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Abstract  

Lithium ion dynamics in crystalline lithium silicide Li12Si7 were studied using density 

functional theory. Vacancy formation and diffusion of lithium ions showed a strong 

dependence on crystallographic lithium sites. The thirteen crystallographic lithium atoms in 

the Li12Si7 can be divided into three types based on their motilities, and their typical diffusion 

energy barriers are 0.18, 0.36 and 0.52 eV, respectively. These crystallographic lithium atoms 

take part in the fast diffusion process and distribute within one dimensional column. The result 

agrees well with experimental report of the quasi-one dimensional fast diffusion channel in the 

Li12Si7. 
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Introduction 

Rechargeable lithium ion batteries (LIBs) have received great attention owing to their 

environmental friendliness, non-memory effect, and high energy density1. Graphite has been 

the dominant anode material for the LIBs with many advantages such as facile synthesis, 

abundant resources and low volume expansion/contraction of 9%2. However, the theoretical 

capacity of graphite for the LIBs is 372 mA h g-1 ( LiC6 )3, 4, which is difficult to meet the strong 

demands of high energy density and long cycle life for long term applications such as extended 

range electric vehicles and large scale renewable energy storage. Therefore, the next generation 

LIBs with a high power density must be implemented using advanced delithiation/lithiation 

materials as alternative electrode choices. 

Group IV elements, such as silicon, germanium, and tin as promising anode materials for 

the LIBs were extensively investigated by experiments and computational simulation 

methods3, 5-8. Among them, Si was paid considerable attention because of its higher theoretical 

specific capacity (~3579 mA h g-1 for Li15Si4 at room temperature), low cost and abundant 

resources. However, there is an apparent shortcoming, i.e., Si is easily pulverized upon 

charging and discharging due to the large volume expansion and shrinkage 3, 4, 9, 10. 

Tremendous efforts have been made to overcome this problem using Si nanostructures11-14, 

nano-composites of Si with C nanofiber15-18, Si/Fe multi-layer composites, 19, 20 etc. 

It is widely accepted that during the first lithiation cycle, crystalline Si undergoes a phase 

transition to form an amorphous LixSi, but the amorphous LixSi alloys can transform into 

crystalline Li15Si4 when the Li content is x=3.759, 21, 22. The mechanism of the amorphization 
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process was investigated by Wang et al.23 using both theoretical analysis and in-situ transition 

electron microscopy observation. They concluded that electron-rich effect plays an important 

role in the electrochemical solid-state amorphization. Although the thermo-dynamically stable 

crystalline lithium silicides, i.e., Li12Si7, Li13Si4 and Li7Si3 are difficult to observe upon 

lithiation, they have received considerable interest because they can serve as the reference 

compounds for the amorphous LixSi materials formed upon lithiation. Solid state nuclear 

magnetic resonance (NMR) studies showed that the amorphous materials have local lithium 

environments comparable to those present in crystalline silicides, and their quantitative 

distribution is dependent on the extent of the electrochemical charge transfer, demonstrating 

their reference capability24, 25.  

A good electrode material should have high electron and Li ion?? mobility and phase 

stability. The diffusivity value of Li in Si-based electrode materials has been investigated using 

experimental methods and computer simulations. 26-35 The local environments and dynamics of 

lithium ions in the binary lithium silicide were studied using NMR technique36, 37. Kuhn et al.37 

found that nine of thirteen crystallographically independent Li sites in the Li12Si7 take part in an 

extreme fast long-range diffusion process characterized by an activation energy of only 0.18 

eV in the Li12Si7. In the present paper we studied the Li vacancy formation energies, diffusion 

energy barriers and Li ion dynamics in the crystalline Li12Si7 alloy using density functional 

theory. Our results agree well with experimental observations and thus provide an insightful 

understanding of the mechanism of Li ion dynamics in the Li12Si7 alloy. 
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Computational details 

The crystalline Li12Si7 has an orthorhombic crystal structure. The calculated lattice 

constants for the Li12Si7 are a=8.646 Å, b=14.576 Å, c=19.989 Å, which are consistent with 

reported results from other groups4, 38-40. There are planar 5Si-rings with Si-Si bond length of 

2.362~2.392 Å and a three-pointed planar 4Si star in ‘Y’-shape with bond length of 

2.375~2.393 Å, as shown in Fig. 1. There are 13 crystallographic lithium sites in the Li12Si7, 37, 

39, 40 as represent by balls in different colors in Fig. 1 and their coordinates of Wyckoff sites are 

listed in Table 1. A supercell with 152 atoms was used in the present work. 

The calculations were performed using density functional theory as implemented in the 

Vienna ab initio package (VASP) 41 with a plane wave basis set. The projector augmented 

wave (PAW) method42 was used to describe electron-ion interactions, and the generalized 

gradient approximation with the Perdew-Burke-Ernzerhof (PBE) function was used to describe 

the electron exchange-correlation. The K-point mesh for optimization lattice parameters and 

the calculations of defect formation energies were set to 4×2×2. The plane wave basis-set with 

a cutoff of 450 eV was used and all atoms were fully relaxed using the conjugate gradient 

approximation (GGA) until the force on every atom is smaller than 0.02 eV/Å43, 44. A climbing 

image nudged elastic band (CI-NEB)45 method was used to study the energy curves for Li ions 

from one stable site to a neighboring stable one. 

The formation energy of Li vacancy in the Li12Si7 alloy Ef(VacLi) was calculated using the 

equation (1): 

( ) ( ) ( )LiperfVac)Vac( LiLi µ+−= EEE f                            (1) 
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where E(VacLi) and E(perf) are the total energies of the same Li12Si7 supercell with and without 

a lithium atom vacancy, respectively. μ(Li) is the chemical potential of the bulk Li 46-48. 

Ab initio molecular dynamics (MD) simulations were performed within the framework of 

DFT as implemented Spanish Initiative for Electronic with Thousands of Atoms (SIESTA) 

code49-52. All calculations were performed using the 152 atoms supercell with one Li vacancy. 

The valence electron wave functions were expanded using a double-ζ basis set. The charge 

density was projected on a real space grid with a cut-off of 150 Ry to calculate the 

self-consistent Hamiltonian matrix elements, and Γ point was used in the Brillouin zone 

sampling. The evolution of the system was derived using the MD method with a verlet 

algorithm and a time-step of 1.0 fs. The time of 6 ps was verified to be sufficient for the 

observation of Li in the Li12Si7. Temperatures of 900 K, 1000K and 1100K were applied during 

the simulation under the NVT ensemble, in which number of atoms, volume and temperature 

were kept as constant values. 

 

 

Results and discussions 

The vacancy formation energies of 13 crystallographic Li atoms in the Li12Si7 are shown 

in Fig. 2(a). The vacancies for Li3, Li6 and Li13 have high formation energies of 1.28, 1.34 and 

1.23 eV, respectively. Those of Li2 and Li4 have middle formation energies of 1.01 and 1.02 

eV, respectively. Whereas those of the Li1, Li5, Li7-12 have low formation energies in the 

range between 0.74 and 0.92 eV. High formation energies of Li vacancy generally indicate that 
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Li ions in these sites are immobile, whereas the low formation energy values mean that these Li 

ions can migrate easily. The vacancy formation energies of the crystallographic Li sites (apart 

from?? except for the Li13 site) agree with the experimental results obtained by Kuhn et al.37 

The site dependence of the vacancy formation energy can be explained by the differences in the 

local atomic environments (as shown in Fig. 2 (b)): (1) Li3 is bound to two 5Si-rings with 4 

Li-Si bonds and one 4Si star with one Li-Si bond, and Li6 is sandwiched between two 5Si rings 

and bound tightly to 5Si-ring with 10 Li-Si bonds. Therefore, Li3 and Li6 are tightly bound to 

the Zintl anions in the structure, thus having large vacancy formation energies; (2) Li2 and Li4 

ions are bound to three 5Si-ring with 5 Li-Si bonds; (3) Li12 and Li13 ions are bound to both 

two 5Si-ring with 2 Li-Si bonds and one 4Si star with one and three Li-Si bonds, respectively; 

(4) other Li ions are weakly bound to the Si atoms, so they are mobile with low vacancy 

formation energies. 

We calculated several Li ion diffusion paths in the Li12Si7 through Li vacancy migration. 

The diffusion energy curves are shown in Fig. 3 (a), and the corresponding diffusion paths are 

shown in Fig. 3 (b). Based on Fig. 3 (a), the diffusion barriers for the Li ions migrating from 

Li6 to Li5, and from L6 to Li4 are 0.52 and 0.38 eV, respectively. The data agree well with the 

experimental value of 0.55 eV37. The diffusion barrier values for the Li ions migrating from Li4 

to Li10, and from Li4 to Li11 are 0.36 and 0.19 eV, respectively, which agrees with 

experimental value of 0.32 eV37. The diffusion barrier value is 0.06 eV for a Li ion migrating 

from Li5 to Li11. The diffusion barriers are in agreement with the jump barrier values reported 

by Kuhn et al.37 The ionic mobility barriers are closely correlated with the calculated vacancy 
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formation energies. A high vacancy formation energy corresponds to a large diffusion barrier. 

For example, the vacancy formation energy is 1.34 eV for the Li6 ion, but diffusion barriers of 

0.38 and 0.52 eV have to be overcome when the Li6 ion jumps to Li4 and Li5 sites, 

respectively. 

MD simulation was performed at 900 K-1100 K for the Li12Si7 with one Li6 vacancy. Fig. 

4 (a) shows the sequence of Li ion migrations at 900 K, with the number denoting the different 

Li atoms and the number Lix in the brackets denoting the distinct crystallographic lithium. The 

typical atom displacement distances as a function of simulation time are shown in Fig 4 (b) and 

their migration trajectories are shown in Fig. 4 (c). As expected one 40(Li2) atom moves to the 

Li6 vacancy at about 0.2 ps, and thus leaves a vacancy at 40(Li2) site. The Li atom of number 

40(Li2) does not involve in the diffusion process at the later simulation process. The Li atom of 

74(Li7) migrates to the 40(Li2) vacancy site at about 0.6 ps. The Li diffusion proceeds with 

more vacancies moving further. At 5.5 ps, the Li atom of 8 (Li13) jumps to a Li11 vacancy. It 

can be seen from Fig. 4 (a) that both Li3 and Li6 have not taken part in diffusion within the 

simulation time of 6.0 ps in the Li12Si7. The atom of 8(Li13) involves in the diffusion process, 

however, it remains in its original position for much longer time than the others during the 

diffusion. Results also show that migration of the Li3 and Li6 atoms at 1000 and 1100 K did 

not occur within the simulation time. The Li2, Li4 and Li13 atoms are involved in the diffusion 

process once for all the simulated temperatures. Atoms of the Li1, Li5, Li17-Li12 are actively 

involved in the diffusion process. Results indicate that Li atoms with low vacancy formation 
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energies actively take part in a fast Li diffusion process, which agree with the above calculated 

results of vacancy formation energies and diffusion barriers.  

From the above results, it can be concluded that the 13 distinct crystallographic lithium 

atoms can be divided into three types: i.e., (1) Li1, Li5, Li7-Li12 atoms, which show fast 

diffusion process; (2) Li3 and Li6 atoms, which have a low mobility and bounded to the silicon; 

(3) Li2, Li4 and Li13 atoms, which have medium mobility. The Li atoms with fast, medium 

and low diffusion mobilities are shown in Fig. 5 with green, pink and red balls, respectively. It 

can be observed that the fast diffusion Li atoms are distributed within one dimensional column, 

which agrees well with the quasi-one dimensional diffusion channels observed by Kuhn et al.27 

using the NMR technique. 

 

Conclusions 

The Li ion dynamics in crystalline lithium silicide Li12Si7 were investigated using density 

functional theory. The vacancy formation and diffusion of lithium ion show strong dependence 

on crystallographic lithium sites. The thirteen crystallographic lithium atoms can be divided 

into three types with high, medium, and low motilities, and their typical diffusion barriers are 

0.18, 0.36 and 0.52 eV, respectively. Eight of thirteen Li sites take part in the fast diffusion 

process, and are distributed within one dimensional column, showing a fast one dimensional 

diffusion channel. Large vacancy formation energies are corresponding to the large diffusion 

barriers and low probability to migrate.  
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Table 1: Optimized coordinates of 13 crystallographic lithium Wyckoff sites in the Li12Si7  
# Wyckoff site x y z 
1 8d 0.1229 0.3404 0.1657 
2 8d 0.6296 0.0657 0.9722 
3 8d 0.3696 0.7365 0.1127 
4 8d 0.6331 0.4327 0.9952 
5 8d 0.6282 0.3612 0.1451 
6 8d 0.1295 0.2563 0.0316 
7 8d 0.8621 0.5222 0.3286 
8 8d 0.1375 0.8374 0.3119 
9 8d 0.3913 0.1567 0.8128 

10 8d 0.1576 0.5050 0.1117 
11 8d 0.5037 0.5276 0.1250 
12 4c 0.3382 0.1658 0.2500 
13 4c 0.3869 0.3687 0.2500 

 
  

12 

 



Figure captions: 
 

Figure 1 Crystal structure of Li12Si7. 13 distinct crystallographic lithium atoms are present in 

different colors. The big blue ball represents Si atom. 

 

Figure 2 (a) Li vacancy formation energies histograms and (b) local atomic environments 

structure of 13 distinct crystallographic Li atoms in the Li12Si7. 

 

Figure 3 (a) The diffusion energy barrier curves for the Li diffusion Li10→Li4→Li11 

→Li5→Li6→Li4. (b) The diffusion paths of Li10→Li4, Li4→Li11, Li11→Li5, 

Li5→Li6, and Li6→Li4. 

 

Figure 4 (a) The Li ion migration sequence in the Li12Si7 started with one Li6 vacancy at 900K. 

The number denotes the different Li atoms, the number Lix in the brackets denotes the 

distinct crystallographic lithium. (b) Typical atom displacement distances as a 

function of simulation time. (c) Trajectories of the Li atoms in (b). 

 

Figure 5 Diagrammatic sketches of three different lithium diffusion types. The fast, medium, 

and low Li diffusion atoms are represented by green, pink and red balls, respectively. 

The regions surrounded by green dotted line denote one dimension channel of fast Li 

diffusion. 
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