
Northumbria Research Link

Citation:  Harrison, Lisa,  Dunning,  Stuart,  Woodward, John and Davies,  Timothy (2015)
Post-rock-avalanche dam outburst flood sedimentation in Ram Creek, Southern Alps, New
Zealand. Geomorphology, 241. pp. 135-144. ISSN 0169-555X 

Published by: Elsevier

URL:  https://doi.org/10.1016/j.geomorph.2015.03.038
<https://doi.org/10.1016/j.geomorph.2015.03.038>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/22459/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


�������� ��	
�����

Post rock-avalanche dam outburst flood sedimentation in Ram Creek, South-
ern Alps, New Zealand

Lisa Harrison, Stuart A. Dunning, John Woodward, Timothy R.H. Davies

PII: S0169-555X(15)00206-8
DOI: doi: 10.1016/j.geomorph.2015.03.038
Reference: GEOMOR 5175

To appear in: Geomorphology

Received date: 10 September 2014
Revised date: 23 March 2015
Accepted date: 30 March 2015

Please cite this article as: Harrison, Lisa, Dunning, Stuart A., Woodward,
John, Davies, Timothy R.H., Post rock-avalanche dam outburst flood sedimenta-
tion in Ram Creek, Southern Alps, New Zealand, Geomorphology (2015), doi:
10.1016/j.geomorph.2015.03.038

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.geomorph.2015.03.038
http://dx.doi.org/10.1016/j.geomorph.2015.03.038


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 
 

Post rock-avalanche dam outburst flood sedimentation in Ram Creek, Southern Alps, 

New Zealand 

Lisa Harrison a, Stuart A. Dunning a*, John Woodward a, Timothy R. H. Davies b 

 

a Department of Geography,  Northumbria University, Ellison Place, Newcastle Upon Tyne, 
United Kingdom, NE1 8ST. 
b Department of Geological Sciences, University of Canterbury, Christchurch, New Zealand.  
 
 
* Corresponding author. Tel.: +44 191 227; E-mail: stuart.dunning@northumbria.ac.uk  

Abstract 

Rock avalanches are common in mountainous regions that are tectonically active. They are 

capable of forming natural dams of uncertain persistence that have significant impacts on 

the river system over wide spatial scales and possibly over geological time scales. Here we 

combine field data and digital elevation model (DEM) analysis to show the response of Ram 

Creek, New Zealand, to 28 years of sediment dispersion following the 1968 emplacement of 

a co-seismic, rock-avalanche dam that breached catastrophically in 1981. The results show 

a system that has not attained equilibrium, being unable to move the quantity of dam-derived 

sediments, and will likely not attain equilibrium before the next major sediment input; it is in a 

state of persistent disturbance where localised reworking dominates. Erosion in Ram Creek 

is focussed on lateral bevelling and bedrock gorge widening rather than vertical incision to 

keep pace with tectonic uplift. Importantly for studies of tectonic geomorphology, this 

widening — which if sustained will form a strath terrace — does not represent a period of 

reduced uplift. Stream metrics (concavity and steepness) are unable to differentiate the 

identified rock-avalanche–induced knickpoint from tectonic and lithological knickpoints.  

Keywords: rock avalanche; landslide dam; river metrics; strath formation; New Zealand 

1. Introduction 

In tectonically active mountain environments, catastrophic mass movements — often 

associated with seismic triggering — can control valley floor geomorphology far beyond the 

failure site (Pearce and Watson, 1986 ;Hewitt, 1999, 2006; Korup, 2005a; Korup et al., 

2004). It is becoming ever more apparent that large landslide deposits can exert a dominant 

geomorphic control on the fluvial system (Burbank et al., 1996; Montgomery and Brandon, 

2002; Korup, 2005b; Korup et al., 2009, 2010;). 

 

Rock avalanches (RAs) are a high-magnitude, low-frequency mechanism of eroding 

mountain peaks and delivering sediment to valley floors (Hovius et al., 1997; McSaveney, 
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2002). They commonly involve a minimum volume of ~1 x 106 m3 of rock and associated 

cover, which are transported from a discrete source to the valley floor at speeds of 100-250 

km/h. In actively incising systems with narrow valleys, they can immediately block a river 

valley with a highly compact deposit (Hewitt, 1999, 2009; Dunning et al., 2005, 2006; Hewitt 

et al., 2008). These natural dams can last anywhere from minutes to millennia, posing 

significant hazard to life and infrastructure (Dunning et al., 2006) and provoking a 

geomorphic response at varied temporal and spatial scales in fluvial and hillslope systems 

(Costa and Schuster, 1988; Hewitt, 2006). The RAs supply an abnormal point-load of 

sediment to the fluvial system as opposed to the distributed, chronic, delivery of smaller 

landslides. This increases the volume of sediment storage within a catchment as rivers are 

often forced into a transport-limited state (Adams, 1980; Pearce and Watson, 1986; Korup et 

al., 2004, 2010; Korup, 2005b; Hewitt, 2006, 2009).  

 

During RA emplacement, intact bedrock is broken apart by brittle fracture, pulverisation, and 

crushing. This creates distinctive rock-avalanche deposits (RADs) comprised of poorly 

sorted, angular to very angular clasts of gravel, sand, and (mostly) finer grades with small-

scale agglomerates, capped by a boulder carapace (Davies et al., 1999; McSaveney, 2002; 

Dunning et al., 2006; Mitchell et al., 2007; Hewitt et al., 2008; Hewitt, 2009; Reznichenko et 

al., 2011). Beneath the coarse surface and near-surface carapace, the bulk of the deposit is 

therefore composed of bedrock fragmented to sizes finer than the ‘normal’ bedload of many 

rivers in mountainous regions.  

 

Rock-avalanche dams can overtop and remain stable, (Hewitt, 1998), or breach with stable 

overflow channel allowing the majority of dam volume to persist. The RADs often persist 

after overtopping because of self-armouring of the breach channel by the coarse carapace 

falling into the developing breach channel sides (Dunning et al., 2006). However, if an RA 

dam breaches and fails catastrophically, the resultant outburst floods are capable of 

mobilising large volumes of the RA sediment and (if present) impounded lake sediments, 

rapidly and widely dispersing it downstream. The resulting aggradation in-channel and over 

any available floodplain buries former geomorphic features creating an RA-forced disturbed 

landscape. The persistence and distinctiveness of this disturbance and subsequent fluvial 

recovery is currently poorly quantified (Hancox et al., 2005; Dunning et al., 2006; Hewitt, 

2006; Korup and Clague, 2009; Korup et al., 2010).  

 

Landslide and lake-derived fill and the associated boulder lag deposit (e.g., the carapace), 

inhibit fluvial incision into bedrock (Hewitt, 2006; Ouimet et al., 2007; Korup et al., 2010) until 

the river has removed the debris to reach its former bed. Incision therefore lags behind the 
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rates in rivers undisturbed by RADs. Fluvial incision rates through bedrock are important for 

long-term landscape evolution, as they are assumed to control the rate of catchment 

denudation (Burbank et al., 1996; Kirchner et al., 2001; Snyder et al., 2000; Korup et al., 

2009, 2010). If RAs disturb a large number of catchments, their time scales of disruption to 

the fluvial system are an unknown factor in understanding landscape evolution of active 

orogens. 

 

River long profiles have shown promise in identifying catchments with an RAD signal (Korup, 

2006). An RAD, if it persists through either retaining a lake or as a post-outburst flood 

remnant can form a knickpoint, or convex step, in the normally concave river long profile 

(Korup, 2006) — similar to a fault displacement. This displaces the fluvial profile vertically 

above the original channel bed, increasing overall profile steepness and decreasing overall 

profile concavity (Korup, 2006), which is often distinctive in long profile data.  

 

The RA-forced disturbances act over multiple time scales, from short-term (<101 years) 

localised in-channel responses; ~ 104 timescale changes to erosion and deposition patterns 

in a catchment (Whipple, 2004; Davies and Korup, 2007; Hewitt et al., 2008; Korup et al., 

2009) and, potentially geologic timescales as bedrock river profiles adjust to a blockage 

(Korup, 2006). Some channels may never ‘recover’ from the interruption, and will adjust to a 

new RAD or RAD remnant controlled form of equilibrium, whilst other parts of the system, 

such as alluvial fans, may exhibit cyclic patterns of behaviour controlled by repeated 

upstream RAD inputs (Davies and Korup, 2007).  

 

Concavity and steepness indices of river profiles have been used as geomorphic indicators 

(Korup, 2006) to distinguish between the complex interacting tectonic, lithological, and 

climatic drivers and more localised RA-forced deviations in long profiles using known RA 

locations. Steepness and concavity indices are based on Flint’s Law (Flint, 1974), which 

describes the change of channel slope as a function of drainage area over the bedrock 

fluvial section of a channel, omitting alluvial and colluvial reaches in the headwaters (usually 

between 104 and 106 m2, (Snyder et al., 2000; Burbank and Anderson, 2012) where debris 

flow processes dominate (Montgomery, 2001). Extreme local concavities (>1) are indicative 

of abrupt knickpoints — idealised in Fig. 1, representing transitions from incisional to 

depositional states —  and/or strong variations in rates of tectonic uplift (Whipple, 2004). 

 

Steep mountainous terrain can prove inaccessible or inconvenient to collect field survey 

data; especially for regional analyses, it is practical to extract the stream profile data from a 

digital elevation model (DEM). However, many regional/national DEMs may not be able to 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

4 
 

resolve comparatively small RA-forced geomorphic impacts because of their coarse 

resolution relative to the scales of disturbance. The DEMs are also infrequently updated, 

leading to only snapshots of disturbance; but if sufficient confidence is held in the quality of a 

DEM, it is possible to carry out field surveys for post-DEM comparison (Snyder et al., 2000), 

an approach we use here. This study explores the dispersion of sediment from an RAD in 

Ram Creek, a feeder catchment of the Buller River in northwest Nelson, South Island of New 

Zealand. Thirty-three years after formation, the RAD failed releasing a damaging flood. We 

use a combination of field-survey data and DEM analysis to yield profile metrics.  

2. Study area  

The Brunner Range, located in the Buller River basin of northwest Nelson, New Zealand, 

reaches a maximum elevation of 1413 m asl with relative relief in the order of a few hundred 

metres. Ram Creek, a tributary of Dee Creek, feeds into the large Buller River at the base of 

the fault-bounded Brunner Range, which continues southwest to the Tasman Sea (Fig. 2). 

Owing to its location west of the Alpine Fault, the Brunner Range is subjected to tectonic 

uplift rates of ~0.5-1.0 mm y-1 (Wellman, 1979), with average rainfall of c. 2300 mm y-1 (Nash 

et al., 2008). The east-dipping Lyell Fault crosses the Ram Creek catchment trending SW - 

NE near the headwaters. To the east of the fault, muscovite–biotite granites crop out; 

whereas to the west, rocks are composed of weaker fluvial sandstone and grey-brown 

mudstones (Soons, 1982; Nash et al., 2008). The river is mainly gorge-confined, typical of 

the west coast of the South Island, but briefly opens out for several hundred metres at the 

Ram Creek/Dee Creek confluence before re-entering a narrow (< 10-m) gorge. 

 

In 1968 the Lyell Fault ruptured, resulting in the M 7.1 Inangahua earthquake that triggered 

numerous landslides across the NW Nelson region (Adams, 1981). The largest single valley-

blocking event occurred in the headwaters of Ram Creek. A 4.4 x 106 m3 RA with a runout of 

~700 m was deposited, c. 2.8 x 106 m3 of which blocked the river forming a 40-m-high dam 

with a 550-m crest width across the valley (Nash, 2003; Nash et al., 2008). A catchment of 

4.5 km2 fed water and sediment into the lake that formed behind the RAD. This dam 

remained stable for 13 years until in 1981, after an intense rainfall event, the dam was 

breached (Nash et al., 2008). Overtopping flow scoured a ~ 500-m-long, >100-m-wide (at 

the surface), and  up to 40-m-deep triangular breach channel into the dam, eroding ~1 x 106 

m3 of dam material (Nash, 2003; Nash et al., 2008).  

 

Nash et al. (2008) described in detail the known sequence of events after failure; a summary 

is given here. The outburst flood lasted several hours and showed features more in common 

with a hyperconcentrated flow/debris flow rather than a Newtonian water flood because of 
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sediment entrainment. In keeping with this interpreted rheology, the flood arrived as a series 

of pulses/waves, with the maximum observed at Dee Creek Bridge being around 2 m high. 

The bridge was destroyed, and about 22 km downstream of the confluence of Dee Creek 

with the Buller River a flood with a peak discharge of 4335 m3 s-1 was recorded 4 hours after 

the initial outburst event, of which 1000 m3 s-1 is estimated to represent the peak discharge 

from the dam site — 01 times the normal annual flood in Ram Creek. Flood sediment was 

deposited up to c. 5.5 km downstream of the breached dam. Farmland between the Ram 

Gorge exit and Dee Creek bridge was buried up to 2 m deep in places with sand, gravel, and 

large woody debris. However, most sediment deposition occurred directly below the 

breached dam (Nash, 2003). 

3. Methods 

3.1. Field survey 

Field survey data of the Ram Creek thalweg, the partially reworked outburst flood surfaces, 

and 15 cross sections were obtained in 2009 using an automatic total station. Survey data 

cover the lower extent of the RAD to the confluence with the Buller River (Fig. 3).  

Clast analyses were carried out at five sites (three in Ram Creek, one in upper Dee Creek as 

a control, and one in lower Dee Creek) to gauge the prevalence of granitic RA sediment in 

the system (Figure 3). The RAD is the primary source of angular granitic rocks downstream, 

and the initial flooding is inferred to have deposited most sediment, with a low degree of 

flood-induced rounding around 5.5 km from the RAD — which is the open area at the 

confluence of Ram and Dee creeks. 

3.2. River-profile extraction 

Longitudinal profiles of Ram Creek and four control streams (Dee, Rough, Brown, and Coal 

creeks) along the Brunner Range without RADs, but with similar climatic and tectonic 

histories (all cut by the Lyell Fault), were extracted from three DEMs of 100, 25, and 15 m 

resolution. Having a 15-m DEM for mountainous terrain is reasonably rare, hence we assess 

the ability of coarser data to resolve RA induced impacts. The DEMs are all based on 

digitised 20-m contour line data from the Land Information New Zealand (LINZ) 1:50,000 

map that have then been interpolated into a DEM; the original contour lines have ± 10 m 

elevation error (Columbus et al., 2011). Columbus et al. (2011) compared the available 

DEMs and found that the 15-m DEM, which was created using a two-dimensional thin plate 

smoothing spline, to be the most accurate topographic data set with the least amount of 

artefacts in the interpolated DEM. All the available DEMs derive from the same source data; 

the increased quality, at a 5-m higher spatial resolution, is a result of how the source data 

are interpolated. 
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The DEM stream profiles were extracted by running hydrologically-filled DEMs in MATLAB to 

extract profile concavity (ϴ) and normalised steepness (ksn) indices using linear regression 

of the log-log slope area plot. An arbitrary reference concavity (ϴref) of 0.45, often used as 

being representative of mountainous streams (Korup, 2006), was used to normalise the 

steepness (ks) values to allow comparisons between stream profiles. The DEMs were 

interpolated with 10-m contours, to ensure an even spread of data (Snyder et al., 2000; 

Korup, 2006; Whipple, 2004) with datum used at every height interval to avoid bias toward 

long flat sections when distance intervals are used (Duvall et al., 2004). A three-cell moving 

average was then applied to smooth each profile. Regressions over whole profile extents  

including colluvial and alluvial zones were also calculated (after Korup, 2006) to be used as 

a comparative tool to quantify forced disturbances to ksn and ϴ indices. A forced ϴref of 0.45 

was applied to the Ram Creek field survey data for direct comparison to the DEM extracted 

profiles using 

 

ksn = ks (Acent
-(ϴref-ϴ))   (2) 

 

where Acent is the upstream catchment area of the mid-point of the studied reach (Gonga-

Saholiariliva et al., 2011; Burbank and Anderson, 2012).   

4. Results 

4.1. Field survey 

Internal exposures of the RAD in the breach channel shows the emplaced RA dam was 

composed of poorly sorted, angular to subangular, <1 mm – 1 m particle sizes in a fine-

grained matrix. Ram Creek has not yet cut back to the pre-landslide valley floor more than 

30 years after dam failure. 

The majority of the ~1 x 106 m3 that was eroded from the RA dam in the form of a breach 

channel and lake sediments were deposited directly downstream of the dam. High rates of 

erosion during the outburst flood produced paired terraces through the RAD showing three 

main stages of incision. During dam breach, the initial flood wave scoured a wide (~ 150-m) 

channel through the downvalley portion of the RAD to a maximum depth of 40 m at the 

highest point of the dam. The terracing within the RAD indicates that the flood flow narrowed 

downstream, to ~50 m at the distal end of the deposit. The resulting channel through the 

RAD has an average slope of 0.082, compared to a slope of 0.032 downstream where the 

river enters the narrow (~ 20–30 m) upper gorge (cross sections 10 and 11, Fig. 3). Small 
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(<50-cm) unpaired fill-cut adjustment terraces (Bull, 2008) and numerous abandoned 

channels dominate within the current valley floor, through the RA runout zone, and 

throughout the debris fill downstream in the upper gorge and farmland section at the Ram 

and Dee confluence (valley floor widths ~150 m, average slope 0.018) where the river re-

enters the lower gorge. The river appears unable to remove material from the dam-break or 

any super-imposed material derived from the dam and lake in subsequent floods. Localised 

reworking seems to dominate with a number of remnant higher level surfaces that we 

interpret to represent the original dam-breach flood / debris flow suggesting low levels of 

incision. In the lower gorge the river fills the full width with little lateral accommodation space 

(gorge width ~ 10–20 m, average slope 0.011) for sediment storage; evidence is abundant of 

various ages of lateral river erosion into the bedrock gorge walls.   

Very angular to subangular (Powers, 1953) granitic sediment consistent with that of the RA 

are found from the RAD to the Dee Creek/Ram Creek confluence (sites b, d, & e, Fig. 3). 

Lesser amounts of granitic sediment are found where the river re-enters the gorge 

downstream of the Dee Creek/Ram Creek confluence (site a, Fig. 3) to the confluence with 

the Buller River. The sediment mixture at the confluence is similar to that sampled in the 

non-RAD–affected upstream portion of Dee Creek, which has the largest proportion of 

subrounded to well-rounded clasts (site c, Fig. 3). The granite clasts at these non-RAD-

impacted sites are far larger, likely as they were not subjected to the intense levels of 

fragmentation common to rock avalanche deposits and show fluvial rounding and signs of 

weathering. The RAD-derived sediment is dominant above the Dee Creek confluence and is 

overlying the pre-RA valley floor down the length of the profile —  the previous valley floor is 

yet to be reached. 

 

Plots of the percentage of angular and very angular clasts (termed RA), against the C40 

index (short / long axis measurement) have been shown to distinguish between glacigenic 

facies (Benn and Ballantyne, 1994). Here, the RA-C40 plot (Fig. 4) separates the Ram 

Creek from the Dee Creek sediment. In sample sizes of 100 clasts we see no angular or 

very angular particles below the confluence, nor in the Dee Creek itself before the 

confluence. At the Ram:Dee confluence, we see some (granitic) angular and very angular 

clasts; and the upper gorge area, in the current and in the formerly occupied channel, has a 

higher percentage. The median diameter of clasts sampled increases downstream away 

from the RAD (13 mm) to 34 mm at the confluence and 49 mm in the lower Dee gorge — 

suggesting that it is not rounding and fining of the clasts removing the angular component. 
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Evidence of widening of the active channel area is found in both the upper Ram and lower 

Dee gorges (Figure 5). The outburst flood debris fill has vertically displaced the river bed 

above the pre-RA level as shown by dead tree stumps protruding from the fill marking the 

previous tree cover and narrower channel extent. Lateral erosional features are cut into the 

weak fluvial sandstone and mudstone, most commonly as gorge wall undercutting with 

resulting landslides / wall failure. Other features include potholes scoured into the gorge 

walls with a shallow covering of granitic RA debris, and joints in the mudstone which have 

been hydraulically wedged and widened with pebbles of more resistant lithologies. The age 

of these potholes are unknown, they may reflect reuse of erosional features from previous, 

higher, river bed levels. 

4.2. Ram Creek profile  

The topographic 20-m contour data on which the three Ram Creek DEMs are based were 

updated after the RA event to incorporate the landslide-dammed lake. The presence of the 

RA-impounded lake in these data, which has not been present for almost 30 years, is 

evidenced in each DEM by a distinct flattening in the stream profile at the same elevation as 

the dam crest (Fig. 1). The contour data have not been updated since the 1981 outburst 

flood and do not reflect flood-induced changes or subsequent recovery, whereas the 2009 

field data represent the intervening post-flood reworking. 

 

The 25- and 100-m DEMs are unable to resolve the gorge as the cell size is similar to the 

observed gorge widths. The tops of the gorge walls (8–10 m) and higher valley floors are 

contained within a cell, or pair of cells. The interpolation algorithm then applied at these 

scales smooths between these cells resulting in the loss of sharp gorge walls and 

underestimating the depth of the gorge. As a result these DEMs consistently report channel-

profile elevations higher than the 15-m DEM and field profile (Figure 6). The interpolation 

method used to create the 15-m DEM specifically maintains sharp edges (Columbus et al., 

2011), which are appropriate for this locality. 

 

The 2009 field survey profile closely follows the 15-m DEM profile for much of the course 

(Fig. 6). The 25- and 100-m profiles deviate substantially from the field survey but capture 

the general shape to within ± 10–15 m vertically. For much of the profile, the cell size of the 

25- and 100-m DEMs exceed the alluvial valley width as measured in the field. The majority 

of the field survey remains slightly below the three DEM profile elevations, but there are 

significant differences at the confluence with the Buller River and 4.5–5 km upstream of the 

confluence (where the river flows into the narrow upper gorge). These reaches have field-

measured profiles c. 6 to 15 m lower than the 15-m DEM. 
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Table 1 shows the ϴ and ksn indices for Ram Creek derived from DEMs and field surveying.  

The DEMs (fluvial only profiles) are cropped to the field survey extent presented in the Log 

A–Log S plot in Figure 6. The 25 m and 100 m DEM profiles have broadly similar normalised 

steepness indices, however both are a significant over-estimation in concavity in comparison 

to the 15 m DEM.  

 

When comparing the field data to the 1981 RAD-impacted 15-m DEM, the data show that 

the profile 30 years after the outburst flood has reduced by c. 0.079 (-7%) in its concavity 

and steepened by c. 3.34 (7%). This is attributed to the immediate post-flood aggradation 

and the continued (slow) downstream dispersion of the RAD, as predicted by Nash et al. 

(2008 p. 192) and described in the field evidence section above. 

4.3. Normalised steepness and concavity indices of the Brunner streams 

The ‘true’ profiles of Dee, Rough, upper Brown and Coal creeks are unknown.  Here, using 

the gross similarity of the 15-m DEM Ram Creek profile with the field survey and the work of 

Columbus et al. (2011) we assume the 15-m DEM to give the most accurate river profile. 

This allows us to evaluate the ability of DEM metrics to identify an RAD presence. No known 

RA events have impacted on the surrounding streams in recent times. Regressions over 

whole profiles (including colluvial, bedrock fluvial, and alluvial sections) as well as fluvial-only 

reaches are presented in Table 1. Whole profiles produce higher variations in metrics 

between each of the stream profiles. However, the 100-m DEM is always steeper, and of 

higher concavity than the 25- and 15-m DEMs — this is consistent with the pattern shown for 

Ram Creek and is likely related to the simplification of the narrow, steep, and gorge-confined 

fluvial topography and will not be discussed further.  

 

The 15-m DEM ϴ of the Brunner streams are not statistically different using the whole 

profile, unlike their ksn. Ram Creek, Brown Creek, and Rough Creek share similar whole 

profile ksn, whilst Dee Creek (of which Ram is a tributary) and Coal Creek are much less 

steep. On this basis,  nothing distinguishes Ram Creek as being different, i.e., having an 

RAD deposit perturbing the DEM profile metrics. 

 

The comparison of the 15-m long profiles and slope–area plots (Figs. 1 and 6) show, apart 

from Dee and Ram creeks, extremely prominent knickpoints in the bedrock fluvial slope–

area domain. Profile metrics have been calculated either side of these knickpoints (Table 1). 

The ϴ and ksn increase from the upstream sections to the downstream sections. Concavities 

increase by an average of 44%, whilst steepness increases on average by 103%. This 
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masks significant spatial trends: downstream reaches get less steep moving north, whilst 

upstream reaches get steeper, and the absolute difference in upstream–downstream ksn 

values decreases. By Rough Creek we see little difference in ksn either side of the knickpoint 

and. as described, no discernible knickpoints in Ram and Dee creeks. In Ram, the visually 

obvious RA knickpoint (Fig. 7) is deemed to be part of the ‘colluvial’ domain using the 

standard methodologies outlined. 

5. Discussion  

5.1. Field evidence 

Averaged incision rates through the reworked granitic RA debris for the highest and lowest 

terraces relative to the current river are at maximum ~160 mm y-1 (cross section 4) since 

dam failure and a minimum ~ 25 mm yr-1 (cross section 10) since the outburst flood. This is 

an order of magnitude larger than the estimated fluvial incision rates of the Westland rivers 

cutting across the Alpine Fault, around 10 mm y-1, broadly in equilibrium with tectonic uplift 

(Tippett and Kamp, 1995). However, the high terraces are likely to be a product of the 

outburst flood itself and not of fluvial (re)incision since 1981 based on an observed lack of 

reworking and features consistent with a debris flow / high sediment concentration flood. 

Small (<50-cm), unpaired, fill-cut adjustment terraces (Bull, 2008) and abandoned channels 

throughout the length of the profile, however, indicate internal adjustment, instability, and 

lateral reworking of the dispersed RA debris and are interpreted to reflect the past 30 years 

of geomorphic adjustment. This has failed to incise back to the previous valley floor, let 

alone keep pace with likely uplift rates (in the order of a few mm y-1). 

In pre-RA Ram Creek and in the other Brunner streams (including the far larger Buller River) 

vertical erosion is thought to dominate based on the narrow bedrock gorge topography. Ram 

Creek is anomalous; in locations where other streams are highly confined and single 

channel, it has a wider active multithread channel area with abundant stored sediment.  

The outburst-flood influx of RA sediment has ensured that the channel is transport-limited, 

and the channel has not been able to recover fully in the last 30 years. The fill of RA 

sediment covering the bedrock floor (Fig. 5B) throughout the profile has vertically displaced 

Ram Creek as evidenced in the DEM analysis. The granitic RA debris is acting as a ‘cover’ 

preventing post-outburst flood vertical incision of the pre-RA weak sedimentary bedrock floor 

rather than as abrasive ‘tools’ to promote erosion. The RA-C40 (Fig. 4) suggests the fines 

that comprise the bulk of the RAD are still dispersing and have not migrated past the 

Ram:Dee confluence. This is in contrast to the immediate dispersion of a large amount of 

dam and lake sediment in the initial outburst flood. The result has been lateral channel 
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switching in response to localised aggradation and reworking. Where this has brought the 

channel into contact with the weak sedimentary gorge walls, lateral bevelling (Fig. 5C-D) is 

evident. This is far easier for the ‘normal’ Ram Creek flood flows to erode the gorge walls, 

when locally redistributing the far more resistant RA granitic debris, than to incise the 

covered bed. This is conceptually similar to the formation of ‘epigenetic gorges’ in the work 

of Hewitt (1998). If this situation persists, gorge widening through undercutting is likely to 

occur, with evidence of this in the form of undercut gorge walls, fallen blocks and what we 

interpret to be toe-erosion–driven gorge-wall failure occurring (Fig. 5E). This has been 

conceptualised in the ‘fill and bevel’ model of Hancock and Anderson (2002) of bedrock 

strath formation, whereby a valley fill (in their case climatically driven) protects the valley 

floor whilst lateral bevelling takes place. This requires a far smaller volume of rock to be 

eroded during strath formation as opposed to those driven by a period of quiescence in 

tectonic uplift. This erosive bevelling is unrelated to tectonics or climate — it is driven by 

landslide dam-driven aggradation resulting from sediment dispersion. 

There are notable deviations from this situation; one is in the gorge downstream of the 

Ram/Dee Creek confluence, especially near the confluence with the far larger Buller River. 

In the 1-km reach until the confluence, a knickpoint is clear with field data elevations below 

the 15 m DEM, with little field evidence of RAD sediment. However, if this has only occurred 

since the pre-RAD DEM, it suggests unrealistically high rates of bedrock incision —  a 

maximum of 460 mm y-1. We interpret difference to reflect a number of factors; outburst flood 

flushing of existing bedload, as most debris was trapped upstream of this section of gorge 

leaving a more water-rich, sediment-poor flood to pass this point; continued background 

incision as the stream attempts to keep pace with uplift, and grade to the more powerful 

Buller River incision; and, finally, poor DEM coverage in what is the narrowest part of the 

gorge system. The other valid possibility is that this results from a number of previous 

episodes similar to the 1968 RA that have delivered high volumes of buffering bedload to the 

upper system, whilst the lower sections remain able to use their more limited cover as 

erosional tools. The other notable deviation in the field to DEM data is the field-measured 

incision where Ram Creek gorge widens (c on Fig. 6). This is a zone of flow expansion and 

outburst flood deposition in the form of a fan of sediment. We interpret the subsequent drop 

in river thalweg at this point to reflect localised post-flood entrenchment into this fan (cross 

section 13), with the pre-flood valley floor not yet reached.  This is analogous to the 

modelling and field data presented by Davies and Korup (2007) for a far larger gorge-exit 

location where the Poerua River emanating from a narrow gorge has become deeply 

entrenched into an alluvial fan whose recent aggradation was driven by an RAD breach.  
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Over 30 years since dam failure, ~3.4 x 106 m3 of the original RAD still remains, including 

boulders from the carapace not eroded by the outburst flood or subsequent dispersion 

stored in the headwaters. The lag deposit forms a minor knickpoint. The remnant RAD is 

sporadically inputting debris into Ram Creek, although we interpret most reworking is local. 

Thus, Ram Creek could potentially remain disturbed over long time scales, up to 104 years 

based on work in other catchments (Davies and Korup, 2007; Korup et al., 2009). To return 

the river to true equilibrium with uplift and incision by the Buller River will require ~6 km of 

progression of the knickpoint near the Buller River to steepen the profile enough to transport 

the RAD sediments. Alternatively, a further rupture on the Lyell Fault may steepen the profile 

sufficiently, but at the same time will induce seismic landslides adding additional cover to the 

channel. In the timescales of recovery posed here, the system likely will be interrupted by 

another large landslide, equilibrium is unlikely to ever be attained in this catchment. 

5.2. Brunner stream profiles 

The significant changes in profile metrics in the Brunner streams (Ram included) may be 

related to either differential movement on the Lyell Fault (which becomes unmapped near 

Rough Creek) or to changing lithology. Coal, Brown, and Rough creeks all cut through a unit 

of metasedimentary rocks after the initial headwater granite intrusion before reaching the 

sedimentary rocks, while Dee and Ram creeks pass directly from granites to the 

sedimentary rocks.  

 

Such prominent knickpoints related to tectonics and lithological variations make the 

recognition of minor RAD knickpoints (low percentage change in metrics) extremely difficult 

without other evidence, and so restricts the possibility of automated extraction of likely RAD 

positions in DEMs based on within-region variation, even with high-resolution DEMs. 

 

Having the evidence and observational data, and a pre- and post-flood profile, has allowed 

the tentative quantification of change to profile metrics through time. Korup (2006) stated 

that removing a RAD from a long profile on average increases concavity by 1% and reduces 

steepness by 10%. Following this, and by using the 15-m DEM for the intact dam and the 

field profile as a snapshot of the dispersing dam, a tentative recovery envelope of the Ram 

Creek long profile back to pre-RA indices has been idealised in Fig. 8. The speed of fluvial 

profile recovery is dependent upon the rate at which Ram Creek can remove the RAD debris 

fill down the length of the long profile into the Buller River and incise back to pre-RA channel 

bed elevations.  
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Using Dee Creek as a control (comparable rainfall, elevation, geology, but no knickpoint), 

Table 1 shows that the RAD has decreased the normalised steepness and increased 

concavity indices of the Ram Creek fluvial profile (assuming the pre-RA Ram Creek profile 

did not contain a knickpoint). The reverse pattern is shown by the whole profile indices.  

6. Conclusion 

 

The 1968 Ram Creek RA has resulted in major geomorphic disturbance, firstly, through 

emplacement and blockage of Ram Creek, and secondly, as a result of the outburst flood. 

Much geomorphic work was achieved by the outburst flood shown by 40 m of incision into 

the RA dam crest and by transportation of a proportion of the eroded RA debris out of the 

catchment to the Buller River. However, channel aggradation of RA debris > 5 km 

downstream of the RAD indicates that a large proportion of the material eroded from the 

RAD is still being stored within the catchment. The RA-forced disturbances to Ram Creek 

have since been dispersed over a larger area than the initial deposit. The continued 

chronically disturbed state of Ram Creek contradicts the behaviour of the rivers in the 

Southern Alps, New Zealand, which are thought to be underloaded and to transport all of the 

sediment (including landslide sediment) that is supplied to them (Burbank and Anderson, 

2012). The RA outburst flood fill acts as a buffer providing a cover effect over the pre-RA 

topography, but it is also a source of granitic tools used to laterally erode the weak bedrock 

gorge walls, resulting in secondary landsliding along the length of the profile by undercutting. 

Over longer temporal scales, the outburst flood alluvial fill along Ram Creek could create a 

RA-forced strath terrace under the sediment loading model (Hancock and Anderson, 2002), 

as the stream bevels bedrock walls faster than it incises the dispersed landslide fill. An RA-

forced strath terrace would last long after evidence of the original deposit has been eroded, 

but has no tectonic significance in the normal sense of what a strath is though to represent, 

there was no period of tectonic quiescence to allow lateral bevelling. The only tectonic 

significance is that a fault rupture triggered the RAD, and in larger ruptures there may be a 

regional signature to RAD interruptions; however, many RAs are triggered by nonseismic 

events. 

 

The complete removal of stored landslide debris may extend over long temporal scales, 

possibly ~104 years as suggested by Korup et al. (2009). This questions the importance of 

the cover effect on the long-term bedrock incision rates in Ram Creek and has implications 

for landscape evolution (Whipple, 2004; Ouimet et al., 2007; Lague, 2010). In regions as 

active as New Zealand the time scales of recovery are significantly longer than the 

recurrence interval of earthquakes likely to generate large landslides that would disrupt Ram 
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Creek again. This suggests a permanently disturbed landscape that will not attain 

equilibrium, a situation that might be similar to many other catchments. 

 

The ϴ and ksn Concavity indices derived from field and DEM data show that the RAD-

induced knickpoint has less of an impact on profile metrics than knickpoints caused by 

differential uplift rates and lithologies with varying resistance to erosion. This makes 

automated recognition of landslide-interrupted river systems exceptionally difficult; hence we 

suggest that they are underrepresented. 
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Fig. 1. Conceptual model of an idealised profile (including colluvial, bedrock fluvial, and 

alluvial reaches) in a log slope–log area space; (A) profile without a knickpoint; (B). profile 

with a knickpoint. The transition from colluvially dominated to bedrock fluvial-dominated 

process is the same as (A). However, a knickpoint causes another break within the bedrock 

fluvial region by an increase in slope with increasing area, which reflects an increase in 

profile steepness (ks) in the reach below the knickpoint. 

 

Fig. 2. Location of the streams along the Brunner Range, NW Nelson, South Island, New 

Zealand. From north to south: Ram Creek (field data), Dee Creek, Rough Creek, Brown 

Creek, and Coal Creek (DEM analyses). 

 

Fig. 3. (A) Map showing the Dee Creek catchment and sites referred to in the text. (B) Cross 

section graphs showing the changing confinement of Ram Creek downstream as it passes 

through two bedrock gorges. (C) Cumulative distribution of sampled clast angularity tracking 

distribution of RA debris. Sampled clasts from the RA down to the Ram and Dee confluence 

have a more angular distribution (PSA sites b, d, and e) than the ‘normal’ Dee Creek 

distribution (PSA site c). In the lower Dee Creek (PSA site a), some of the angular RA signal 

is lost because of sediment mixing after the confluence. 
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Fig. 4. RA-C40 graph of clasts sampled in the Ram-Dee creeks catchment, location codes 

as Fig. 1. Sites below the Ram:Dee confluence show no angular component. 

 

Fig. 5. (A). Pothole scoured into Ram Creek gorge wall filled with granitic RA debris (glasses 

for scale); (B). view upstream of outburst flood fill in Ram gorge, note valley floor widening 

shown by protruding dead trees (right); (C) lateral erosion and hydraulic wedging of the Dee 

Creek gorge walls (notebook for scale); (D) view downstream in Ram Gorge showing 

bevelling of the gorge walls (box). 

 

Fig. 6. (upper) Vertically exaggerated Ram Creek profiles from the field survey and the three 

DEM extracted profiles cropped to the same extent. At 5 km from the mouth, the survey 

profile begins to increase in elevation above the DEM profiles. Letters delimit geomorphic 

zones: a, wide gorge below the RA; b, narrow bedrock gorge; c, gorge widening; d, 

unconfined; and e, Dee Creek bedrock gorge. (Lower) DEM regressions cropped to the 

extent of the field survey. Note the slight change in the slope of the regression lines, 

especially from the 25-m DEM profile. 

 

Fig. 7. Slope–area plots of the Brunner streams, 15-m DEM is red, 25-m DEM is blue, and 

100-m DEM is green. Greyed areas represent fluvial only (excluding colluvial and alluvial 

reaches) regression extents. Large knickpoints, Kp, can be seen in profiles from range-

bounding faults, in Coal, Rough, and upper Brown creeks. The RA-induced knickpoint can 

be seen in the Ram profile, but it does not induce the same break in the log–log space as a 

range-bounding fault. Dee Creek is the only profile that does not contain a knickpoint. 

 

Fig. 8 Idealised recovery envelope of the steepness and concavity of Ram Creek long profile 

back to pre-RA indices. ‘Normal’ river indices are based on Korup (2006). The speed of 

fluvial recovery is dependent on the erosional efficiency of Ram Creek to incise back to pre-

RA channel bed elevations. 
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Table 1 ϴ and ksn (ϴref = 0.45) indices for regressions over the whole river channel 

(including colluvial/fluvial/alluvial reaches), and fluvial only profile sections (excluding 

upstream colluvial and downstream alluvial sections) for five streams along the Brunner 

Range using profiles extracted from three differing resolution DEMs (15 m, 25 m, and 100 

m). 

 

Creek 
name 

DEM 
(m) 

  Whole profile   Upstream fluvial   Downstream fluvial 

  
    ɵ   ksn   ɵ     ksn     ɵ   ksn 

Ram 15 
 

0.29 ± 0.06 90.3 
 

     

1.20 ± 0.26 78.9 

 

25 
 

0.34 ± 0.06 97.4 
 

     

1.10 ± 0.23 84.0 

 

100 
 

0.5 ± 0.06 112.0 
 

     

1.20 ± 0.21 79.1 

Dee 15 
 

0.32 ± 0.03 80.3 
 

     

0.80 ± 0.13 96.9 

 

25 
 

0.35 ± 0.04 88.3 
 

     

1.00 ± 0.21 90.1 

 

100 
 

0.51 ± 0.05 110.0 
 

     

1.10 ± 0.15 89.3 

Rough 15 
 

0.27 ± 0.06 89.7 
 

0.30 ± 0.23 96.4 
 

1.40 ± 0.22 96.6 

 

25 
 

0.26 ± 0.06 87.9 
 

0.37 ± 0.22 96.0 
 

1.50 ± 0.2 97.2 

 

100 
 

0.36 ± 0.09 118.0 
 

0.33 ± 0.19 96.6 
 

1.50 ± 0.17 101.0 

Upper 
Brown 

15 
 

0.28 ± 0.07 91.0 
 

0.66 ± 0.23 65.9 
 

1.30 ± 0.14 110.0 

 

25 
 

0.29 ± 0.08 93.1 
 

0.62 ± 0.32 63.9 
 

1.20 ± 0.16 110.0 

 

100 
 

0.33 ± 0.09 103.0 
 

0.53 ± 0.15 68.3 
 

1.20 ± 0.14 102.0 

Coal 15 
 

0.26 ± 0.08 86.1 
 

0.19 ± 0.15 58.0 
 

2.10 ± 0.22 156.0 

 

25 
 

0.26 ± 0.08 82.0 
 

0.12 ± 0.17 62.1 
 

2.00 ± 0.23 147.0 

  100   0.35 ± 0.10 103.0   0.40 ± 0.08 61.2   1.80 ± 0.19 143.0 
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Highlights 




We examine nearly 30 years of post-landslide dam breach change  

The system has not attained equilibrium and is transport limited  

The river is eroding laterally instead of vertically keeping pace with uplift  




