Experiences during specific developmental stages influence face preferences

Tamsin K. Saxton *

Evolution, Perception & Behaviour Research Group, Psychology Department, Northumbria University, Northumberland Building, Ellison Place, Newcastle, NE1 8ST

ARTICLE INFO

Article history:
Initial receipt 30 August 2014
Final revision received 18 June 2015

Keywords:
Attraction
Development
Face preferences
Imprinting
Mate choice
Sensitive period

ABSTRACT

Much research has documented how people's face preferences vary, but we do not know whether there is a specific sensitive period during development when some individual differences in face preferences become established. This study investigates which specific developmental phases may be instrumental in forming individual differences in face preferences in adulthood. The study design is based on the established finding that people tend to be attracted to facial features that resemble those of their other-sex parent, particularly if they report a close childhood relationship with that parent. Accordingly, if individual differences in adult facial preferences (specifically, preferences for faces that resemble one's parent) are formed during specific developmental stages, then only the quality of the parental relationship in those stages should predict adult preferences for facial features that resemble one's parent. Heterosexual women reported the emotional support received from their parents during three different developmental stages and at the current time, and they reported the hair and eye color of their ideal and actual partner, and their parents and selves. The study found that a woman's retrospectively reported greater emotional support from her mother or father after menarche predicted significantly stronger preferences for partners whose eye color was closer to that of the parent. In contrast, emotional support prior to menarche predicted greater dissimilarity between the eye color of the parent and a woman's preferred partner. These results indicate a possible interplay of positive and negative sexual imprinting that may arise from adaptations to promote optimal outbreeding. The study also found that parental hair color, and in particular maternal hair color, predicted women's preferences for hair color in a partner, although this may have been driven by ethnic group matching. The results of the study suggest that experiences during specific childhood and adolescent developmental periods may have longstanding effects on individual differences in human facial preferences.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A basic attraction to faces is apparent from birth, and face preferences develop progressively across infancy, childhood and adolescence. Neonates and older infants spend more time looking at attractive than unattractive faces (Langlois, Ritter, Roggman, & Vaughn, 1991; Samuels, Butterworth, Roberts, Grauper, & Hole, 1994; Slater et al., 1998; Slater et al., 2000). Children as young as four or five years of age agree with adults explicitly about which people are attractive (Boothroyd, Meins, Vukovic, & Burt, 2014; Cavior & Lombardi, 1973; Kissler & Bäuml, 2000). Adults tend to prefer faces that are healthy in appearance, symmetric, and representative of the population average (Rhodes, 2006; Roberts & Little, 2008), and these preferences emerge during childhood. Children judge faces with more cues to health as more attractive from around age 6 to 8 (Boothroyd et al., 2014). Facial symmetry is preferred by infants aged around 12–24 months (Griffey & Little, 2014) (but not by younger infants; Rhodes, Geddes, Jeffery, Dziurawiec, & Clark, 2002), and children select the more symmetric face as more attractive from about age 9 (Boothroyd et al., 2014; Saxton, DeBruine, Jones, Little, & Roberts, 2009a; Saxton, DeBruine, Jones, Little, & Roberts, 2011; Saxton et al., 2010). Infants look preferentially at averaged compared with unattractive faces (Rubenstein, Kalakanis, & Langlois, 1999), but do not look preferentially at averaged over less average faces (Griffey & Little, 2014; Rhodes et al., 2002), while explicit preferences for facial averageness seem to emerge from about age 9 (Boothroyd et al., 2014; Saxton et al., 2009a; Saxton et al., 2010; Saxton et al., 2011). Facial sexual dimorphism (i.e. masculinity and femininity) also influences adult face preferences (Rhodes, 2006; Roberts & Little, 2008). Differences in the sexual dimorphism of facial stimuli affect looking duration of infants aged 12–24 months (Griffey & Little, 2014) and give rise to age-linked changes in explicit attractiveness judgments across the life span (Boothroyd et al., 2014; Little et al., 2010; Saxton et al., 2009a). In sum, many standard adult facial attractiveness judgments are becoming apparent within the first decade of life. Experiences with faces also shape individual differences in face preferences. For example, children's experiences in seeing their peers' faces, and in viewing adults' faces more frequently from a lower
perspective, shape the kind of face proportions that they find most attractive (Cooper, Geldart, Mondloch, & Maurer, 2006). Similarly, experience in a single-sex school environment or with other-sex siblings has been linked to variation in preferences for faces that have typically male or female facial proportions (Saxton, Little, DeBruine, Jones, & Roberts, 2009b). The outcomes of some developmental experiences persist in adult face preferences. Adults tend to be attracted to physical features that bear resemblance to those of their parents. For example, people choose partners, and are attracted to faces, that show some facial resemblance to their other-sex parent (Bereczkei, Gyuris, Koves, & Bernath, 2002, Bereczkei, Gyuris, & Weisfeld, 2004; Marcinkowska & Rantala, 2012; Wzsiewska, Pawlowski, & Boothroyd, 2007; see also Fraley & Marks, 2010; but see Nojo, Ibara, Furusawa, Akamatsu, & Ishida, 2011. Nojo, Tamura, & Ibara, 2012). This phenomenon has also been tested in adopted women, who were found to have chosen marriage partners who tended to resemble their adoptive father (Bereczkei et al., 2004), suggesting that the entire phenomenon cannot be explained as arising from heritable preferences, nor from preferences for faces that resemble the self (as biological offspring resemble their father). Men and women are more likely to couple up with someone from the same race and culture, or with the same hair and eye colour, as their parents and particularly their other-sex parent (Jedlicka, 1980; 1984; Little, Penton-Voak, Burt, & Perrett, 2003; Wilson & Barrett, 1987). People with older parents, compared with people with younger parents, have older partners and have stronger preferences for partners with an older facial appearance (Heffeman & Fraley, 2013; Perrett et al., 2002; Wilson & Barrett, 1987; Zei, Astolfi, & Jayakar, 1981). Similarly, the amount of body hair on a woman’s partner and father were found to be correlated, and a woman’s preference for body hair correlated with the hairiness of her father (Rantala, Polkki, & Rantala, 2010); a woman’s partner and father were found to have similar levels of facial hair (Dixson, Tam, & Awashty, 2013); and the height of an individual’s other-sex parent predicted their individual preferences for the height of an ideal partner (Seki, Ibara, & Aoki, 2012). Further, these preferences for faces that resemble one’s other-sex parent are stronger when people report that they had a good relationship with their parent in childhood (Bereczkei et al., 2002; 2004; Wzsiewska et al., 2007; see also Kocsor, Gyuris, & Bereczkei, 2013; Vukovic, Boothroyd, Meins, & Burt, 2015; Watkins et al., 2011; but see Marcinkowska & Rantala, 2012; Nojo et al., 2012).

However, we do not know when variation in adult preferences for parental features is acquired. Many fundamental human behaviours are shaped during sensitive periods (see e.g. Knudsen, 2004). In non-human animals, sensitive periods for the development of species-typical mate preferences have been demonstrated through cross-fostering experiments (review in e.g. Bischof, 1994). Despite this, it is not yet clear whether human adult face preferences rely on exposure during particular developmental periods. Children aged three to six with a more secure attachment to their parents had stronger preferences for fictional playmates who resembled their father (Kocsor et al., 2013), but infancy attachment did not predict 9-year-olds’ facial attractiveness judgements of parent-similar faces (Vukovic et al., 2015). Nine-year-olds with less rejecting parental relationships were more likely to judge parental-similar faces as more attractive (Vukovic et al., 2015), but we should not necessarily expect those judgements to persist unchanged into adulthood. Expression of sensitive-period behaviours during the acquisition or consolidation phase may be different from their expression in the adult phase (e.g. Marler & Peters, 1982a, 1982b).

A reasonable hypothesis is that face preference formation might be tied to processes and phases related to reproduction, because facial preferences exist in part to support adaptive partner choice and attendant reproductive consequences (Rhodes, 2006; Roberts & Little, 2008). Accordingly, the current study investigated whether the formation of individual differences in adult facial preferences takes place within particular reproductively-relevant phases of development. It made use of the finding that people’s preferences for faces that resemble their parents are moderated by the quality of their relationship with that parent. Thus, if the relationship quality during only some phases of development predicts adult preferences for faces that resemble one’s parents, then this would suggest that only those phases of development are instrumental in the acquisition of adult preferences for faces that resemble one’s parents.

The study examined the relationship between heterosexual women’s retrospectively reported emotional support received from their parents during four different lifespan phases, and the similarity between the hair and eye coloration of their parents and partners. The first developmental phase began at age six, because the link to parental relationship depends upon recollection of that relationship, and from about this age, children should have developed the ability to remember events as experienced (Perner & Ruffman, 1995), and adults recall a greater proportion of autobiographical events from about age six compared with younger ages (Rubin, 2000; Rubin & Schulkind, 1997). The first phase ended at age 10, because many adult-like face preferences (e.g. for facial symmetry, averageness, and health cues) are in place by this age (see first paragraph above). Further, this age has been proposed as a human universal in the developmental of sexuality and attraction, perhaps contingent upon rising levels of the adrenal steroid dehydroepiandrosterone (DHEA) (McClintock & Herdt, 1996), and it is the age at which retrospectively reported first hetero- and homosexual sexual attraction tends to arise (Hamer, Hu, Magnuson, Hu, & Pattatucci, 1993; McClintock & Herdt, 1996; Pattatucci & Hamer, 1995). The second phase ended at menarche because menarche represents the endpoint in a complex sequence of developmental events related to reproduction, and because of the links between menarche and reproductive ecology (see e.g. Ellis, 2004). The third phase represented the post-menarchal phase, and ended at age 16. Participants were also asked to report on the current time as a comparison phase. In this way, the study aimed to uncover the impact of different developmental phases on the formation of individual differences in adult face preferences.

2. Methods

2.1. Participants

All of the students enrolled on the second year of three psychology-based undergraduate degree programmes were invited to participate in the study in the context of a data analysis teaching exercise, and 171 students accessed the study. In addition, a separate version of the study was advertised via social networks, and 58 people accessed the study. Data from 7 participants were deleted because they opted out of making their data available for research, and data from 16 participants were deleted because they answered fewer than eight questions. Male participants were removed because of small numbers (n = 44). Eleven female participants were removed because they stated their ideal partner was female rather than male. The data reported below come from the remaining 145 participants aged 18–48 (mean = 21 years, st.dev. = 4 years).

2.2. Material and methods

Data collection took place in the form of an online survey. Participants were asked their age and ethnicity; the gender of their ideal partner; and the hair and eye colour of their ideal partner, actual partner (if in a relationship), mother, father, and self. Ethnic group categories were taken from the current recommendations of the UK Office for National Statistics for surveys in England. Participants were asked for details of both their actual and ideal partner because both can provide important information: the ideal partner represents a choice in an unconstrained environment; the actual partner represents the distillation of a set of preferences that may fluctuate (e.g. Jones et al., 2008), and has ecological validity. Parental hair colour was requested with reference to the predominant colour while the participant was growing up. Hair and
eye coloration options and data coding were based on Little et al. (2003). The hair colours used in the analysis, ordered from dark to light, consisted of black, very dark brown, dark brown, mid-brown, light brown, and blonde, and these were coded from 1 to 6 for the analysis. Other options were given (e.g. dark red, grey, 'Multiple colours (changed hair through colouring or dyeing)'), but these were excluded from the analyses. Eye colour options ordered from dark to light consisted of black, dark brown, light brown, hazel (i.e. greenish-brown), green, blue green, blue, and these were coded from 1 to 7 for the analysis. 'Grey' eye colour was also included in the social network participant dataset, and was recoded as the next lightest colour, blue, in the analysis (n = 6). At the end of the survey, the psychology student participants (but not the social network participants) were also asked to contact their parents and ask them to state how they would describe their hair and eye colour, from the list of colours used in the survey. Participants were asked to rate how much emotional support they received from each of their parents using a 1–7 scale, where 1 represented no support, and 7 represented a lot of support. This question followed Watkins et al. (2011), who found that participants' reports of their father's emotional support using this question predicted the extent to which participants preferred self-resemblance in other-sex faces. This single-item measure appears to measure the same underlying construct as longer questionnaires of parental investment (Watkins et al., 2011), including the EMBU which has been used by other researchers who examined a link between childhood closeness to parents and preferences for parental features (Bereczkei et al., 2002; 2004; Nojo et al., 2012). Although retrospective reports suffer some limitations, measures of parental bonding have good test–retest reliability (Gerlsma, Das, & Emmelkamp, 1993; Gerlsma, Kramer, Scholing, & Emmelkamp, 1994; Wilhelm & Parker, 1990), and scores on a measure of maternal attachment were fairly well-matched between children aged 7–11 reflecting on their current relationship with their mother and those same children seven years later reflecting back to that period (Courneyer & Rohner, 1996). Participants were instructed to select ‘N/A’ if they were not able to provide a rating (e.g. they could not remember the emotional support received, or were without a parent for the time period specified).

In rating parental emotional support, participants were asked to refer to four different stages of their life; age 6 to 10½ ("middle childhood"), age 10½ to half a year after their stated age of menarche in years (i.e. if they stated that menarche occurred at age 12, then the phase would be from age 10½ to 12½; the "pre-menarchal phase"); half a year after their stated age of menarche to age 16 (the "post-menarchal phase"); and at the current time in their life now ("current time"). Ages were constructed with the inclusion of the half year to best represent the actual age: if a woman reported that she experienced menarche aged 12, then age 12½ is the most accurate approximation on average. Similarly, the age of 10½ is the most accurate approximation on average of an event that occurs during the year in which one is 10. The female participants were asked to report their age of menarche early in the online survey, and their answers were fed forwards into the later questions, so that participants only saw references to specific ages, and not to ‘age of menarche’. Participants who stated an age of menarche outside the age range 11–15, or who stated that they could not remember or preferred not to report their age of menarche, were not included in the analyses related to parental relationship at different developmental phases. Sample sizes for each analysis are given within the Results section.

A number of measures were taken to attempt to obtain accurate and truthful answers that were not biased by the research hypotheses. The information provided at the beginning of the survey did not state that the specific hypotheses surrounded links between partner and parent trait coloration, but rather explained that the project investigated the relationships between people's experiences, family background, and perceptions, particularly in terms of the features they might find attractive in others. The first three questions of the survey asked the participants to imagine their ideal partner, and describe that person's gender, hair colour, and eye colour. Questions about parental and own hair and eye colour were only asked much later in the survey, following several questions that were collected as part of a separate investigation. At the end of the survey, the psychology students were asked to contact their parents and ask how those parents would report their own hair and eye colours from the list of colours provided, without telling the parents what colour the students had selected for them. If they were not able to access that information from their parents straight away, they were able to close and re-access the survey at a later date to enter the information. This method was used to check for participant misperceptions that might link a specific colour to a person's gender (e.g. wrongly assuming that women tend to have blue eyes while men have brown eyes), which could bias the results. The psychology student participants were asked to answer the survey in a private setting where their answers could not be observed, and not to discuss the contents of the survey with their peers until the first teaching class so that people could complete the survey without preconceptions. They were also told that it was not essential to answer the questions, but if they chose to do so, they should make the answers accurate. They were able to opt out of making their data available for the class analysis, and/or for the research project. The study was granted ethical approval by the Department of Psychology Ethics Committee of Northumbria University.

2.3 Data and analysis

Analysis was carried out in SPSS v 21. Backwards linear regression was used and reported below because the value of its versatility was thought to outweigh the drawbacks of using a parametric analysis on ordinal variables (e.g. Kim, 1975; 1978; Labovitz, 1967; but see Supplementary Materials 1, available on the journal's website at www.ehbonline.org). N values differ across the analyses below, depending on how many women supplied appropriate data for the relevant question(s).

3. Results

3.1 Accuracy of reported hair and eye colour

To check the validity of the data, the participants' reports of their parents' hair and eye colours were compared to their parents' self-reported coloration. Participants' reports closely matched their parents' reports of their parents' coloration are used in the remaining analyses below.

3.2 Own, parent and partner coloration

There were significant correlations between the hair colour that a participant would choose for her ideal partner, and the hair colour of that participant, her mother, and her father (Table 3). However, these seem to be driven by matching for ethnicity; the participants who did not report their ethnic group as ‘White’ very frequently stated black or dark hair colours, and when they were excluded (between n = 11 and 13, depending on the analysis), there was no longer any evidence

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Pearson's correlations between participants' reports of their parents' hair and eye colour, and their parents' self-reported hair and eye colour.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation (r)</td>
<td>p</td>
</tr>
<tr>
<td>Father's hair colour</td>
<td>.779</td>
</tr>
<tr>
<td>Father's eye colour</td>
<td>.940</td>
</tr>
<tr>
<td>Mother's hair colour</td>
<td>.917</td>
</tr>
<tr>
<td>Mother's eye colour</td>
<td>.974</td>
</tr>
</tbody>
</table>

Patterns of statistical significance are identical with non-parametric correlations (Kendall's tau-b).
for the correlations (ideal partner and self $r = .024, p = .718, n = 116$; mother $r = .049, p = .613, n = 110$; father $r = .102, p = .296, n = 107$). Similarly, with the exclusion of non-White participants ($n = 47$), none of the predictor variables was significant ($p > .18$). However, the differences between the r-values prior to and following restriction to White participants were not significant in any instance (Fisher's r-to-z transformations, all $p > 0.10$). Own and parental eye colour did not correspond to actual or ideal partner eye colour (Table 4).

Backwards regression with a removal criterion of 0.10 was used to uncover whether ideal or actual partner trait coloration (the outcome variable) was predicted by the participant's report of her mother, father, and own coloration (the three predictor variables). Ideal partner hair colour was predicted by mother and father hair colour (Table 5). However, when the analysis was restricted to participants who reported their ethnicity as White ($n = 79$), none of the predictor variables was significant at any stage ($p > .29$). Similarly, actual partner hair colour was predicted by maternal hair colour (Table 5), but when the analysis was restricted to participants who reported their ethnicity as White ($n = 47$), none of the predictor variables was significant at any stage ($p > .15$). Ideal and actual partner eye colour were not predicted by the participant's report of her own, father's or mother's eye colour, at any stage of the backwards regression models (all $p > .11$).

3.3. Parental relationship at different developmental phases, and preferences for parental features

Regression was used to uncover whether similarity between parent and partner trait coloration (the outcome variable) was predicted by emotional support received from that parent at the four developmental stages (the four predictor variables). The similarity between parent and partner trait coloration was calculated as the difference between the coded colour values for father and partner, or mother and partner, for the trait in question. Given the ambiguity of including the non-White sample, the analysis was restricted to participants who reported their ethnicity as White, although results were identical in their patterns of statistical significance when the data were analysed with the inclusion of those participants who did not report their ethnicity as White. Emotional support ratings from a parent at the four stages were imperfectly correlated; in the significant analyses below, correlations ranged from $r = .87$ to $r = .52$, and VIF and tolerance statistics did not indicate problems with multicollinearity (Field, 2005). The eye colour of a woman's ideal or actual partner and her father was more likely to be more similar if the woman received less emotional support from her father during middle childhood, and more emotional support from her father during the post-menarchal phase (Table 6). The eye colour of a woman's ideal partner and mother was more likely to be similar if the woman received less emotional support from her mother during the pre-menarchal phase, and more emotional support from her mother during the post-menarchal phase (Table 6).

The similarity between paternal hair colour and actual or ideal partner hair colour were not predicted by the participant's report of emotional support received from her father the four developmental phases, at any stage of the backwards regression models (all $p > .05$). The similarity between maternal eye colour and actual partner eye colour, and between maternal hair colour and ideal or actual partner hair colour, was not predicted by the participant's report of emotional support received from her mother at the four developmental phases, at any stage of the backwards regression models (all $p > .18$).

4. Discussion

The study set out to investigate whether there is a phase within development that is particularly instrumental in the formation of individual differences in face preferences. The study focused on the development of preferences for faces that resembled participants' parents, specifically looking at heterosexual women's preferences for partner hair and eye coloration. Previous work has shown that people have stronger preferences for parental features if they are close to their parents, and so by asking women about the quality of the emotional relationship that they had with their parents during different developmental phases, and examining whether this reported relationship predicted preferences for faces that resembled their parents, the study could establish links between developmental periods and individual differences in adult face preferences.

First, the study found that a woman's mother's hair colour predicted the hair colour that a woman selected for her ideal partner, and the hair colour she described her actual partner as having. There was also evidence that a woman's father's hair colour predicted the hair colour she wanted her ideal partner to have, but this was a weaker effect than that of her mother's hair colour. These results are broadly consistent with the previous research and effect sizes of a larger sample that found that the hair colour of men's mothers and fathers is linked to the hair colour of their partners, and that there is some evidence that the hair colour of a woman's father is linked to the hair colour of her partner (Little et al., 2003). While some studies have found that women select partners who resemble their other-sex and not their same-sex partner (Bereczkei et al., 2004; Seki et al., 2012), others have found that the features of both parents may be apparent in an individual's preferences (Jedlicka, 1984; Little et al., 2003; Wilson & Barrett, 1987). A positive selection pressure for lighter hair, eye and skin colour has been noted in Europeans over the last 5000 years, and may be driven in part by sexual selection (Frost, 2006; Wilde et al.,

Table 2
Comparison of participant and parent reports of parental hair and eye colour (values = frequencies).

<table>
<thead>
<tr>
<th>Parent</th>
<th>Trait</th>
<th>0*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father</td>
<td>Hair</td>
<td>43</td>
<td>24</td>
<td>7</td>
<td>3*</td>
<td>1**</td>
</tr>
<tr>
<td></td>
<td>Eye</td>
<td>74</td>
<td>14</td>
<td>3</td>
<td>1**</td>
<td>1**</td>
</tr>
<tr>
<td>Mother</td>
<td>Hair</td>
<td>54</td>
<td>21</td>
<td>3</td>
<td>1**</td>
<td>1**</td>
</tr>
<tr>
<td></td>
<td>Eye</td>
<td>87</td>
<td>10</td>
<td>3</td>
<td>1**</td>
<td>1**</td>
</tr>
</tbody>
</table>

* Identical items chosen.
** Reported colours (participant/parent) were: dark brown/blonde hair; light brown/very dark brown hair; black/mid-brown hair; light brown/blue green eyes; blue/light brown eyes.
2014). In contrast to other research with larger samples (Little et al., 2003; Wilson & Barrett, 1987), the study did not find that partner eye colours were predicted by the women’s reports of their own or parental eye colour. However, the correlations between parent and partner hair colour may have been driven to a disproportionate extent by the small number of participants who identified their ethnicity as something other than White. With the exclusion of those participants, the majority of whom identified their parent and ideal/actual partner hair colours as being black or at the dark end of the spectrum, there was no longer a significant relationship between parental and partner hair colour. Once non-White participants had been excluded, there was also no evidence for simple assortative mating (i.e. choosing a partner who resembles the self) at the level of hair or eye colour (although the findings of a relationship between emotional support at different age phases and preferences for parental trait colouration held with or without the exclusion of non-White participants). It might be that participants prefer the trait colouration of their parents in a partner because they prefer partners who match the ethnic group (and attendant coloration) of their parents (cf. Jedlicka, 1980, 1984). It is unclear how much cultural group matching should be controlled in future studies of this type, because culture and colour overlap. Part of ethnic group matching may be based on coloration preferences, and hair coloration frequencies differ by region even within the White ethnic group (see e.g. Frost, 2006), so any preference for partners from a particular geographical or cultural background may shade into a preference for the coloration linked to partners from those backgrounds, and it may be very difficult to disentangle preferences for physical traits from preferences for non-physical attributes.

Across ideal and actual partner, a woman was more likely to select an eye colour that was closer to her father’s if she received more emotional support from him in the post-menarchal phase; in contrast, increases in the woman’s ratings of her father’s emotional support during middle childhood predicted a greater difference between her father’s and ideal/actual partner’s eye colour. Similarly, increased emotional support from a woman’s mother during the post-menarchal phase positively predicted similarity between the eye colour of a woman’s mother and her stated ideal partner eye coloration, whereas women who rated their mother as providing more emotional support during the pre-menarchal phase were less likely to demonstrate similarity in the eye colour of their mother and ideal partner. This pattern of results is consistent with the evidence that people are not attracted to those with whom they socialise during early childhood (reviews in e.g. Lieberman & Smith, 2012; Rantalà & Marcinkowska, 2011), and indicates that parental models may be used to provide both positive and negative sexual imprinting in humans. That is, the distinction between positive and negative sexual imprinting may be dependent upon specific age of exposure, instead of relationship (parent, sibling, etc) to the individual encountered. We note, following Little et al. (2003), that in the context of human studies, the term ‘imprinting’ may in some instances usefully be equated with social learning. Imprinting, particularly in the non-human animal literature, usually refers to a sensitive period that takes place early in development, lasts for only a short period of time, and has long-lasting effects (Hess, 1973; Lorenz, 1937). Nevertheless, for consistency with existing literature, the term ‘imprinting’ is used here. Negative sexual imprinting may function to reduce the risk of forming a reproductive relationship with someone to whom one is too closely related, with the attendant risk of recessive genetic disorders (see e.g. Bittles & Neel, 1994; Blouin & Blouin, 1988). Positive sexual imprinting may have a number of benefits, including supporting optimal outbreeding (Bateson, 1978; 1980; 1982; Helgason, Pálsson, Guðbjartsson, Kristjánsson & Stefánsson, 2008; Mascie-Taylor & Boldsen, 1988), enhancing one’s own genetic representation in future generations through the selection of a partner with some genetic matches (Thiessen, 1999), and encouraging the selection of a partner from the same population who is more likely to have appropriate adaptations to the local environment, and thereby enabling the maintenance of co-adapted genetic complexes (Read & Harvey, 1991). Long-term relationships may benefit from a degree of affiliative behaviour associated with distant relatedness, including enhanced trust (DeBruine, 2005).

How well do these findings of age-bounded effects marry up with existing research that found that parent–partner similarity was positively predicted by an individual’s relationship with their parent during childhood? Wiszewska et al. (2007) asked their participants to report their relationship with their parents from birth to 7 years of age. The other studies (Bereczkei et al., 2002; 2004; Nojo et al., 2012) used the EMBU questionnaire to assess parent/child relationships. This questionnaire does not specify an exact age, but refers to “your childhood” and to being “very young” in the preamble, and to “your adolescence” in one of the questions (see Arrindell et al., 1999). Bereczkei et al. (2002; 2004) asked their participants to focus on family experiences before adolescence, that is, up to 12–14 years (Tamás Bereczkei, personal communication). Similarly, Watkins et al. (2011) referred participants to “your childhood”. If the current results are consistent with existing research, we would have to assume that participants’ relationships with their parents between the ages of about 12 and 16 particularly coloured their reports. This is perhaps not unreasonable given that more recent events are more accessible and might overshadow more distant memories in evaluation contexts (e.g. Feldman & Lynch, 1988; Murdock, 1962), and recent positive events can outshine more distant negative events.

Table 4

<table>
<thead>
<tr>
<th>Participants’ own eye colour</th>
<th>Participants’ reports of maternal eye colour</th>
<th>Participants’ reports of actual partner eye colour</th>
<th>Participants’ reports of ideal partner eye colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>r = .561, p < .001, n = 145</td>
<td>r = .545, p < .001, n = 140</td>
<td>r = .887, p = .241, n = 84</td>
<td>r = .906, p = .255, n = 143</td>
</tr>
<tr>
<td>r = .139, p = .102, n = 140</td>
<td>r = .175, p = .111, n = 84</td>
<td>r = .902, p = .273, n = 143</td>
<td></td>
</tr>
<tr>
<td>r = .091, p = .420, n = 80</td>
<td>r = .090, p = .295, n = 138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r = .701, p < .001, n = 83</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patterns of statistical significance are identical with non-parametric correlations (Kendall’s tau-b). Statistically significant results (p < .05) are indicated in bold.

Table 5

Regression models to predict ideal and actual partner hair colour from maternal, paternal and own hair colour.

<table>
<thead>
<tr>
<th>Outcome variable</th>
<th>Model</th>
<th>Maternal hair colour</th>
<th>Paternal hair colour</th>
<th>Own hair colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal partner hair colour</td>
<td>Initial model (enter):</td>
<td>β = .228, p = .038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R² = .114, p = .016, n = 89</td>
<td>Step 2: R² = .110, p = .007</td>
<td>β = .248, p = .017</td>
<td>β = .204, p = .049</td>
<td></td>
</tr>
<tr>
<td>Actual partner hair colour</td>
<td>Initial model (enter):</td>
<td>β = .313, p = .049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R² = .104, p = .157, n = 51</td>
<td>Step 3: R² = .064, p = .074</td>
<td>β = .252, p = .074</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significant results (p < .05) are in bold. Ideal and actual partner eye colour were not predicted by the participant’s report of her own, father’s or mother’s eye colour, at any stage of the backwards regression models (all ps > .11).
participant’s report of emotional support received from her father during the four developmental phases, at any stage of the backwards regression models (all
received from her mother at the four developmental phases, at any stage of the backwards regression models (all
life phases to improve access to the time period being recalled, as they
participants are asked to focus and report separately on different shorter
(Ross & Simonson, 1991). This recollection bias might be reduced if par-
Table 6
in adult face preferences, and it is worth noting that children aged 4
also merit exploration for their role in shaping individual differences
Earlier periods than those used in this study (i.e. before the age of six)
evaluations is always a potential limitation of this type of research
Aronsson, Ghirlanda, Jansson, & Jannini, 2011). Nevertheless, it seems
have their roots in experiences from before the age of
Boothroyd et al., 2014), and that some sexual arousal responses may
may not persist, or may be distinct from judgements of attractiveness:
for playing with
particular to their mother, were found to express a stronger preference
thre et os i xw h oh a dam o r es e c u r ea t t a c h m e n tt ot h e i rp a r e n t s,a n di n
erences of children for faces that resemble their parents. Children aged
2014; Saxton, Caryl, & Roberts, 2006, Saxton et al., 2009b; 2010; 2011).
found to express a stronger preference for faces that resemble one’s parents, a
variations at the DNA level.
Cambridge University Press.
Causal Mechanisms of Behavioural Development
Proceedings of the Royal Society of London, Series B: Biological Sciences
resemblance.
Proceedings of the Royal Society of London, Series B: Biological Sciences
References

