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 

Abstract— This is the second-part paper of the survey on fault 

diagnosis and fault-tolerant techniques, where fault diagnosis 

methods and applications are overviewed respectively from the 

knowledge-based and hybrid/active viewpoints. With the aid of 

the first-part survey paper, the second-part review paper 

completes a whole overview on the fault diagnosis techniques and 

their applications. Comments on advantages and constraints of 

various diagnosis techniques, including model-based, signal-

based, knowledge-based, and hybrid/active diagnosis techniques, 

are also given.  An overlook on the future development of the 

fault diagnosis is presented. 

 
Index Terms—Analytical redundancy, knowledge-based fault 

diagnosis, hybrid fault diagnosis, active fault diagnosis, real-time 

monitoring, fault tolerance 

 

I. INTRODUCTION 

ault diagnosis techniques are composed of hardware 

redundancy based fault diagnosis and analytical 

redundancy based fault diagnosis. The analytical redundancy 

technique has become the main stream of the fault diagnosis 

research since the 1980s, which can be generally categorized 

into the classes of model-based fault diagnosis, signal-based 

fault diagnosis, knowledge-based fault diagnosis, hybrid fault 

diagnosis and active fault diagnosis. For model-based fault 

diagnosis approaches, a system model, explicitly describing  

 
Manuscript received November 13, 2014; revised January 24, March 8, 

2015; accepted March 19, 2015 
Copyright © 2015 IEEE. Personal use of this material is permitted. 

However, permission to use this material for any other purposes must be 

obtained from the IEEE by sending a request to pubs-permission@ieee.org. 
Z. Gao is with the Faculty of Engineering and Environment, University of 

Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, United Kingdom 

(Tel: +441912437832; Fax: +441912274397; e-mail: 
zhiwei.gao@northumbria.ac.uk).  

C. Cecati is with the Department Information Engineering, Computer 

Science and Mathematics, University of L’Aquila, 67100 L’Aquila, Italy (e-
mail: c.cecati@ieee.org ). 

S. X. Ding is with the Institute of Automatic Control and Complex 

Systems, University of Duisburg-Essen, 47057 Duisburg, Germany (e-mail: 
steven.ding@uni-due.de). 

 

 
 

the relationship among the system variables, is available to the 

designer. Based on the model, fault diagnosis 

schemes/algorithms can be designed and then on-line 

implemented for monitoring and diagnosing the real-time 

system/process.  For signal-based fault diagnosis methods, the 

signal pattern/symptom of a system under healthy status is a 

priori, and the fault diagnosis is carried out by checking the 

consistency between the known healthy signal pattern and the 

signal symptom of the real-time process extracted either by 

using time-domain, frequency-domain, or time-frequency 

signal processing techniques. For complicated industrial 

processes, a large amount of historical data, rather than a 

model or a signal pattern, is available. The underlying 

knowledge, implicitly representing the dependency of the 

systems variables, can be extracted by using various artificial 

intelligent techniques and the available historic data. Fault 

diagnosis is carried out by checking the consistency of the 

obtained underlying knowledge and the real-time system 

feature extracted from the on-line monitored data. Hybrid fault 

diagnosis is an integration or combination of more than one 

diagnosis methods. Active fault diagnosis is to enhance the 

detectability of potential faults by injecting a suitably designed 

input signal under test interval so that faulty modes can be 

distinguished from normal modes quickly and accurately. In 

the first-part survey paper [1], model-based and signal-based 

diagnosis approaches were reviewed. In the second-part 

survey paper, knowledge-based fault diagnosis, hybrid fault 

diagnosis and active fault diagnosis will be reviewed 

comprehensively. The distinctive advantages and various 

constrains of these diagnosis methods are to be commented. 

Moreover, the overlook on the future development of the fault 

diagnosis will be presented.  

The organization of the paper is as follows. After the 

introduction section, knowledge-based fault diagnosis 

methods are reviewed in Section II. The hybrid and active 

fault diagnosis methods are overviewed in Section III. The 

paper is ended by Section IV with the conclusion and 

comments on the future development of the fault diagnosis 

and applications.  
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II. KNOWLEDGE-BASED FAULT DIAGNOSIS METHODS 

 

 
Fig. 1. Scheme of knowledge-based fault diagnosis 

 

Different from model based methods and signal-based 

approaches which require either a priori known model or 

signal patterns, knowledge based fault diagnosis methods start 

from where only a large volume of historic data are available.  

Applying a variety of artificial intelligent techniques (either 

symbolic intelligence or computing intelligence) to the 

available historic data of the industrial processes, the 

underlying knowledge, implicitly representing the dependency 

of the systems variables, can be extracted. The consistency 

between the observed behavior of the operating system and the 

knowledge base are then checked, leading to a fault diagnosis 

decision with the aid of classifier. It is worthy to point out 

model-based diagnosis methods, signal-based diagnosis 

approaches and knowledge-based diagnosis algorithms all 

have to utilize real-time data when doing real-time monitoring 

and on-line fault diagnosis, however, only knowledge based 

diagnosis approaches need to employ a large volume of 

historic data available. From this point of view, knowledge-

based fault diagnosis is also referred to data-driven fault 

diagnosis. The schematic diagram of knowledge-based fault 

diagnosis is depicted by Fig. 1.  

The extraction process of the knowledge base can be either 

qualitative or quantitative in nature. Therefore, knowledge-

based fault diagnosis methods can be classified into qualitative 

methods and quantitative methods.  

A. Qualitative Knowledge-Based Fault Diagnosis  

One of the most known qualitative fault diagnosis methods 

is expert system based method. Expert system emerged in the 

late 1960s as a branch of artificial intelligence, which is a rule-

based system by presenting human’s expertise in a set of rules 

[2, 3]. Expert system based fault diagnosis was initialized in 

1980s [4,5], which was performed based on the evaluation of 

on-line monitored data in terms of a set of rules,  learned by 

the human experts from past experience. Owing to the 

advantages such as ease of development, transparent 

reasoning, the ability to reason under uncertainty, and the 

capability to explain the solutions provided, expert system 

based fault diagnosis methods received much attention 

particularly in 1980s and 1990s, which have been successfully 

applied to a variety of engineering systems such as gas turbine 

combustion chambers [6], energy systems [7], chemical 

processes [8] and vehicles [9] etc. However, it is noticed 

expert systems based faults diagnosis methods are system-

specific, which have low generality and low expandability. 

Motivated by this, a task-based diagnosis expert system was 

proposed in [10] recently, where object-oriented knowledge 

representation methods were utilized so that the rules of a 

specific machine can be customized flexibly on the basis of 

general rules. In [11], a universal fault diagnostic expert 

system framework was presented, where the object-oriented 

paradigm and rule based expert system were integrated, 

providing a flexible and powerful environment for fault 

diagnosis process.  

In many practical industrial processes, process malfunctions 

leave a distinct trend in the sensors monitored, which can be 

suitably employed to identify the underlying abnormalities in 

the process. Therefore, it is motivated to classify and analyse 

the process trends. Qualitative trend analysis (QTA) is a data-

driven technique to identify the process trends from noisy 

process data and to associate the extracted trends to fault 

trends in the database, which was comprehensively reviewed 

in [12]. The QTA technique has been widely applied to fault 

diagnosis in complex industrial processes, particularly for 

chemical processes. Recent developments of the QTA have 

integrated with other qualitative tools such signed directed 

graphs (SDG) in order to enhance their advantages while 

compensating their disadvantage. For instance, an integrated 

SDG and QTA framework was proposed in [13] for incipient 

fault diagnosis by combining the completeness property of 

SDG and the high diagnostic resolution property of QTA. In 

[14], a SDG-QTA fault diagnosis approach was addressed for 

a distillation power unit, which not only met fundamental 

requirements of diagnosis such as correctness, completeness 

and real-timed, but also provided a good resolution. 

B. Quantitative Knowledge-Based Fault Diagnosis 

Quantitative knowledge-based method is to essentially 

formulate the diagnostic problem-solving as a pattern 

recognition problem. Quantitative information (or features) 

can be either extracted by using statistical or non-statistical 

methods. Therefore, the quantitative knowledge-based fault 

diagnosis can be roughly classified into statistical analysis 

based fault diagnosis and non-statistical analysis based fault 

diagnosis.  

B1. Statistical-analysis data-driven fault diagnosis 

Under statistical framework, the quantitative knowledge-

based fault diagnosis methods are mainly composed of 

principal component analysis (PCA), partially least squares 

(PLS), independent component analysis (ICA), statistical 

pattern classifiers and the most recent developed support 

vector machine (SVM). It is evident that the above methods 

require a large amount of training data to capture the key 

characteristics of the process by using statistical analysis. 

 PCA is the most popular statistically-based monitoring 

technique, which is utilized to find factors with a much lower 

dimension than the original data set so that the major trends in 

the original data set can be properly described.  PCA based 

fault diagnosis methods have been investigated in depth, and 
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have successful applications in complex industrial systems. 

For instance, a nonlinear extension of the PCA was developed 

in [15] for diagnosing diesel engines. For a time-varying 

industrial process (e.g., a non-isothermal continuous stirred 

tank reactor system), a recursive PCA fault diagnosis method 

was presented in [16]. Owing to the ability of de-noising 

original signals and improving signal-to-noise ratio, 

probabilistic PCA based fault diagnosis techniques were 

employed to monitor a rolling bearing with an outer race fault 

[17]. By integrating y-indices, residual errors and faulty sensor 

identification indices with PCA, two readily implementable 

and computationally efficient fault diagnosis approaches were 

addressed for gas turbine engines [18].  

PLS is one of the dominant data-driven tools for complex 

industrial processes. Recent development of the PLS based 

monitoring and fault diagnosis can be found in [19-21]. 

Specifically, in [19], a data-driven scheme of key performance 

indicator prediction and diagnosis was proposed for both static 

and dynamic processes, which offered an alternative solution 

to the PLS method with simplified computation procedures. 

By combining kernel-based PLS discriminant analysis 

techniques and pseudo-sample projection, a fault diagnosis 

method was presented in [20], providing efficient fault 

discrimination, and enabling a correct identification of the 

discriminant variables in complex nonlinear processes. An 

improved structure, namely total projection to latent structures 

(T-PLS), was addressed in [21], on the basis of a further 

decomposition for the obtained PLS structure. The proposed 

T-PLS based method can well detect quality-relevant faults in 

industrial processes subjected to a variety of raw materials and 

changeable control conditions. 

ICA plays an important role in real-time monitoring and 

diagnosis for practical industrial processes as it allows latent 

variables not to follow Gaussian distribution. Recently, a 

kernel ICA based fault isolation method was proposed in [22] 

for non-Gaussian nonlinear processes. In [23], defect detection 

was investigated for solar modules by using ICA basis images 

detection. In [24], ICA based fault diagnosis technique was 

applied to the monitoring and diagnosis of rolling element 

bearing. 

As a matter of the fact, the data-driven statistical tools such 

as PCA, PLS and ICA have been widely employed in feature 

extraction for microarray gene expression data, which 

facilitates and eases the understanding of biological process 

[25]. On the other hand, microarray enables expressions of 

tens of thousands of genes to be represented on a small array 

of coloured image dots, which may be utilized for a quick 

fault diagnosis for industrial processes. Motivated by the 

microarray visualization, and utilizing simple statistical 

analysis of the measured values of different sensors and 

graphical synopsis of results of such analysis, a quick 

diagnosis of the key variables/steps that cause the fault in final 

quality was achieved in [26].   

SVM is a relatively new machine learning technique relying 

on statistical learning theory, which is capable of achieving 

high generalization and dealing with problems with low 

samples and high input features. SVM is regarded as a 

potentially technique for classifying all kinds of datasets. The 

initial attempts by applying SVM to condition monitoring and 

fault diagnosis began in the late 1990s [27, 28]. The SVM 

based machine condition monitoring and fault diagnosis 

methods dated to 2006 were well documented and reviewed in 

[29]. Recent results of the SVM based fault diagnosis can be 

found in [30-33]. Specifically, by integrating kernel function 

and cross-validation, an SVM based fault diagnosis approach 

was proposed in [30] for Tennessee Eastman process, which 

showed superior fault detection ability over the conventional 

PLS algorithm. With the aid of genetic algorithm for 

parameter tuning, an SVM based fault diagnosis method was 

presented in [31], which showed an improving diagnosis 

performance. Utilizing k-nearest neighbour (kNN) algorithms 

to estimate plausible values to replace the missing values in 

the dataset before SVM learning, an effective SVM based 

fault diagnosis technique was addressed in [32] for power 

transformers. In [33], a smart SVM-based functional fault 

diagnosis method was proposed which exploited multiple 

kernel functions and utilized incremental learning. By 

leveraging a linear combination of single kernels, the multi-

kernel SVM method can achieve accurate faulty-component 

classification on the basis of errors observed, while 

incremental learning can allow the diagnosis system to quickly 

adapt to new error observation, leading to even more accurate 

fault diagnosis.    

B2. Nonstatistical-analysis data-driven fault diagnosis 

Owing to its powerful ability in nonlinear approximation and 

adaptive learning, Neutral network (NN) has been the most 

well-established non-statistical based data-driven fault 

diagnosis tool. In terms of topology, the NN can be classified 

into radial basis networks, recurrent dynamic networks, self-

organizing maps, back-propagation network, and extension 

network. According to the learning strategy, NN based fault 

diagnosis can be categorized into supervised learning based 

fault diagnosis and unsupervised learning based fault 

diagnosis. By using unsupervised learning, the knowledge 

base can be extracted from the historical data to emulate 

normal system behaviour, which is utilized to check whether 

the behaviour of the real-time process deviates from the 

normal system behaviour.  By using supervised learning, the 

knowledge bases for normal systems and faulty conditions are 

all extracted, which are then utilized for real-time monitoring. 

Recent developments of the NN can be found in a variety of 

real-time applications, e.g., for combustion engines [34], 

steam turbine generator [35], nuclear process [36], induction 

machines [37, 38] and power network quality [39].  

Fuzzy logic (FL) is an approach of partitioning a feature 

space into fuzzy sets and utilizing fuzzy rules for reasoning, 

which essentially provides an approximate human reasoning. 

FL has been successfully employed for fault diagnosis. For 

instance, in [40], FL was employed to represent fuzzy 

knowledge base which was extracted from the current 

analysis, and applied to detect misfiring in the switches in a 

PWM source inverter induction motor drive. Recent 

developments have shown an interest to combine FL with 

other knowledge-based techniques such as expert systems or 

NN for solving an engineering-oriented diagnosis issue or 

getting a better diagnosis performance. For instance, in [41], 

by integrating FL and expert system, a real-time fault 
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diagnosis algorithm was developed and tested in a real 

industry situation by using the ARSST (Advanced Reactive 

System Screening Tool).  In [42], a novel architecture of 

fuzzy-neural data fusion engine was proposed, which was 

composed of three layers for monitoring and diagnosis. The 

first layer utilized the known thresholds of the normal 

operating conditions to monitor process anomalies. The 

second layer was composed of the self-organizing FL system 

that was trained offline by using previously observed normal 

behavioural patterns. An on-line processing engine was used 

to check the similarity between the current system behaviour 

and the normal behavioural pattern by interpreting each fuzzy 

rule of the FL system. The third layer employed NN predictor 

to process the temporary historical data so that the expected 

near future behavioural patterns can be predicted, where the 

predicted values were used to replace this missing data to 

maintain coherent status awareness of the monitored system.  

B3. Joint data-driven fault diagnosis 

In some practical applications, the statistic and non-statistic 

fault diagnosis data-driven methods are often utilized jointly. 

For instance in [43], Bayesian network and recurrent NN were 

integrated to diagnose and isolate faults in induction motors, 

where NN was used to train the data from the system under 

normal operating conditions and known faulty conditions, 

while stochastic Bayesian network was employed to produce 

random residuals. In [44], a combined algorithm of dynamic 

PCA and feed-forward propagation NN was applied to detect 

stator insulation failures, broken rotor bars and bearing faults.  

The PCA was used to extract distinctive features called 

residuals, which were then sent to the NN for training to 

produce signals to identify potential faults. The algorithm was 

real-time implemented by utilizing Matlab, C++ and NI-DAQ 

data acquisition board. In [45], based on fuzzy SVM and self-

organizing map NN, a fault diagnosis method was presented to 

monitor and diagnose rotating machinery systems, which 

showed satisfactory classification precision for systems 

subjected to multi-faults.   

Supervised method and unsupervised method are two major 

training and search manners in data-driven fault diagnosis. For 

the unsupervised approach, the data recorded from normal 

operation of the practical system is trained to form knowledge 

base, which is then utilized to monitor the deviations against 

real-time process. In the supervised method, a classifier is 

trained on annotated historical data recorded from both normal 

and faulty conditions, which is then employed for faults 

prediction. The supervised and unsupervised methods have 

their own advantages and disadvantages, respectively. In order 

to enhance their advantages, a natural idea is to combine the 

supervised method and unsupervised methods for fault 

diagnosis. Recently, a cold start fault detection framework was 

proposed in [46] where only normal operating data were 

available at the beginning and the faulty operation data 

became available as the faults occur. The proposed method 

integrated decisions from the initial unsupervised training and 

an incrementally updated supervised training, leading to an 

overall improvement in the accuracy of the fault detection.  

III. HYBRID AND ACTIVE FAULT DIAGNOSIS APPROACHES 

A. Hybrid Fault Diagnosis Approach 

 Model-based, signal-based and knowledge-based fault 

diagnosis methods have their distinctive advantages and 

various constrains. Specifically, model-based fault diagnosis 

can monitor and diagnose unknown faults by using a small 

amount of real-time data, but it requires an explicit model 

representing input-output relationship, and the diagnosis 

performance relies on the model accuracy. While signal-based 

and knowledge based approaches do not require an explicit or 

complete model, which are particular suitable for monitoring 

and diagnosis for complex industrial processes where explicit 

system models are unavailable or challenging to derive. 

Signal-based method generally extracts the major features of 

the output signals for fault diagnosis, but pays less attention on 

systems dynamic inputs, whose diagnosis performance may 

thus be degraded under unknown input disturbances or 

unbalanced conditions (e.g., in power supplies or loads).  Due 

to the high dependence on a large amount of historical data for 

training, knowledge-based method suffers high computational 

costs, and may not work well for identifying unknown fault 

types. In order to leverage the strength of the various fault 

diagnosis methods, an integration or combination of two or 

more fault diagnosis methods, called hybrid fault diagnosis 

approaches, are often exploited for a variety of engineering 

applications. For instance in [47], signal-based method and 

data-driven method were hybridized to monitor and diagnose 

plastic bearing faults, where a statistical approach was utilized 

to separate the outer race fault from other types of faults based 

on the frequency-domain fault features extracted by using the 

FFT, and other types of faults were diagnosed using the data-

driven kNN fault classifier on the basis of time-domain 

features extracted by a time-domain signal-based algorithm. In 

[48], a hybrid signal-based and data-driven method was 

presented for the detection and diagnosis of faults in induction 

motors, where a number of features sensitive to electrical and 

mechanical faults were extracted by signal processing 

(including spectral analysis), and a data-driven classifier, 

called artificial ant clustering, was then employed to classify 

operation modes, enabling a diagnostic decision by checking 

the degree of resemblance between the new data and the 

obtained knowledge base (classified operation modes). By 

integrating signal processing and data-driven techniques, 

vibration analysis based fault diagnosis algorithm was 

addressed in [49] for diagnosing inter-turn faults in induction 

machines, where the dual tree complex WT was used to 

capture features (faults or imbalances) from the measured 

vibration signals, and the PCA and probabilistic NN were 

employed as classifiers to distinguish healthy from faulty 

features. In [50], WT signal processing method was used to 

extract the features from stator currents, data-based PCA 

method was employed for dimension reduction and 

elimination of linear dependence of the features, and fuzzy 

SVM was then utilized as classifiers, enabling a detection of 

eccentricity occurrence, and determination of the fault type 

and degree in a PMSG motor. In [51], a hybrid data-driven 

and model-based fault diagnosis method was proposed for 

chemical reactors subjected to high nonlinearities and high 
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variability of dynamics. SVM was implemented for fault 

detection, but found difficult to locate faults due to the highly 

transitional dynamics. In order to enhance the fault isolation 

ability, an observer, based on a simplified initial model, was 

combined to the SVM, where the model was corrected and 

updated by the information provided by the SVM in the case 

without faults. The SVM-observer algorithm showed the 

effectiveness in isolating the faults.  

B. Active Fault Diagnosis Approach 

 It is worthy to point out that the above fault diagnosis 

methods are not invasive, in other words, the implementation 

of the monitoring and diagnosis does not disturb the real-time 

performance of the industrial processes.  On the other hand, in 

order to enhance the detectability of potential faults in some 

practical systems, a suitably designed input signal would be 

allowed to inject into the dynamic processes under test interval 

so that faulty modes can be distinguished from normal modes 

quickly and accurately. This kind of fault diagnosis is called 

active fault diagnosis, where the adverse effects of the added 

auxiliary input signal on the real-time system performance 

must be minimized. The early attempts to formulate and solve 

active fault detection were based on the idea to generate an 

excitation signal that affects the statistics of the sequential 

probability ratio test [52, 53], which is called stochastic active 

fault diagnosis method. In parallel, deterministic active fault 

detection was initialized by [54] in a multi-model framework, 

where two uncertain candidate models were used to represent 

nominal and fault systems, respectively, and an auxiliary 

signal with minimum energy was designed to identify the 

correct model on a given test period. An extended work can be 

found in [55] which permitted active fault detection for 

multiple faults occurring either sequentially or simultaneously. 

Recently, a hybrid stochastic-deterministic active fault 

diagnosis method was proposed in [56], which provided a 

worst-case guarantee of fault diagnosis within a time interval, 

while maximizing the probability of fault diagnosis at some 

earlier time. The presented hybrid method reduced the average 

time required for diagnosis, and the conservatism of the 

excitation signal. Recent developments pay attention on active 

fault diagnosis under a closed-loop control framework [57, 

58]. Specifically, a unified formulation of active fault 

detection and control problem was addressed in [57] under 

stochastic framework. Three special cases of active fault 

diagnosis were investigated including active detector and 

controller, active detector and input signal generator, and 

active detector with a given input signal generator, 

respectively. The first case was to seek a desired compromise 

between optimal control and optimal fault detection. The 

second case was to generate an optimal input signal to 

improve fault detection. The last one was to design an optimal 

detector whose decisions can excite the monitored system 

through the given input signal generator. The above three 

cases were formulated as stochastic optimal control problems, 

which improved the quality of fault detection and provided 

better understanding on how closed-loop information affected 

the quality of fault detection. In [58], an optimal exogenous 

signal was designed under closed-loop deterministic system 

framework, which showed that a suitable feedback can reduce 

the cost function compared with the open-loop monitoring and 

fault detection, indicating a better fault detection by 

introducing closed-loop information. Recent applications of 

active fault diagnosis methods can be found in [59-61]. 

Specifically in [59], an active method was proposed for the 

fault diagnosis of DC-link capacitors in a three-phase AC-DC 

PWM converter, where a controlled AC current component 

was injected into the input side of AC-DC converters, and the 

resulting AC ripples on the DC outputs were then extracted 

and analysed for fault detection. In [60], a short pulse of 

current was injected into the 𝑑-axis current to produce an 

additional set of 𝑑𝑞-axis state equations leading to a full-rank 

reference/variable model, which was then utilized for on-line 

simultaneous estimates of the winding resistance and rotor 

flux linage that were employed as indicators for monitoring 

PMSM stator winding and rotor permanent magnets. In [61], 

active fault diagnosis was dealt with for battery systems under 

discrete event model framework. The normal status and faulty 

status (including aged cell and increased internal resistance) 

were partitioned into different sets, and a suitable active 

control algorithm was implemented to excite system evolution 

along certain trajectories, which were used to check which 

partitioned set the operation mode of the monitored system 

belonged to. 

IV.  CONCLUSION  

In the second-part survey paper, fault diagnosis techniques 

and their applications have been reviewed comprehensively 

following the categories of knowledge-based, hybrid and 

active methods. Knowledge-based fault diagnosis approaches 

are reviewed according to the essence of the extracted 

knowledge base, including qualitative-based approaches and 

quantitative-based approaches, where quantitative-based 

approaches are further classified into statistical methods and 

non-statistical methods. The hybrid diagnosis methods are 

reviewed from a variety of combinations/integrations of more 

than one diagnosis methods. The active fault diagnosis 

methods are reviewed from the stochastic and deterministic 

views, respectively. Together with the overview on model-

based and signal-based diagnosis methods in the first-part 

survey, the complete survey on the fault diagnosis techniques 

and applications have been accomplished following the 

categories of model-based, signal-based, knowledge-based and 

hybrid/active methods. We have reviewed over 220 technical 

literatures in total with more attention on the recent 

developments of the fault diagnosis approaches and their 

applications during the last decade, which sheds light for the 

readers from various societies and industrial communities to 

quickly access to the recent developments of this field.  

Networked and distributed fault diagnosis techniques and 

their applications may be further stimulated, as more and more 

modern industrial systems have distributed structures 

equipped with wireless communication networks. Knowledge-

based (data-driven) techniques are finding more chances in 

applications as the SCADA (supervisory control and data 

acquisition) system and smart meters are commonly installed 

in today’s industrial automation systems leading to a large 
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amount data available. The integration of a variety of 

diagnosis techniques is a trend in order to obtain better real-

time monitoring and diagnosis performance. Compared with 

un-invasive diagnosis methods, active fault diagnosis 

approaches are far from mature, and further theoretical results 

and applications are anticipated.  

We have tried to include the up-to-date references as many 

as possible following the techniques categories. Unfortunately, 

it is impossible to comprise all the existing publications due to 

the limit of space. In addition, the third-part survey paper 

focusing on fault-tolerant control techniques is under way. 
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