrate that 

Lithium ion batteries perform best and have a longer cycle life at room tempera-
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ture around 20–25 °C [63]. They also perform better at low (less than 50%) aver-

age SOC. For example, the battery cycle lifetime when cycled at 15% SOC is over 

3 times the cycle lifetime with a SOC of 95% [64]. Test results also show that at 

fixed temperature and current rate, the battery cycle life decreases with increasing 

DOD. For example, if battery capacity is fully used (100% DOD), the battery ca-

pacity drops to 80% of its initial value after 1600 cycles. When the DOD is 30% 

or less, the battery cycle life increases significantly to 10000 times [65]. 

 

Since different parameters that affect battery degradation (both calendar and cycle 

lives) are interlinked, it is difficult to exactly quantify the individual impact of 

these parameters. However, test data available provide valuable insight into the 

impacts and therefore help in the design of battery management systems and 

charge/discharge controllers that will optimize battery SOH. 

 

As mentioned earlier in this section, battery degradation also depends on battery 

technology (chemistry) and this is continually improving and, together with ap-

propriate control, can help in prolonging battery life and reducing the TCO of the 

EV/PHEV. 

5  Smart Battery Charging 

Smart charging is a crucial element in the realization of a safe, adaptable and 

sustainable power network which is able to cope with an increasing numbers of 

EVs and PHEVs constituting an additional energy load on the grid. An adequate 

control and management of charging is necessary to avoid poor power quality and 

possible electricity supply failures which can occur with high penetration of EVs 

[66]. Research has shown that network voltage levels may deviate from the 

statutory limits even with small penetration levels, say 10%, in weak parts of the 

distribution networks [67]. In addition, charging at peak demand on the grid would 

result in higher CO2 emissions and electricity rates [66].  

 

The adoption of smart charge controllers that initiate and stop charging in relation 

to the conditions of the power grid [68] can minimise the impact of charging on 

the grid and minimise electricity expenses for EV or PHEV users. Smart charging 

may be designed to optimize EV and PHEV battery State of Charge (SOC) and 

calculate in real time appropriate charging patterns based on battery state of health 

and local power distribution voltage [68], taking into account the user’s request. 

This complex operation can only be performed by a smart controller which also 

stabilises the grid by monitoring the incoming AC voltage, and frequency. In order 

to meet EVs and PHEVs deployment targets governments need to develop a con-

current network of rapid charging facilities and ensure that the energy network 

providers involved are fit for purpose when it comes to coordinating their services. 

By 2020, countries that are members of the Electric Vehicle Initiative (EVI), es-
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tablished by the International Energy Agency (IEA), have set cumulative targets to 

install about 2.4 million slow chargers and 6,000 fast chargers [68]. This infra-

structure expansion through the mass adoption of smart controllers provides an 

opportunity to incentivise customers with different tariffs throughout the day and 

influence their charging behavior whilst maintaining the grid power management 

dynamic and balanced. 

 

Energy generation in the future will rely more on renewables, where customers 

will decide to invest in PV panels, wind turbines or other low carbon generation 

technologies to produce part or all of their domestic electricity needs. This scenar-

io will become reality, when the next generation of EVs, fitted with more power-

ful batteries, will be introduced to coexist and exploit the use of small-scale elec-

tricity generation from low carbon technologies. These vehicles will be capable of 

storing power to assist the grid balance and stability which becomes a problem 

with high penetration of intermittent renewables power generation [69]. At the 

heart of this system is the smart charging controller, which will provide an active 

and reliable control to support the network operation (offset voltage sag and swell) 

and meet the EV user requirements [70]. These charging controllers will enable 

EVs’ TCO to be further reduced whilst ensuring a satisfactory EV battery State of 

Health (SOH) and its durability. 

6  Total Cost of Ownership (TCO) of EV/PHEV 

Considering the increasing CO2 reduction legislation currently implemented in 

Europe and North America [68,71], there is an increasing demand for ULC 

‘green’ cars [72,73], which include EVs and PHEVs. However, the market pene-

tration of EVs is still well below the forecast figures as the global EV stock repre-

sents only 0.02% of all passenger cars [68] and their TCO remains high when 

compared with ICE based vehicles.   

 

The financial drawback for EVs is constituted by the cost of the vehicle or its fi-

nance monthly payment, in addition to the battery lease monthly payment. This 

compound financial effect applies to all EVs available on the market today and it 

relates to the capacity of their traction battery.  

 

In the following analysis, EVs are compared by considering their actual manufac-

turers’ retail prices (ownership of vehicle and battery) whilst disregarding other 

relevant parameters such as the government subsidy or tax credit, vehicle standard 

equipment, technical refinement and brand name. The ratio of the vehicle cost to 

its maximum driving range is used to provide an indicative sense of the custom-

er’s EV value for money. According to Albert Lam, from Detroit Electric EV, bat-

teries are responsible for about 54% of the production costs of an EV, 26% of the 

costs represent the drive system and the remaining 20% is the car body manufac-

turing [55]. 
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Table 3.  EVs retail cost/range ratio comparison [74,75] 

Make Model Retail  

Price 

Market Range Cost/range 

ratio 

Nissan Leaf Visia     

 24 kWh £25,990 UK 124 mi £209.6 per mi 

Tesla Model S 

60 kWh 

£54,900 UK 240 mi £228.7 per mi 

 

The most accessible Nissan Leaf model, called Visia and featuring a 24 kWh bat-

tery, is offered at £26 k in the UK, whereas the Tesla EV is sold at premium prices 

based on its large battery size. Considering the EV cost per mile it appears that 

there is a contained difference between the two vehicles examined, although their 

respective TCO is greatly affected by the initial retail price.  

 

The same principle applies to PHEVs which are currently on the market.  

Table 4.  PHEVs retail cost/range ratio comparison [76,77,78] 

Make Model Retail 

Price 

Market (EV Range) 

Tot. range 

Cost/ Tot range 

ratio 

Chevrolet Volt   (50 mi)  

 16.5 kWh £35,255 UK 300 mi £117.5 per mi 

Toyota Prius T3 

4.4 kWh 

£21,064 UK (15 mi) 

540 mi 

 

£  39 per mi 

Volvo V60 

11.2 kWh 

£48,670 UK (31 mi) 

745 mi  

 

£  65.3 per mi 

 

With the popular Toyota Prius very keenly priced, the Chevrolet Volt’s TCO re-

mains less favorable although it offers an extensive EV autonomy. The Volvo V-

60 price bracket puts this executive PHEV and first diesel hybrid car in the world 

[79] in a different category altogether. The same can be said about its steep TCO. 

It can also be deduced that the Chevrolet Volt using a 16.5 kWh battery pack is 

about $5,000 more expensive than the Nissan Leaf, mostly due to its hybrid 

powertrain. In the case of the Toyota Prius costing below $30K it may seem that 

the sub $30K price bracket is necessary for those extended-range vehicles to go 

mainstream [80].  

 

The current TCO trend has been challenged by Chevrolet as its latest offering for 

the new 2014 Spark EV 1LT on a low-mileage lease is significant since it offers 

the most affordable EV on the market for $199 per month for 36 months with an 

initial deposit of $999. This offers includes the full US federal tax credit which 

ranges from $0 to $7,500 [80]. In relation to the customer’s TCO of an EV, it 

clearly appears that those vehicles with a limited range will be more appealing to 

the general public as their asking price will drop below $20K [80]. 
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In order to further reduce TCO, a viable alternative is to charge EV users per us-

age, based on the common and well-established mobile phones business model. 

Considering the EV battery second life, a 5-year buy back guarantee with residual 

value would reduce the initial battery cost. 

 

A study conducted by Roland Berger [81] forecasts that EVs’ TCO may be com-

petitive against ICEVs from the year 2015, based on a 3 year car lease with an an-

nual mileage of 12k miles. The business model of leasing EV batteries is currently 

regarded as a means of reducing EVs’ TCO for consumers as it offers an extended 

battery guarantee and reduced monthly costs.   

7  EV/PHEV CO2 impact and production costs 

When it comes to the production of vehicles, OEMs are committed to reducing 

CO2 emissions in innovative ways. Responsible and more sustainable ULCV 

manufacturing is applied in the Chevrolet Volt assembly plant as it employs 516 

kW PV panels [82] to reduce its dependence on the power grid. These facilities 

reuse, recycle or convert to energy all waste created in their daily operations, 

which conserves resources. In addition, the Volt ICE, transmission and battery fa-

cilities are landfill-free. 

 

The BMW's €400 million i factory drastically reinvents and simplifies car mass 

production and use of resources. The i3 city car features only 100 to 120 separate 

parts in its body structure, compared with about 400 parts in a typical steel body 

[83]. To paint its plastic body panels, BMW introduced a new type of paint shop, 

which produces no wastewater and has a fifth of the normal cost for a paint finish-

ing facility for steel-bodied cars. As a result this factory uses about 70% less water 

and half the electricity [83] if compared with a common car plant.  

 

The Mitsubishi Outlander PHEV uses green plastics, applied to high heat re-

sistance areas, which are derived from the oils extracted from waste cashew nuts. 

This allows a reduction of CO2 emission by up to 12% compared to common pet-

rol-based plastics [84]. The Outlander employs a high-capacity 12 kWh lithium-

ion drive battery which enables an EV drive mode cruising range of over 55 km 

and an overall range in the region of 880Km [84]. Its CO2 emissions figure is as 

low as 44 g/km when the battery is fully charged, but it reaches up to 135g/Km 

when the battery is depleted [85]. These CO2 emissions confirm the fact that in 

most long journeys PHEVs are not necessarily cleaner than modern ICEVs [85].  

 

A study by the Union of Concerned Scientists in the US comparing the global 

warming emissions from EVs with those from gasoline-powered vehicles and 

found that: nationwide, EVs charged from the electricity grid produce lower glob-

al warming emissions than the average compact gasoline-powered vehicle (with a 

fuel economy of 27 miles per gallon) - even when the electricity is produced pri-
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marily from coal in regions with the “dirtiest” electricity grids; in regions with the 

“cleanest” electricity grids, EVs produce lower global warming emissions than 

even the most fuel-efficient hybrids; and EVs charged entirely from renewable 

sources like wind and solar power produce virtually no global warming emissions 

[86].  

 

Other authors comparing conventional and alternative vehicle option from an en-

vironmental and economic perspective argue that if electricity is generated from 

renewable sources, the electric car is advantageous to the hybrid vehicle; but if the 

electricity is generated from fossil fuels, the electric car remains competitive only 

if the electricity is generated onboard. Yet if the electricity is generated with an ef-

ficiency of 50-60% by a gas turbine engine connected to a high capacity battery 

and electric motor, the electric car is superior in many respects [88]. To charge 

EVs, studies indicate that the amount of generated CO2 emissions per kilometre is 

between 52-70g CO2/km [23].  

 

Plug-in hybrid electric vehicles (PHEVs) consume both gasoline and grid elec-

tricity. The corresponding temporal energy consumption and emission trends are 

valuable to investigate in order to fully understand the environmental benefits. The 

24-h energy consumption and emission profile depends on different vehicle de-

signs, driving, and charging scenarios. Such a Californian scenario study assesses 

the potential energy impact of PHEVs by considering different charging scenarios 

defined by different charging power levels, locations, and charging time, with ve-

hicle parameters based on realistic assumptions consistent with projected vehicle 

deployments. Results show that the reduction in petroleum consumption is signifi-

cant compared to standard gasoline vehicles and the ability to operate on electrici-

ty alone is crucial to cold start emission reduction. The benefit of higher power 

charging on petroleum consumption is, however, small. Delayed and average 

charging are better than immediate charging for home, and non-home charging in-

creases peak grid loads [88]. With rising fuel costs, EVs and PHEVs can be ex-

pected to deliver a certain level of financial benefit to consumers if seen on a 

longer time horizon of use, and depending on tax incentives and other public poli-

cy measures.  

 

A Californian scenario study of charging demand shifts on an hourly basis for four 

different scenarios based on different electric circuit characteristics shows that cir-

cuit upgrades bring faster charging times, and reduce charging time differences 

between PHEV20 and PHEV60, with home charging replacing 40–50% of dis-

tances currently travel using ICEs with electric power for PHEV20 and 70–80% 

for PHEV60. If charging facilities are available in public parking facilities, which 

will lead to more daytime charging, PHEV20 can convert 60–70% of mileage 

from fuel to electricity, and 80–90% for PHEV60. Emission reductions will be 

higher than those percentages since PHEVs will cover a greater fraction when 

measured by the number of trips, which emphasizes the equivalent number of ICE 

starts. The study concludes that it is not certain that diverting charging demands to 
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off-peak periods will maximize energy efficiency, since daytime charging will al-

low more trips by electricity, but will result correspondingly in higher peaks for 

high-demand-periods. There are limitations to the assessments provided by this 

study – and many others - as it does not fully account for environmental impacts 

from PHEV penetration. Specifically, increased emissions and other types of en-

ergy usage regarding extra grid electricity demand are not assessed [89].  

 

8  EV/PHEV new business models and TCO reduction contributions 

across industries and regulatory context 

Although the cost of a traction battery, at $1000 per kWh in 2008, has rapidly fall-

en to $485 per kWh in 2012 [68], it may take 3-4 years for these cost gains to ben-

efit the auto industry and ultimately consumers.  

 

The newly adopted business model by major EV makers to lease the battery sepa-

rately from the vehicle is surely a necessary yet evolutionary step to reduce TCO 

considerably. In order to reduce EV production costs the following requirements 

should be observed: 

 

 Creation of a standard type of battery cell which would increase manu-

facturing volumes and lower costs. 

 

 Increase EV range by optimising aerodynamics, kerb weight, tyre roll-

ing resistance and energy management. 

 

 Redeploy used EV batteries for stationary application using light com-

mercial load, residential load and for distributed generation technolo-

gies such as renewables, wind and solar. 

 

 Without redeployment and V2G integration, partially or fully electrified 

powertrains are still at a significant cost disadvantage over the entire 

lifecycle compared to conventional powertrains, in terms of the total 

cost of ownership (TCO) if seen from both supply and demand perspec-

tives.  A revised public policy and regulatory landscape may be neces-

sary to shift this, and there needs to be encouragement of battery-related 

research and investment.  

 

OEMs currently experience a shortfall in profit margins if they sell a PHEV rather 

than a vehicle with a conventional powertrain. Customers benefits from lower en-

ergy costs due to lower fuel consumption, but OEMs are not fully recompensed 

for the extra cost it incurs.  

 

KPMG’s 2013 Global Automotive Executive Survey hence suggests that 92% be-
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lieve that consumers’ number one criteria will be fuel efficiency, with 36% believ-

ing that plug-in hybrids will attract most consumer demand. 85% of surveyed ex-

ecutives think that downsizing ICE engines is the solution, with a higher propor-

tion investing there, though with a sizeable chunk of OEMs investing in plug-in 

hybrids, yet with only 8% seeing battery technology as their biggest investment 

area [90]; something that needs to seen in context of the advantages and disad-

vantages of different battery technologies [91-94]. Energy efficient charging re-

gimes of EVs will be important to electricity as fuel energy consumption [95].   

9 Conclusions 

According to the International Energy Agency (IEA), policy initiatives in 12 out 

of the 15 countries which are part of the IEA’s Electric Vehicle Initiative (EVI), 

have been put in place to boost the introduction of sustainable transport through a 

range of EV financial support measures and other practical facilitations [68] to 

stimulate this market. 

 

There are a number of key major conditions to be met to increase the uptake of 

PHEVs and EVs: 

 

 A significant reduction in cost of Ion-Lithium battery and an increase in 

power density to provide EVs and PHEVs with an increased range. The 

IEA estimates that targeting a battery at $300 per kWh in 2020 [68] will 

make it competitive against an ICE. 

 

 EVs and PHEVs price reduction through cheaper batteries and im-

proved manufacturing processes will make EVs/PHEVs more competi-

tive against ICEV. The IEA EV/PHEV Roadmap predicts that after 

2015 the number of EVs/PHEVs will reach 7 million per year by 2020 

[73]. If such a forecast is fairly reliable, manufacturing cost savings 

through larger volumes of production may be realized making these 

types of LCVs more appealing to own or lease.  

 

 A broader development of national charging infrastructures through the 

widespread installation of public, commercial and private charging 

points. EVI countries are planning to install, as cumulative targets, 

about 2.4 million slow chargers and 6,000 fast chargers [68] by 2020. 

 

 New business models applied to the use of EVs/PHEVs to lower cus-

tomer’s up front and monthly cost and to increase the availability of 

high power charging points in public and commercial environments. 

There is currently much uncertainty over the economics of rolling out 

and maintaining fast-charging infrastructure as investment is hardly 
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profitable at low EV adoption rates, unless investment cost can be se-

verely lowered. Besides competition with alternative charging solutions 

(home and work), the general EV adoption rate is detected as being a 

main risk factor for private investment in public charging infrastructure. 

If private investment takes place at this premature stage, it appears to be 

driven by other than project prospects: Charging stations may be used 

as a perk to attract consumers with main revenue generated from non-

electricity sales, such as commodity sales or to a certain extent parking 

fees. Integrated organizational structures with electric utilities promise 

slight improvements in return on investment since additional profits on 

the electricity market side enter the investment calculus. These addi-

tional profits are, however, very low. Fleet operation and grid tariff ex-

emption can significantly improve returns [96].  

 

 Intelligent charging for different profiles of users, and perhaps even us-

ing day-ahead management systems instead of pre-set profiles have de-

sirable consequences for the system (e.g. decrease in variable costs, re-

duction in carbon emissions, increase of reliability) for the grid system 

[97], it is therefore necessary to develop an “intelligent” charging strat-

egy. Using an operation planning model, a study analyses the Spanish 

power system for 2020 under different EV penetration levels and charg-

ing strategies. The results show the benefits of using smart charging 

profiles instead of an unregulated profile, obtaining large cost reduc-

tions and maintaining system reliability levels [98].  

 

Despite the technical and financial constraints for EV/PHEV adoption [99], it is 

worth noting that the latest EVs provide energy efficiency beyond 80%, as com-

pared to ICEV (~30%) [68]. It remains clear that the toughest challenge to the 

large scale uptake of EVs/PHEVs in the forthcoming years is represented by the 

development of battery technology which can literally accelerate or stifle this evo-

lution, with trade-offs between different battery technologies of the Lithium-ion 

family of battery technologies in terms of advantages and disadvantages in terms 

of safety, performance, specific energy, specific power, cost and lifespan.  The 

second-life span and use of these batteries will be of significance and consequence 

also [100]. 
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