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a b s t  r  a c t  

Smart environments  and monitoring  systems are popular  research areas nowadays  due to  its  potential  

to  enhance the  quality  of life.  Applications  such as human  behavior  analysis and workspace  ergonomics  

monitoring  are automated,  thereby  improving  well-being  of individuals  with  minimal  running  cost. The 

central  problem  of smart  environments  is to  understand  what  the  user is doing  in  order  to  provide  the  

appropriate  support.  While  it  is di�cult  to  obtain  information  of full  body  movement  in  the  past, depth  

camera based motion  sensing technology  such as Kinect  has made it  possible to  obtain  3D posture  with-  

out  complex  setup. This has fused a large number  of research projects  to  apply  Kinect  in  smart  environ-  

ments.  The common  bottleneck  of these researches is the  high  amount  of errors  in  the  detected  joint  

positions,  which  would  result  in  inaccurate  analysis and false alarms. In this  paper, we propose a frame-  

work  that  accurately  classi“es  the  nature  of the  3D postures  obtained  by Kinect  using a max-margin  clas- 
si“er.  Different  from  previous  work  in  the  area, we integrate  the  information  about  the  reliability  of the  

tracked  joints  in  order  to  enhance the  accuracy and robustness of our  framework.  As a result,  apart  from  

general  classifying  activity  of different  movement  context,  our  proposed  method  can classify the  subtle  

differences  between  correctly  performed  and incorrectly  performed  movement  in  the  same context.  We 

demonstrate  how  our  framework  can be applied  to  evaluate  the  user•s posture  and identify  the  postures  

that  may result  in  musculoskeletal  disorders.  Such a system can be used in  workplace  such as o�ces  and 

factories  to  reduce risk  of injury.  Experimental  results  have shown  that  our  method  consistently  outper-  

forms  existing  algorithms  in  both  activity  classi“cation  and posture  healthiness  classi“cation.  Due to  the  

low  cost and the  easy deployment  process of depth  camera based motion  sensors, our  framework  can be 

applied  widely  in  home and o�ce  to  facilitate  smart  environments.  

© 2016  The Authors.  Published  by Elsevier Inc. 
This is an open access article  under  the  CC BY license ( http://creativecommons.org/licenses/by/4.0/  ). 
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. Introduction  

One of the  main  purposes of smart  environments  and monitor-
ng  systems is to  enhance the  quality  of life.  On one hand, by un-
erstanding  the  needs and intention  of the  user, smart  systems can
rovide  the  appropriate  support.  On the  other  hand, by monitoring

he  movement  behavior  of the  user, these systems can alert  the
ser in  dangerous situations,  such as performing  movement  that
ould  result  in  injury.  In particular,  according  to  the  Health  and
afety Executive  Annual  Statistics  Report  for  Great Britain  [1]  , more

han  1.1 million  cases of work-related  ill  health  were  reported  be-
ween  2011 and 2012, in  which  more  than  39% belongs to  muscu-
� Corresponding  author.  
E-mail address: edmond@comp.hkbu.edu.hk  (E.S.L. Ho). 

f  

t  

t  

ttp://dx.doi.org/10.1016/j.cviu.2015.12.011  
077-3142/© 2016 The Authors. Published by Elsevier Inc. This is an open access article und
oskeletal  disorders.  A smart  environment  with  an automatic  pos-
ure  monitoring  system is a potential  solution  to  save the  high  cost
f workplace  injury  and ill  health.  

One major  challenge  of a smart  environment  is to  understand
hat  the  user is doing,  in  order  to  decide how  to  react properly

o the  user•s behavior.  Motion  capturing  is a traditional  method  to
btain  the  user•s posture  [2]  . However,  most  of the  existing  tech-
iques  such as the  optical  motion  capturing  system require  care-

ul  setup and calibration.  These systems usually  require  the  user
o wear  special devices on the  body, making  it  di�cult  to  be de-
loyed  and used in  daily  life  environments.  Alternatively,  identify-

ng  human  posture  with  traditional  2D video  cameras can be per-
ormed  using computer  vision  techniques  [3]  . However,  because of
he  lack of details  in  the  source video,  as well  as the  3D informa-
ion  of joints,  only  bigger  limbs  such as the  body  trunk  and the
er the CC BY license (  http://creativecommons.org/licenses/by/4.0/  ). 
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i  

b  
legs can be identi“ed  and evaluated.  This greatly  reduces the  ac-
curacy especially  for  evaluating  subtle  posture  differences.  

Recently, motion  sensor with  depth  camera such as the  Mi-
crosoft  Kinect  has shown  its  effectiveness  in  tracking  3D human
posture  in  real-time  [4]  . Its advantage is that  it  can track  3D hu-
man posture  without  requiring  the  user to  wear  any special equip-
ment.  The low  cost of the  hardware  camera, as well  as the  easy
setup of the  tracking  system, also make it  preferable  to  be used
in  daily  indoor  environment  such as o�ce  and home. By pro-
cessing the  captured  depth  image, it  becomes possible to  iden-
tify  depth-based  edge extraction  and ridge  data, which  are used
to  track  human  body  parts  [5]  . However,  unsupervised  approaches
require  careful  algorithm  design and may not  be easily general-
ized. To solve the  problem,  anatomical  landmarks  trained  by sam-
ple data using random  forests  are used. The body  skeleton  is rec-
ognized  by analyzing  the  depth  silhouettes  of the  user and locat-
ing  the  anatomical  landmarks  [6]  . However,  run-time  detection  of
such landmarks  is not  always  accurate, which  results  in  degrading
the  activity  recognition  accuracy. Similarly,  utilizing  the  skeleton
recognized  by Kinect  for  action  recognition  suffer  from  the  same
problem,  as the  recognized  joint  can be different  from  the  trained
data due to  occlusions, which  results  in  noisy  skeletons  [7]  . Previ-
ous motion  analysis algorithms  that  assume a reliable  input  stream
do not  work  well  with  Kinect,  as the  tracked  joints  returned  by the
depth  camera could  be wrong  [8]  . The main  focus of this  work  is to
propose new  methods  to  account  for  the  accuracy of the  skeleton,
such that  activity  recognition  can be more  accurate. 

We propose a new  posture  classi“cation  framework  for  Kinect,
which  has an improved  accuracy over  previous  algorithms.  To
cope with  the  noisy  input  posture,  we design a set of reliability
measurement  [9]  to  evaluate  how  reliable  the  tracked  joints  are.
The more  reliable  joints  then  contribute  more  in  a max-margin
classi“cation  system, which  is used to  classify postures  of different
context.  Our framework  allows  a smart  environment  to  understand
what  the  user is doing  from  the  noisy  data obtained  by Kinect.
Due to  the  improved  accuracy, the  system can even classify the
subtle  difference  between  healthily  and unhealthily  performed
postures, such as operating  equipment  with  postures  that  may lead
to  injury.  This facilitates  automatic  posture  monitoring  for  work-
place, which  can alert  the  user whenever  an unhealthy  posture
is performed.  Since our  method  is robust,  affordable  and easily
deployable,  it  is a preferable  solution  for  smart  environments  and
monitoring  systems. 

To facilitate  further  research in  the  “eld,  the  posture  healthi-
ness database created in  this  research will  be made available  to
the  public.  Up to  now,  such a kind  of database is not  openly  avail-
able. The comprehensive  database consists of more  than  80 0 0 3D
postures  for  different  behaviors  such as working  at an o�ce  desk
in  sitting  and standing  postures, together  with  the  source 3D depth
images and color  images obtained  from  the  depth  camera. It  is also
carefully  annotated  with  information  of the  behavior,  such as the
nature  of the  movement  and the  potential  health  risks. 

1.1. Contributions  

There are three  major  contributions  in  this  paper:  

€ We propose a new  framework  to  monitor  and classify user pos-
tures. It  evaluates the  reliability  of the  observed joints  from
Kinect,  and applying  such reliability  as weights  in  a customized
max-margin  classi“er  to  robustly  classify noisy  posture  data.
Our system can accurately  distinguish  the  subtle  differences  be-
tween  healthy  and unhealthy  postures. 

€ We propose a set of new  reliability  measurement  terms  on top
of those presented  in  [9]  to  enhance the  accuracy of joint  re-
liability  estimation.  Apart  from  the  traditional  kinematic-based
reliability  measurements,  we make use of the  color  and depth
images from  Kinect  to  identify  joint  that  are wrongly  tracked  or
corrupted  by noise. 

€ We implement  the  “rst  open access motion  database targeting
at posture  healthiness.  The database includes  correctly  and in-
correctly  performed  postures  for  different  work  purposes, an-
notated  posture  information,  as well  as depth  and color  images
obtained  from  the  depth  camera. 

.2. Outline 

In the  rest of this  paper, we will  “rst  review  the  related  work
n  Section 2 . An overview  of our  proposed  method  will  be given  in
ection 3 . Next,  we explain  how  to  evaluate  the  reliability  of each

racked  joint  by our  proposed  reliability  measurements  ( Section 4 ).
 max-margin  classi“cation  framework  which  takes into  account

he  reliability  of each joint  will  be introduced  in  Section 5 . We
hen  explain  how  our  motion  database is constructed  ( Section 6 )
nd present  experimental  results  in  Section 7 . Finally,  we conclude

his  paper in  Section 8 . 

. Related  work  

In this  section, we review  how  human  motion  is obtained  us-
ng  traditional  methods,  and point  out  why  these methods  can-
ot  be applied  e�ciently  for  smart  environments.  We also review
epth  camera based systems for  motion  tracking,  and describe

heir  weakness on noise control.  We “nally  review  works  that  eval-
ate posture  based on the  motion  capture  input,  focusing  the  dis-
ussion on how  they  perform  with  depth  cameras. 

.1. Wearable activity  recognition 

In computer  animations  and games, 3D human  postures  are
sually  captured  using wearable  motion  capture  systems. Lara and
abrador [10]  provide  a comprehensive  survey  on using wearable
ensors for  activity  recognition.  In a smart  environment,  wearable
ensors can provide  information  to  log the  emotional  status of the
ser [11]  . Using different  streams from  smartphone  such as audio
nd accelerometer  can identify  different  activities  for  the  purpose
f life  logging  [12]  . 

Different  wearable  systems come with  different  strengths  and
eaknesses. The optical  motion  capturer  gather  the  user•s 3D pos-

ure  using a set of re”ective  markers  attached  on the  user•s body
2]  . However,  successful captures  require  the  markers  to  be vis-
ble  by the  cameras, which  is di�cult  when  the  user is partly
ccluded  by surrounding  objects. The accelerometer-based  [13,14]
nd the  magnetic-based  [15]  motion  capturers  overcome  this  con-
traint.  By applying  linear  discriminant  analysis (LDA) on a training
ction  database, one can recognize  the  contextual  meaning  of the
aptured  action  using signals from  accelerometers  and gyroscopes
16]  . By introducing  audio  signals captured  from  microphones  on
op  of accelerometers,  the  action  recognition  accuracy can be im-
roved  [17]  . 

Nevertheless, in  these systems, the  user has to  wear  the  sen-
ors and the  system requires  careful  calibration  before  actual  us-
ge, which  is not  suitable  for  autonomous  motion  monitoring.  On

he other  hand, video-based  activity  recognition  serves as an alter-
ative  that  utilizes  an easier setup process, which  will  be reviewed

n  next  section. 

.2. Video activity  recognition 

Traditional  video  activity  recognition  is performed  by analyzing
D color  images captured  by video  cameras and identifying  mov-

ng  objects  [18]  . By tracking  the  non-deformable  parts  of a human
ody, 2D human  postures  in  the  video  can be recognized  [19]  . It
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t  
s then  possible to  gather  high  level  information  such as human…
bject  interaction  [20]  and scene geometry  [21]  . The problem  of
hese color  image based algorithms  is the  relatively  low  precision
or  smaller  body  parts  and the  lack of 3D support,  making  them
nsuitable  for  analyzing  the  “ne  details  of complex  human  move-
ent.  

Depth  camera based motion  tracking  system such as the  Mi-
rosoft  Kinect  has become popular  in  recent  years. It  obtains  a
epth  image using structured  infrared  light.  Human  posture  can

hen  be tracked  by training  a decision  tree  using a depth  image
atabase to  identify  different  human  joints  [22,23]  . Another  class
f tracking  technique  is to  “t  a skeleton  structure  into  the  de-

ected  human  point  cloud  [24,25]  . Using depth  camera, tracking
an be performed  without  requiring  the  user to  wear  any equip-
ent,  which  is by de“nition  a natural  user interface  to  capture  hu-
an motion  in  real-time  [26]  . 

Apart  from  tracking  body  postures, a popular  research direc-
ion  is to  apply  depth  cameras to  identify  high  level  activities
sing different  f eatures such as 3D point  cloud  with  relative  lo-
ation  descriptors  [27]  and depth  silhouettes  [28,29]  . To enhance
ecognition  accuracy, skin  joint  features  that  use body  skin  color
o  identify  human  body  parts  are suggested [30]  . Shape features
ith  movement  information  that  are represented  and silhouette
istory  information  with  silhouettes  motion  variation  data are also
roposed  [31]  . Hybrid  features  that  combines  different  features  in-
luding  tracked  joint  movement  and surface shape take advantage
n the  diversity  of features  to  improve  the  system performance
32]  . Utilizing  translation  and scaling invariant  features  can en-
ances the  robustness  of the  activity  recognition  system [33]  . To
etter  handle  occlusions  between  joints,  rigid  body  parts  features

hat  consist  of binary  edge extraction  and ridge  data are used [5]  . 
Utilizing  Kinect  in  smart  environments  is a popular  research

opic.  It  can be applied  in  smart  home  to  monitor  older  people
nd detect  when  they  are likely  to  fall  [34]  , to  log daily  activities

35…37] , and to  monitor  residents  [29]  . It  is also applied  in  smart
�ce  to  evaluate  the  seating postures  [38,39]  . In the  area of er-
onomic,  Kinect  can be used for  evaluating  if  lifting  and carrying
otion  is detrimental  to  the  health  of workers  [40]  . Kinect  is also
pplied  in  rehabilitation  monitoring  [41]  and physiotherapy  [42]  . It

s found  to  be suitable  to  assess rehabilitation  performance  if  the
rror  bounds  are set [41]  . While  these researches attempt  to  uti-

ize  Kinect  in  smart  environments,  they  do not  formally  handle  the
oisy  input  problem.  It  is pointed  out  that  using Kinect  for  surveil-

ance or monitoring  applications  would  usually  require  mounting
he  device in  high  positions,  which  further  degrades the  tracking
erformance  [43]  . In this  work,  we propose a framework  to  deal
ith  the  noisy  data for  more  accurate motion  classi“cation.  

.3. Posture evaluation  

Posture evaluation  is the  process to  understand  the  nature  of
 given  posture.  While  geometric  rules  can be de“ned  to  evalu-
Fig. 1. The overview  of our  proposed  framew
te a posture  [44]  and thereby  to  classify it  [45]  , the  rules  have
o be manually  crafted  in  order  to  obtain  the  best system perfor-

ance. The domain  of the  rules  also need to  be selected based on
he  nature  of the  postures  to  represent  the  posture  context  e�-
iently  [46]  , making  it  ine�cient  to  be extended  to  a wide  variety
f movement.  

Data-driven  approaches overcome  the  di�culty  by evaluat-
ng  the  postures  with  prior  knowledge  obtained  from  a posture
atabase [47]  . Traditional  data-driven  algorithms  usually  assume
 consistent  [48]  or reliable  input  signal  [8]  in  order  to  evaluate
he  posture  with  respect to  the  database. However,  the  movement
racked  by a depth  camera is highly  noisy  due to  occlusion  and
is-tracking.  In order  to  apply  data-driven  algorithms  on depth

amera based systems, it  is important  to  assess the  reliability  of
he  input  signal  to  identify  the  noise [9]  . In this  work,  we adapt
he  kinematic-based  reliability  measurements  from  [9]  and pro-
ose new  terms  utilizing  the  color  and depth  images, which  en-
ances the  overall  system accuracy. 

A naive method  to  classify an observed posture  using data-
riven  approaches is to  “nd  a best match  in  the  posture  database
4]  . However,  the  result  will  easily be affected  by outliers  in  the
atabase. A better  approach  is to  search for  the  K nearest neigh-
ors and do the  classi“cation  based on the  set of retrieved  pos-

ures  [49]  . To avoid  the  high  run-time  cost for  searching neighbors,
aussian Process can be used to  produce  an abstract  representa-

ion  of the  posture  space [50]  . 
In this  work,  we propose a new  data-driven  framework  to  clas-

ify  Kinect  postures. It  includes  a max-margin  classi“cation  system
hat  takes into  account  the  reliability  of the  input  data. Different
rom  [9]  , which  applies  reliability  measurements  with  a lazy learn-
ng  algorithm  to  reconstruct  the  observed posture,  this  work  uti-
izes the  reliability  measurements  to  enhance posture  classi“cation
ccuracy from  noisy  input  data. 

. Overview  

Fig. 1 shows the  overview  of our  proposed  system. Since the
osture  from  Kinect  is noisy  and inaccurate,  we introduce  a set of
eliability  measurement  to  evaluate  the  reliability  of the  captured
oints  ( Section 4 ). The reliability  measurement  is computed  ac-
ording  to  the  consistency  of the  (1)  joint  displacement,  (2)  bone-
ength,  image pixels  around  the  joint  in  (3)  RGB image, and (4)
epth  image over  consecutive  frames. Such reliability  estimations
re then  integrated  with  the  captured  posture  data into  a max-
argin  classi“er  for  posture  classi“cation  ( Section 5 ). Our pro-
osed classi“cation  framework  will  learn  the  weighting  for  each
eliability  term  to  maximize  the  discriminative  power  of the  clas-
i“er.  During  run-time,  we monitor  and analyze the  user•s pos-
ure  in  real time  by computing  the  reliability  measurements  from
he captured  pose and classify it  using our  proposed  max-margin
lassi“cation  framework.  Depending  on the  application,  our  sys-
em  can be used to  classify different  types of movement,  or even
ork  for  robust  posture  classi“cation.  
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the  healthiness  status of a posture.  Finally,  we collect  annotated
human  motion  data using Kinect  and create a motion  database
( Section 6 ) for  training  the  classi“er.  

4. Reliability  measurement  

While  Kinect  can capture  3D skeletal  information  in  real-time,
the  tracked  human  motion  data are too  noisy  to  be used in  seri-
ous applications  such as health  monitoring  systems. Therefore, it  is
necessary to  identify  the  unreliable  joints  in  order  to  improve  the
classi“cation  accuracy. 

The reliability  of the  source data can be measured by a set of
heuristics.  On top  of the  existing  behavior  and kinematics  reliabil-
ity  terms  that  evaluate  the  movement  behavior  and the  segment
length  of the  skeleton,  respectively  [9]  , we design two  new  terms
that  utilize  the  color  and depth  image to  evaluate  extra  features. 

4.1. Behavior reliability  term 

The behavior  reliability  term  evaluates abnormal  behavior  of a
tracked  part,  which  is de“ned  based on the  amount  of high  fre-
quency  vibration  of the  detected  joint  position.  

Kinect  detects the  user posture  with  the  acquired  depth  image.
The position  of a joint  is determined  based on the  depth  pixels
that  are classi“ed  to  it  using a decision  tree  based algorithm  [22]  .
As a result,  when  some joints  are occluded, or when  they  are in-
correctly  recognized,  the  detected  positions  of the  parts  become
unstable  due to  the  lack of expected  features. By evaluating  the
high  frequency  vibration  of the  tracked  joints,  we can model  their
respective  reliabilities.  

Assuming  p i ( f ), p i ( f +  1) and p i ( f +  2) to  be the  3D position  of
a tracked  joint  i in  three  successive frames, we can calculate  the
displacement  vectors  of the  joint  in  frame  f and f +  1 as: 

d i ( f ) =  p i ( f +  1) Š p i ( f ) (1)

d i ( f +  1) =  p i ( f +  2) Š p i ( f +  1) (2)

Since human  movements  are smooth  in  nature,  the  displacement
vectors  of a joint  over  consecutive  frames should  be similar  and
consistent.  The inconsistency  between  the  displacement  vectors  of
a joint  will  result  in  high  frequency  of vibration  and it  can be eval-
uated  by the  acute angle calculated  by the  dot  product  between
the  two  displacement  vectors  in  consecutive  frames:  

� i ( j ) =  

�  
�  �  �  

�  �  �  

arccos 

�
d i ( f ) · d i ( f +  1) 

|| d i ( f ) ||||  d i ( f +  1) || 

�
if  || d i ( f ) || >  d min  and 

|| d i ( f +  1) || >  d min  

0 otherwise  

(3)

where  d min  is the  minimum  length  of an acceptable displacement
vector,  and is set to  3 cm in  our  experiment.  It  is used to  avoid  get-
ting  a large angle change when  the  joint  position  is almost  steady.

The behavior  term  is de“ned  as: 

Rb i ( f ) =  1 Š

max 

�
min  

� �  f b 
f = 0 � i ( f ) 

f b 
, � roof  

�
Š � ”oor  , 0 

�

� roof  Š � ”oor  
(4)

where  Rb i ( f ) �  [0.0, 1.0], f b is the  total  number  of frames we con-
sider  to  detect  vibration,  � ”oor  is an acceptable amount  of rotation
for  each frame,  � roof  is the  amount  of rotation  we consider  to  be
the  most  unacceptable.  Empirically,  we found  that  setting  f b =  3 ,
� ”oor  =  90 � , and � roof  =  135 � gives a good result.  

Notice  that  Kinect  works  best when  the  user is 6 feet away
from  the  camera and is facing  directly  to  it.  In many  workspace  en-
vironments,  it  is impossible  to  have such a setup due to  the  limita-
tion  of space. We found  that  the  postures  obtained  by Kinect  when
he camera is too  far/close,  or shooting  the  user in  an angle, usu-
lly  result  in  a higher  level  of noise. The behavior  term  described

n  this  section  can detect  such noise to  enhance the  usability  of
he  system. 

.2. Kinematics reliability  term 

The kinematics  term  evaluates the  reliability  of joints  based on
heir  kinematics  correctness, which  is de“ned  with  the  consistency
f segment  length.  

Kinect  recognizes joints  individually  when  determining  their
osition,  and does not  explicitly  maintain  the  kinematic  correct-
ess of the  resultant  postures. As suggested in  [51]  , the  length
f each body  limb  needs to  be constant  over  time  during  a real
uman  movement.  Therefore, when  the  position  of a joint  is in-
orrectly  determined,  the  corresponding  segment  length  will  be
hanged. Here, we evaluate  the  reliability  of a joint  based on the
orresponding  segment  length  difference  with  respect to  the  refer-
nce value. 

A pose initialize  process is usually  required  to  obtain  reference
alues of body  dimensions  [5,52]  . In [9]  , the  reference  segment
ength  is obtained  by requesting  the  user to  perform  prede“ned
ostures, such as a T-pose, in  order  to  accurately  recognize  all

oints.  However,  for  anonymous  tracking,  it  is impossible  to  ask in-
ividual  user for  initializing  the  system. Also, because of the  space

imitation,  the  depth  camera may be setup to  look  at the  user in
n angle, making  it  di�cult  to  accurately  obtain  the  positions  of all

oints.  Here, inspired  by Jalal et al. [52]  in  which  torso  area is ini-
ialized  using left  and right  extremes  values, we propose to  utilize
he  distance  between  the  left  and right  shoulder  joints  detected  by
inect  to  estimate  the  body  segment  length,  as the  shoulders  can
e tracked  accurately  in  a wide  range of shooting  angles. Based on

he  shoulder  width,  we evaluate  the  length  of other  segments with
he  segment  length  proportion  described  in  [53]  . 

In each pose, a joint  can connect  to  multiple  segments depend-
ng  on the  skeleton  structure,  such as the  hips  connecting  to  three
egments. Assuming  the  joint  i is connected  to  s part  _ total  body  seg-
ents,  for  each connecting  segment  s , the  segment  difference  ratio
t frame  f is calculated  as: 

 s ( f ) =  min  

�
abs (l s ( f ) Š l s _ ref  ) 

l s _ ref  
, 1 

�
(5)

here  l s _ ref  is the  reference  segment  length  and l s ( f ) is the  current
egment  length  for  segment  s at frame  f . 

The kinematics  reliability  value of a joint  is de“ned  as the  mean
egment  different  ratio  for  all  connecting  segments:  

k i ( f ) =  1 Š

�  s part  _ total  
s = 1 d s ( f ) 

s part  _ total  
(6)

here  Rk i ( f ) �  [0.0, 1.0]. The whole  kinematic  terms  calculation
rocess is summarized  in  Algorithm  1 . 

.3. Color image reliability  term 

The color  image term  evaluates the  reliability  of joints  based on
heir  closeness of gradient  features  between  two  adjacent  frames
n  the  RGB color  video.  

Since human  movements  are continues  in  nature,  the  appear-
nce of the  joints  in  adjacent  frames as shown  in  the  color
ideo  should  be visually  similar.  Dissimilar  joint  appearance across
rames usually  indicates  mis-tracked  joint  in  at least one of the
rames. In our  system, the  color  image reliability  of a joint  is com-
uted  by extracting  a square patch  of pixels  centered  at the  joint

rom  the  color  image, and evaluate  the  difference  in  color  across
rames. We convert  the  RGB pixel  into  gradient  representation  to
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Algorithm  1 Computing  the  kinematics  reliability  term.  

1: Given a data set D which  contains  skeletal  data, the  kinematics  

reliability  values associated with  each joint  are extracted  from  

each frame  (Section 4.2) 

2: for  each body segment do  

3: estimate  reference  body  segment  length  based on the  shoul-  

der width  

4: end  for  

5: for  each joint  do  

6: for  each connecting  body segment do  

7: compute  the  segment  difference  ratio  ( Eq. (5)  ) 

8:  end  for  

9: compute  the  kinematics  reliability  value as the  mean seg- 
ment  difference  ratio  of all  connecting  segments ( Eq. (5)  ) 

10:  end  for  
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solate  color  changes from  lighting  condition  differences.  We also
uantize  the  computed  gradient  into  eight  bins to  avoid  the  effect
f small  color  difference  error.  Example frames are shown  in  Fig. 2 ,

n  which  the  left  elbow  and left  wrist  are not  correctly  tracked  in
he  middle  column.  

For each tracked  joint  i at frame  f , the  color  patch  is repre-
ented by a vector  

patch i, f =  [  g 1 , g 2 , ..., g patch  _ size ]  (7)  

hich  concatenate  the  binned  gradient  g 1 to  g patch  _ size computed
rom  each pixel  within  the  patch. The color  image reliability  term
f joint  i is calculated  as the  cosine distance  between  two  corre-
ponding  patches extracted  from  two  consecutive  frames:  

c i ( f ) =  

	
1 Š

cpatch i, f · cpatch i, f + 1 

�  cpatch i, f ��  cpatch i, f + 1 �  



(8)  

here  Rc i ( f ) �  [0.0, 1.0], cpatch i , f and cpatch i, f + 1 are the  patches
xtracted  at joint  i in  frame  f and f +  1 , respectively.  

The size of the  color  patch  is set according  to  the  size of the
keleton  in  pixel  with  respect to  the  screen resolution.  Under  a
ypical  setup, that  is, an adult  user facing  the  Kinect  and standing
 m away from  it,  a patch  size of 27 by 27 pixel  works  very  well

n  the  resolution  of 640 by 480. Such a size can be dynamically
djusted  based on the  camera angle and position.  
ig. 2. Examples of image patches (shown  in  red squares) extracted  around  the body  joi
uch as the left  elbow  (in  the middle  column)  result  in  large difference  in  the patches
eferred  to the web  version  of this  article.)  
.4. Depth image reliability  term 

The depth  image term  evaluates the  reliability  of joints  based
n their  closeness of gradient  features  between  two  adjacent
rames in  the  depth  image sequence. 

The idea of the  term  is to  evaluate  if  there  is any sudden change
f depth  at the  detected  joint  position  across two  frames, which
sually  indicates  that  the  joint  is mis-tracked.  Similar  to  the  color

mage reliability  term,  we extract  a patch  of depth  image dpatch
entered  at a given  joint  and compare  such a patch  in  consecu-
ive  frames. Again, the  gradients  are quantized  into  eight  bins and
patch is composed by concatenating  the  binned  gradient  values
f the  pixels  within  the  patch. The depth  image reliability  term  of

oint  i is then  computed  by:  

d i ( f ) =  

	
1 Š

dpatch i, f · dpatch i, f + 1 

�  d patch i, f ��  d patch i, f + 1 �  



(9)  

here  Rd i ( f ) �  [0.0, 1.0], dpatch i , f and dpatch i, f + 1 are the  patches
xtracted  at joint  i in  frame  f and f +  1 , respectively.  

The advantage of introducing  the  color  and depth  image terms
n top  of the  behavior  and kinematics  terms,  is enabling  the  sys-

em  to  evaluate  the  reliability  of a joint  from  the  raw  data point
f view.  The major  weakness of the  behavior  and kinematics  terms

s that  they  cannot  distinguish  a correct  but  unstable  joint  from
 mis-tracked  joint.  Unstable  joints  contains  some usable informa-
ion,  but  mis-tracked  ones as shown  in  Fig. 2 should  not  be used.
he proposed  color  and depth  image terms  “ll  the  gap by ana-

yzing  low  level  image-based information,  in  which  we evaluate  if
 joint  resembles similar  features  across frames. Notice  that  since
is-tracked  joints  are usually  highly  unstable  in  Kinect,  the  im-
ge terms  only  compare  two  consecutive  frames. If  the  mis-tracked

oints  would  remain  at a “x  position  in  other  tracking  systems, a
onger  time  window  should  be considered.  

. Max-margin  classi“cation  with  reliability  measurement  

In this  section, we explain  our  proposed  posture  classi“cation
lgorithm  that  considers both  the  skeletal  features  (e.g., joint  posi-

ions,  relative  joint  positions)  and the  respective  reliability  terms.
ince the  reliability  of the  joint  is taken  into  account, our  classi“er

s more  robust  than  existing  methods  especially  for  noisy  data. 
nts  for  computing  the color  and depth  images reliability  terms.  Mis-tracked  joints  
. (For interpretation  of the  references to color  in  this  “gure  legend, the reader is 
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We adapt  the  max-margin  learning  framework  [54]  as our  clas-
si“er  as it  can directly  classify data in  which  some of the  features
are unavailable  in  each data instance. Traditional  max-margin  sys-
tems formulate  the  learning  process as maximizing  the  worst-case
instance  margin  in  the  training  data. In particular,  the  calculation
of the  margin  of each instance  is based on the  availability  of the
features, meaning  that  absent features  do not  contribute  to  the
classi“cation  process. This process allows  instances with  incom-
plete  features  to  be compared  and classi“ed  directly.  

The problem  of applying  traditional  max-margin  framework
to  our  problem  is that  joint  positions  detected  by Kinect  may
be available  but  incorrect  due to  sensor error.  Furthermore,  the
noise level  of different  joints  is different  according  to  the  type
of the  motion  performed,  making  it  di�cult  to  applying  pre-
de“ned  threshold  to  “lter  joint  with  low  reliability.  We therefore
formulate  the  instance  margin  calculation  as a feature  weight-
ing  process according  to  the  corresponding  reliability  measure-
ment.  This enables the  system to  determine  the  importance  of
a joint  based on its  reliability  in  order  to  achieve high  system
robustness. 

Here, we “rst  review  the  max-margin  classi“cation  framework
for  data with  absent features  [54]  in  Section 5.1 . We then  point
out  how  we adapt  it  to  classify data with  different  reliability  in
Section 5.2 . Finally,  due to  the  reliability  measurements  we intro-
duced, our  max-margin  framework  has more  system parameters
than  existing  ones. We explain  how  we design a solver  that  solves
the  system effectively  in  Section 5.3 . 

5.1. Max-margin  classi“cation  with  absent features 

Classifying data with  absent features  with  a max-margin  frame-
work  [54]  is based on a classical support  vector  machine  (SVM)
approach  [55]  : 

min  
w,� ,b 

1 

2 
�  w �  2 +  C 

n �  

i = 1 

� i 

subject  to  y i 

�
wx i +  b 


� 1 Š � i , i =  1 . . . n 

(10)

where  x i and y i are the  features  and label  of instance  i , C is the
tradeoff parameter  between  model  complexity  and accuracy, b is a
threshold  and � are slack variables  for  handling  training  instances
that  are linearly  non-separable.  In particular,  w is learned  by max-
imizing  the  margin  � � min  i y i (wx i +  b) /  �  w �  . 

When  handling  instances with  missing  features, however,  the
whole  feature  vector  x i will  contribute  to  the  margin  calculation  in
the  classi“er  training  process without  ignoring  the  absent features
(usually  the  missing  features  will  be replaced  by predicted  values
or simply  zeros). As a result,  the  performance  of the  learned  classi-
“er  will  be degraded. In order  to  classify data with  absent features,
Chechik et al. [54]  treat  each instance  in  its  own  subspace of the
full  feature  space by calculating  the  instance margin  � ( i ):  

� (i ) =  
y i w (i ) x i 

|| w (i ) || 
(11)

where  w (i ) contains  a subset of entries  in  w that  are correspond  to
the  valid  (i.e., non-absent)  features  in  x i . The geometric  margin  of
the  classi“er  is represented  by the  minimum  instance  margin:  

max  
w 

	
min  

i 

y i w (i ) x i 

|| w (i ) || 



(12)

The readers are referred  to  [54]  for  further  details.  

An important  design in  Eq. (12)  is that  the  score (i.e., y i w (i ) x i )
is normalized  according  to  the  availability  of features  (i.e., �  w (i ) �  )
of the  instance, allowing  the  system to  classify instances with  in-
complete  features. The equation  implicitly  increases the  weight  of
the  present  features, and absent features  would  not  contribute  to
the  margin  calculation.  
.2. Max-margin  classi“cation  with  reliability  measurement 

Here, we exploit  the  feature  weighting  design of traditional
ax-margin  classi“er  such that  it  can be adapted to  features  of
ifferent  reliability.  We formulate  our  classi“er  learning  problem
s maximizing  the  discriminative  power  by weighting  the  features
ccording  to  the  reliability  measurements.  

In our  framework,  the  vector  of weight  t i has the  same dimen-
ion with  the  feature  vector  in  an instance  i (i.e., a posture),  t  i , j is
he  weight  of a skeletal  feature  j and it  is calculated  as a weighted
um of the  corresponding  reliability  measurements:  

 i, j =  � b,i, j Rb i, j +  � k,i, j Rk i, j +  � c,i, j Rc i, j +  � d,i, j Rd i, j (13)

here  Rb i , j , Rk i , j , Rc i , j , Rd i , j are the  reliability  values of feature  j
n  instance  i , and � is vector  contains  the  coe�cients  of the  reli-
bility  terms.  Using a single  value to  represent  the  weight  allows
n e�cient  coupling  of weights  and features. Here, we learn  a set
f � for  each sample when  training  a classi“er.  

The instance  margin  is then  calculated  as: 

 i w 
t i 

�  t  i �  
x i (14)

n  which  the  weight  vector  t i is normalized  by �  t  i �  . As a result,
eatures  with  higher  reliability  values contribute  more  in  the  in-
tance margin  calculation.  

Finally,  the  classi“er  can be learned  by maximizing  the  discrim-
native  power  of the  max-margin  classi“er  to  separate two  differ-
nt  classes: 

max  
w,� ,b 

1 

�  w �  

subject  to  y i 

�
w 

t i 

�  t  i �  
x i +  b 


� 1 , 

t  i, j =  � b,i, j Rb i, j +  � k,i, j Rk i, j +  � c,i, j Rc i, j +  � d,i, j Rd i, j , 

0 � � { b,k,c,d} ,i, j � 1 , � { b,k,c,d} ,i, j �  � , 

0 � t  i, j � 1 . 

(15)

here  t i contains  the  reliability  measurements  of instance  i . The
bjective  function  in  Eq. (15)  is equivalent  to  minimizing  �  w �  2 

ithout  the  slack variables.  

With  the  solved values of the  support  vector  w and the  coe�-
ient  vector  � , the  label  of an instance  can be predicted  by com-
uting  the  sign of the  decision  score using:  

ign 

	
w 

t i 

�  t  i �  
x i +  b 



(16)

The classi“er  explained  above is a binary  classi“er.  For multi-
lass classi“cation,  the  framework  learns multiple  binary  classi“ers
nd select the  predicted  label  with  highest  score as the  “nal  re-
ults. 

.3. Max-margin  solver 

Given the  max-margin  classi“cation  with  reliability  measure-
ent  formulated  in  Section 5.2 , both  w and � need to  be opti-
ized.  However,  “nding  the  global  optimum  is a hard  problem

ince the  objective  function  is non-convex  because of the  depen-
ency of the  � values on w . Here, we propose a block  based opti-
ization  algorithm  that  iteratively  optimize  w and � [56]  to  max-

mize  the  discriminative  power.  To further  improve  the  classi“ca-
ion  performance,  we formulate  the  “nal  representation  of each in-
tance as latent  variables  which  will  be computed  when  learning
 max-margin  classi“er  using Latent  SVM [56]  . The details  of our
roposed  method  will  be given  below.  
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.3.1. Model inference 

Given w, our  method  computes  a latent  representation  of each
nstance  by “nding  � to  maximize  the  decision  score. This is done
y optimizing  the  entries  in  � for  each reliability  measurement  ac-
ording  to  a given  classi“er  w =  [  w 1 , . . . , w q ]  T : 

S(w, R i , x i ) =  max 
�

w 
t i 

�  t  i �  
x i 

subject  to  � b,i, j +  � k,i, j +  � c,i, j +  � d,i, j =  1 , 

0 � � { b,k,c,d} ,i, j � 1 , � { b,k,c,d} ,i, j �  � , 

i =  1 . . . n. 

(17)  

here  R i contains  the  reliability  values (i.e., Rb i , Rk i , Rc i and Rd i ) of
nstance  i , t  i is calculated  as in  Eq. (13)  , and x i contains  the  features
f instance  i . We constrain  the  sum of the  entries  in  � as 1 such
hat  t i is the  normalized  weighted  sum of the  associated reliability
easurements  for  each feature.  

.3.2. Learning 

Having  presented  the  calculation  of latent  representation  of
ach instance, we now  explain  how  w is obtained  by our  proposed
ax-margin  classi“cation  framework.  Similar  to  conventional  SVM

ormulation,  w is solved by:  

min  
w,b 

1 

2 
�  w �  2 +  C 

n �  

i = 1 

� i 

subject  to  y i (S(w, R i , x i ) +  b) � 1 Š � i , 

i =  1 . . . n, 0 � � i . 

(18)  

here  � i is slack variable  introduced  for  non-separable  training  in-
tances, S(w, R i , x i ) ( Eq. (17)  ) returns  the  decision  score of instance
 by multiplying  the  latent  representation  with  the  given  w, and C
s the  trade-off parameter,  which  is set as 1 in  our  experiments.  

By solving  Eqs. (18)  and ( 17 ) alternatively,  the  classi“er  and rep-
esentation  (i.e., the  latent  variable)  of each instance  will  be up-
ated and the  classi“cation  performance  will  be improved.  Since
 is a dependent  of the  latent  representation,  poor  choice of

nitial  conditions  of � in  the  latent  representation  results  in  lo-
al minima.  To tackle  this  problem,  the  classi“er  learning  process
ill  be performed  several times  ( maxT rainNum  =  20 in  our  exper-

ments)  by randomly  initializing  � to  solve Eq. (18)  . The classi“er
hat  produces the  minimum  value will  be chosen as in  previous
ork  [56]  . The whole  classi“er  learning  process is summarized  in
lgorithm  2 . 

lgorithm  2 Reliability-value  based max-margin  classi“cation.  

1: Given the  training  set X , the  reliability  values associated with
each joint  are extracted  from  each instance  (Section 4) 

2: for  i = 1 to  maxT rainNum  do  

3: randomly  initialize  �
4: repeat  

5: compute  latent  variables  to  represent  each instance  ( Eq.
(17)  ) 

6:  train  classi“er  w using the  latent  variables  ( Eq. (18)  ) 

7:  until  no change in  w 

8: end  for  

9: select the  classi“er  w which  produces the  minimum  value from
the  objective  function  in  Eq. (18)  

. Posture  database  creation  

In this  section, we explain  how  our  posture  is represented  in
he  database, and detail  what  kind  of posture  we have included  to
reate the  database. 
.1. Posture representation and capturing  

We use the  Microsoft  Kinect  to  capture  posture  data for  the
atabase, as it  is one of the  most  popular  depth  camera based mo-

ion  sensors. The Kinect  SDK [57]  provides  the  utility  to  record  the
epth  and color  images, and the  corresponding  posture  is tracked
y SDK function  calls. We manually  annotate  descriptions  such as
he  nature  of the  motion  and the  potential  risk  of injury  for  each
aptured  sequence. 

Each posture  P in  the  database is represented  by a vector  of 3D
oints:  

 =  [  p 1 , p 2 , . . . , p n ]  (19)

here  p i is the  3D location  of the  i th  joint  of the  user and n is
he  total  number  of joints.  Each posture  is normalized  by remov-
ng  the  global  3D translation  and rotation  along the  vertical  axis,
s the  nature  of most  postures  is de“ned  by local  joint  movement.
xamples of the  captured  scene and the  extracted  3D skeletal  in-

ormation  are shown  in  Fig. 3 . 
Since the  training  samples are extracted  from  motion  se-

uences, consecutive  frames tend  to  be similar.  We “lter  the
atabase by removing  similar  postures  base on the  Euclidean dis-

ances of the  3D joint  locations  as explained  in  [9]  . This allows
he database to  cover a wide  variety  of representative  postures
hile  being compact.  This also uni“es  the  density  of samples in

he  database. 

.2. Database construction  

In order  to  identify  postures  that  involve  health  hazards, we
apture  both  correctly  and incorrectly  performed  postures  in  differ-
nt  working  environments.  We follow  the  guidelines  produced  by

he  European Agency for  Safety and Health  at Work  [58]  to  capture
ovement  that  involves  potential  health  risk.  Both healthy  and un-
ealthy  postures  of 10 participants,  with  ages ranged from  21 to
5, are captured.  During  capturing,  the  users are given  instructions
n how  to  perform  the  postures. To avoid  real injury,  especially
hen  capturing  unhealthy  postures, extra  care has been taken  and

he users are given  time  breaks during  each capture.  We created
wo  databases focusing  on different  work  environments.  

The “rst  database involves  motion  of standing  and performing
and operations  on a work  bench, which  is very  common  in  “eld-
ased working  environments.  According  to  European Agency for
afety and Health  at Work  [58]  , one should  prevent  postures  in
hich  the  joints  are not  in  their  natural  position  to  avoid  potential

endons,  ligaments,  and nerves damage. For a correctly  performed
tanding  posture  at work,  the  neck should  keep vertical  and re-
axed, the  head and the  back should  maintain  an upright  position,
nd the  shoulder  should  be relaxed.  We follow  these guidelines  to
apture  a set of healthy  postures  performed  by multiple  people.
e also design the  unhealthy  postures  including  (A-1)  working  on

 short  bench in  which  the  user has to  bend the  head, neck and
ack, (A-2)  working  on a short  bench that  is far  away from  the
ser, and the  user has to  bend the  back and stretch  the  body, (A-3)
orking  on a work  bench that  is placed at the  side of the  user, and

he user has to  twist  the  back and raise the  arms. We summarize
he  details  of the  posture  classes in  Table 1 to  indicate  the  body
arts  are involved.  The acute angles between  the  body  part  (i.e.,

he  bone) and the  vertical  axis are computed  from  our  dataset. For
he  torso,  the  angle of rotation  about  the  vertical  axis is reported.
xamples of 3D pose and the  corresponding  RGB video  are shown

n  Fig. 4 and different  views  of the  standing  poses are illustrated
n  Fig. 5 . 

The second database involves  motion  of sitting  on a chair  and
orking  on a work  bench, which  is a usual posture  for  o�ce  work-
rs. Similar  to  the  standing  posture,  one should  prevent  bending
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Fig. 3. Examples of postures  captured  in  an o�ce  environment.  (a) Healthy  postures, (b) and (c) are considered  as unhealthy  postures. 

Table 1 
Details  of the  dataset of standing  poses used in  the experiments.  

Dataset Action  class Pose type  Body parts  (angle)  

Neck Back Torso 

Standing  Stand straight  Healthy  Vertical  (15 °) Vertical  (13 °) Vertical  (0 °) 
(A-1)  Bend back Unhealthy  Bended (50 °) Bended (40 °) Relaxed (0 °) 
(A-2)  Bend and extend  Unhealthy  Relaxed (35 °) Bended (30 °) Relaxed (0 °) 
(A-3)  Twist  body  Unhealthy  Vertical  (15 °) Vertical  (18 °) Twisted  (15 °) 

Table 2 
Details  of the  dataset of sitting  poses used in  the experiments.  

Dataset Action  class Pose type  Body parts  (angle)  

Neck Back 

Sitting  Straight  back Healthy  Vertical  (15 °) Vertical  (10 °) 
(B-1)  Bend neck Unhealthy  Bended (40 °) Relaxed (15 °) 
(B-2)  Bend back Unhealthy  Vertical  (40 °) Bended (50 °) 
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the  head, neck and back [58]  . Apart  from  the  correctly  performed
postures, we capture  incorrect  postures  including  (B-1)  bending
the  neck when  working,  and (B-2)  bending  the  back when  work-
ing. Since the  user is in  a sitting  pose and is working  on a work
bench, the  lower  body  is usually  not  visible  to  the  depth  cameras.
We therefore  only  capture  and evaluate  the  posture  of the  upper
body  in  this  database. The details  are listed  in  Table 2 . Again, the
acute angles between  the  body  part  (i.e., the  bone) and the  vertical
axis are computed  from  our  dataset. Examples of 3D pose and the
corresponding  RGB video  are shown  in  Fig. 3 and different  views
of the  sitting  poses are illustrated  in  Fig. 6 . 

7. Experimental  results  

In this  section, we evaluate  the  effectiveness  of our  proposed
method  by classifying  postures  captured  from  two  working  envi-
ronments  and two  benchmark  datasets„MSR  Action3D  [59]  and
Florence 3D [60]  . 

In our  experiment,  we trained  max-margin  classi“ers  explained
in  Section 5.2 to  classify the  postures  into  different  classes. We car-
ried  out  leave-one-subject-out cross validation,  in  which  we used
postures  from  one of the  participants  as testing  data and all
he rest postures  as training  data in  our  healthy  pose datasets
 Sections 7.3 and 7.4 ). The validation  was repeated  for  all  different
ombinations  of the  training  datasets. For the  benchmark  datasets,
e  followed  the  data split  as in  the  state-of-the-art  approaches
nd the  details  will  be given  in  Sections 7.5.1 and 7.5.2 . Finally,  we
alculated  the  average accuracy, which  is de“ned  as the  number  of
amples correctly  classi“ed  divided  by the  total  number  of testing
amples. 

.1. Datasets details 

The details  of the  datasets used in  the  experiments  are sum-
arized  in  Table 3 . To obtain  a fair  comparison  with  other  ap-
roaches, we used the  same data splitting  (i.e., training  and testing
ets) among all  approaches in  each experiment.  

For our  healthy  pose datasets, 20 and 10 joints  are tracked  in
ach frames for  the  standing  and sitting  datasets, respectively.  For
oth  the  RGB and depth  videos, the  resolutions  of each frame  are
oth  640 × 480 pixels.  As stated in  Table 3 , 10 subjects were  in-
ited  to  perform  various  kind  of actions  in  an o�ce  environment.
heir  age range is 21…35 years old. 

.2. Experimental settings 

To fully  evaluate  the  performance  of different  parts  of our
ramework,  we design four  setups as below:  

Baseline  classi“cation:  The baseline posture  classi“cation
ethod  does not  consider  the  reliability  of the  captured  3D skele-

al  information,  which  is comparable  to  existing  motion  classi“ca-
ion  algorithms.  In other  words,  the  feature  vectors  is de“ned  as
he  positions  of all  joints  (i.e., joint  positions)  and the  relative  po-
itions  between  every  pairs  of joints  (i.e., relative  joint  positions)
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Fig. 4. Examples of postures  captured  in  an o�ce  environment.  (a) is a healthy  pose, and (b)…(d) are considered  as unhealthy  poses. 

Fig. 5. Showing  the captured  standing  poses in  different  view  angles. 
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Fig. 6. Showing  the captured  sitting  poses in  different  view  angles. 

Table 3 
Details  of all  the  datasets used in  the experiments.  

Dataset Number  of 
subjects 

Number  of 
classes 

Size Time duration  (min)  
(approx.)  

Training  Testing 

Standing  10 4 1722 poses 2869 poses 6 
Sitting  10 3 1621 poses 2702 poses 5 
MSR Action3D  [59]  10 20 284 motions  273 motions  25 
Florence 3D [60]  10 9 109 motions  106 motions  4 
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as used in  [61]  . Comparing  the  proposed  method  to  the  baseline
method  can demonstrate  the  accuracy improvement  by using reli-
ability  measurements.  

Individual  reliability  terms  classi“cation:  To show  the  per-
formance  of individual  reliability  measurement,  we train  the  four
max-margin  classi“ers  by using the  reliability  term  independently.
The classi“cation  is performed  by:  

min  
w,b 

1 

2 
�  w �  2 +  C 

n �  

i = 1 

� i 

subject  to  y i 

	
w 

R i 

�  R i �  
x i +  b 



� 1 Š � i , 

i =  1 . . . n, 0 � � i . 

(20)

where  R i contains  one reliability  term  (i.e., Rb , Rk , Rc or Rd ) of all
features  in  instance  i . 
Equal  weight  reliability  terms  classi“cation:  To show  the  ac-
uracy improvement  of optimizing  the  weight  for  the  reliability
erms  in  Section 5.3 , we setup a naive system of using all  four  re-
iability  terms  with  the  same weight:  

min  
w,b 

1 

2 
�  w �  2 +  C 

n �  

i = 1 

� i 

subject  to  y i 

�
w 

Rall i 
�  Rall i �  

x i +  b 

�
� 1 Š � i , 

i =  1 . . . n, 0 � � i 

where  Rall i =  0 . 25 Rb i +  0 . 25 Rk i +  0 . 25 Rc i +  0 . 25 Rd i 

(21)

Variable  weight  reliability  terms  classi“cation:  Finally,  we
how  the  performance  of our  proposed  method  to  “nd  optimal
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Table 4 
Details  of our  healthy  posture  datasets used in  the experiments.  

Dataset Action  class Pose type  Size (poses) 

Standing  Stand straight  Healthy  459 
(A-1)  Bend back Unhealthy  469 
(A-2)  Bend and extend  Unhealthy  521 
(A-3)  Twist  body  Unhealthy  463 

Sitting  Straight  back Healthy  669 
(B-1)  Bend neck Unhealthy  602 
(B-2)  Bend back Unhealthy  531 

Table 5 
Accuracy in  classifying  postures  in  the standing  to work  experiment.  

Method  Average % 
accuracy 

Joint positions  80.84 
Relative joint  positions  (RJP) [61]  86.32 
Lie group  representation  [62]  84.90 
Moving  pose [63]  81.79 
Moving  pose [63]  with  pose normalization  and noise removal  81.04 

Proposed RJP with  Rb only  85.72 
RJP with  Rk only  86.32 
RJP with  Rc only  86.44 
RJP with  Rd only  85.34 
RJP with  Rb , Rk , Rc and Rd „equal  weight  85.61 

RJP with  Rb , Rk , Rc and Rd „variable  weight  88.67 
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Table 6 
Accuracy in  classifying  postures  in  the sitting  to work  experiment.  

Method  Average % 
accuracy 

Joint positions  66.67 
Relative joint  positions  (RJP) [61]  70.58 
Lie group  representation  [62]  71.41 
Moving  pose [63]  69.94 
Moving  pose [63]  with  pose normalization  and noise removal  68.55 

Proposed RJP with  Rb only  71.72 
RJP with  Rk only  72.57 
RJP with  Rc only  71.57 
RJP with  Rd only  72.25 
RJP with  Rb , Rk , Rc and Rd „equal  weight  72.60 

RJP with  Rb , Rk , Rc and Rd „variable  weight  79.45 
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eights  for  the  reliability  terms  to  improve  the  classi“cation  per-
ormance  by alternatively  solving  Eqs. (18)  and ( 17 ). 

.3. Standing to perform hand operations on a work  bench 

Here, we perform  leave-one-subject-out classi“cation  on our
tanding  to  work  motion  database, which  includes  healthy,  A-1, A-
, and A-3 postures  as explained  in  Section 6.2 . Example postures
re shown  in  Fig. 4 and details  of the  data used in  the  experiment
an be found  in  Table 4 . On average, 1722 and 2869 postures  were
sed as training  and testing  data in  each classi“cation  trial.  The

eature  vector  size of the  joint  position  and relative  joint  position
eatures  are 60-d  and 570-d,  respectively.  The average classi“cation
ccuracies are shown  in  Table 5 . 

According  to  the  results:  

€ The variable  weight  classi“er  with  RJP features  outperforms  the
classi“er  with  the  RJP feature  by 2.35%. This shows that  the  use
of reliability  measurements  can enhance classi“cation  accuracy.

€ The variable  weight  classi“ers  with  RJP features  outperforms
the  equal weight  classi“ers  by 3.06%. This shows that  the
weight  optimization  algorithm  enhances the  system accuracy. 

€ In all  tests, the  variable  weight  classi“er  performs  better  than
all  of the  individual  reliability  term  classi“ers.  This supports  our
algorithm  of using multiple  reliability  terms.  

€ The variable  weight  classi“er  with  RJP features  outperforms  the
state-of-the-art  approaches Lie group  representation  [62]  and
moving  pose [63]  by 3.77% and 6.70%, respectively.  This high-
lights  the  effectiveness  of our  proposed  variable  weight  classi-
“er.  

The reliability  measurements  are estimation  of the  true  relia-
ility.  While  they  correctly  evaluate  the  joints  in  general, individ-
al terms  may be inaccurate  under  speci“c  situations.  This ex-
lains  why  the  classi“cation  accuracy drops  for  some individual

erm  classi“ers  comparing  to  the  classi“er  using relative  joint  po-
ition  only.  Our proposed  method  has the  strength  of combining
ultiple  reliability  terms,  such that  we can tolerance  errors  in  in-
ividual  terms  and produce  consistent  results.  
.4. Sitting on a chair and working  on a work  bench 

Here, we perform  evaluation  on the  sitting  to  work  posture
atabase, which  includes  healthy,  B-1 and B-2 postures  as ex-
lained  in  Section 6.2 . Example postures  can be found  in  Fig. 3
nd details  of the  data used in  the  experiment  can be found  in
able 4 . On average, 1621 and 2702 postures  were  used as training
nd testing  data in  each leave-one-subject-out classi“cation  trial.
he feature  vector  size of the  joint  position  and relative  joint  posi-

ion  features  are 30-d  and 135-d,  respectively.  The average classi“-
ation  accuracies are shown  in  Table 6 . 

According  to  the  results:  

€ Our variable  weight  classi“er  with  RJP features  has made a sig-
ni“cant  improvement  over  the  classi“er  with  RJP features  only.
Accuracy is enhanced by 8.87%. 

€ The variable  weight  classi“er  outperforms  equal weight  classi-
“er  by 6.85%, supporting  our  weight  optimization  algorithm.  

€ The variable  weight  classi“er  outperforms  all  single  reliability
term  classi“ers  in  both  tests, supporting  our  algorithm  of using
all  four  terms.  

€ All  of the  single  reliability  term  classi“ers  with  RJP features
perform  better  than  the  classi“er  with  RJP features  only.  This
shows that  accuracy is enhanced by reliability  measurement  in
general. More  discussion  about  this  can be found  in  Section 8 . 

€ The variable  weight  classi“er  and all  of the  individual  reliability
term  classi“ers  outperform  the  state-of-the-art  approaches Lie
group  representation  [62]  and moving  pose [63]  by 0.16%…8.04
and 3.02%…9.51%, respectively.  This highlights  the  effectiveness
of our  proposed  method.  

.5. Postures of different  semantic meaning from benchmark datasets 

Here, we show  that  our  proposed  algorithm  can enhance the
ccuracy of movement  semantic  classi“cation.  We utilize  the  3D
keletal  data in  the  MSR Action3D  dataset [59]  and Florence 3D
ctions  dataset [60]  in  Sections 7.5.1 and 7.5.2 , respectively.  

.5.1. MSR Action3D dataset 
The dataset contains  20 action  classes and each action  is per-

ormed  by 10 subjects with  2…3 trials,  and 557 motion  sequences
ere  used in  the  experiment  as in  [61]  . We follow  [61]  to  conduct
 cross subject  test  by classifying  motions  from  20 action  classes:
igh arm wave, horizontal  arm wave, hammer, hand catch, forward
unch, high throw,  draw  x, draw  tick, draw  circle, hand clap, two
and wave, side-boxing, bend, forward  kick, side kick, jogging, ten-
is swing, tennis serve, golf swing, pickup and throw  . The motions  of
alf  of the  subjects are used in  training  and the  rest are used as

esting  data. 
We classify the  motions  by training  the  proposed  binary  clas-

i“er  in  a one-versus-all  manner.  Since the  length  of the  motions
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Table 7 
Accuracy in  classifying  postures  in  the MSR Action3D  [59]  dataset with  
20 action  classes. 

Method  Average % 
accuracy 

Joint positions  87 .74 
Relative joint  positions  (RJP) [61]  88 .23 
Bag of 3D points  [59]  74 .70 
Histogram  of 3D joints  [65]  78 .97 
Shape and motion  features  [66]  82 .10 
EigenJoints [67]  82 .30 
Joint angle similarities  [68]  83 .53 
Actionlet  ensemble [61]  88 .20 
Spatial and temporal  part-sets  [69]  90 .22 
Covariance descriptors  on 3D joint  locations  [70]  90 .53 
Random forests [71]  90 .90 
Moving  pose [63]  91 .70 
Lie group  representation  [62]  92 .46 

Proposed RJP with  Rb only  89 .88 
RJP with  Rk only  90 .70 
RJP with  Rd only  88 .81 
RJP with  Rb , Rk and Rd „equal  weight  90 .39 

RJP with  Rb , Rk and Rd „variable  weight  93 .36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 
Accuracy in  classifying  postures  in  the Florence 3D [60]  dataset with  
nine  action  classes. 

Method  Average % 
accuracy 

Protocol  of [62]  „Half…half  data split  
Joint positions  85 .44 
Relative joint  positions  (RJP) [61]  89 .66 
Moving  pose [63]  81 .42 
EigenJoints [67]  87 .28 
Lie group  representation  [62]  90 .88 

Proposed RJP with  Rb only  86 .95 
RJP with  Rk only  89 .76 
RJP with  Rb and Rk „equal  weight  89 .97 
RJP with  Rb and Rk „variable  weight  93 .29 

Protocol  of [60]  „Leave-one-subject-out  
Joint positions  84 .69 
Relative joint  positions  (RJP) [61]  91 .42 
NNBB +  parts  +  time  [60]  82 .00 
EigenJoints [67]  89 .53 
LARP +  TSRVF [72]  89 .50 
LARP +  mfPCA [72]  89 .67 
Elastic shape analysis [73]  89 .67 
Taha et al. [74]  96 .20 

Proposed RJP with  Rb only  91 .08 
RJP with  Rk only  91 .75 
RJP with  Rb and Rk „equal  weight  91 .75 

RJP with  Rb and Rk „variable  weight  98 .33 
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are not  equal, we temporally  align  each motion  to  a class template
motion  which  is having  the  minimum  variance  with  all  other  pos-
itive  training  motions  in  each class. Then, to  reduce the  temporal
dimensionality  of the  motions,  we extract  representative  keyframes
(17 keyframes  in  our  experiment)  to  represent  the  class template
using Frame Decimation  [64]  . Next,  all  training  data (i.e., posi-
tive  and negative)  are aligned  to  the  class template  by dynamic
time  warping  (DTW) and we train  a classi“er  using the  temporally
aligned  training  data in  each class. When  classifying  a testing  mo-
tion,  we temporally  align  the  testing  motion  to  all  class templates
and compute  the  decision  value using the  trained  classi“er  in  each
class. The feature  vector  representing  each motion  is created by
concatenating  the  temporally  aligned  frame-based  features. On av-
erage, the  number  of motions  for  training  is 284 and that  of test-
ing  is 273. Since only  the  skeletal  data and depth  image sequences
are available  in  this  dataset, we can only  calculate  three  reliabil-
ity  terms  Rb , Rk , and Rd in  our  experiments.  The accuracy of the
classi“ers  is shown  in  Table 7 . 

According  to  the  results:  

€ Our variable  weight  classi“er  with  RJP features  has made an
signi“cant  improvement  over  the  classi“er  with  RJP features
only.  Accuracy is enhanced signi“cantly  by 5.13%. 

€ The variable  weight  classi“er  outperforms  equal weight  classi-
“er  by 2.97%, showing  the  effectiveness  of our  weight  optimiza-
tion  algorithm.  

€ The variable  weight  classi“er  outperforms  all  single  reliability
term  classi“ers  by 2.66%…4.55%, supporting  our  algorithm  of us-
ing  all  three  terms.  

€ All  of the  single  reliability  term  classi“ers  perform  better  than
the  classi“er  with  RJP features  only.  This shows that  accuracy
is enhanced by reliability  measurement  in  general. More  dis-
cussion about  this  can be found  in  Section 8 . 

€ Even though  the  state-of-the-art  approaches such as Lie group
representation  [62]  and moving  pose [63]  achieved very  high
performance  in  this  dataset, our  variable  weight  classi“er
achieves an even better  result  by taking  into  account  the  re-
liability  measurement  in  motion  classi“cation.  

When  compared  with  the  Lie group  representation  [62]  on the
MSR Action3D  dataset, our  proposed  variable  weight  optimizing
approach  outperforms  the  previous  method  with  a smaller  mar-
gin  than  other  experiments  in  this  paper. It  is because the  motions
are captured  in  higher  quality  in  general  when  compare  with  other
atasets used. In particular,  all  motions  are recorded  in  a front-
acing  manner  and the  subjects are in  standing  pose without  occlu-
ion by other  objects. As a result,  the  motions  are in  higher  quality
nd there  is less room  for  improvement  by analyzing  the  joint  ac-
uracy in  this  dataset. Nevertheless, our  method  still  outperforms
he state-of-the-art  approaches and this  highlight  the  robustness
nd consistency  of our  proposed  method.  

.5.2. Florence 3D Actions dataset 
In this  experiment,  we evaluate  the  accuracy of classifying  mo-

ions  from  the  skeleton  data in  the  Florence 3D Actions  dataset
60]  . The dataset contains  nine  action  classes: wave, drink  from a
ottle, answer phone, clap, tight  lace, sit down, stand up, read watch,
ow . Each action  which  is performed  by 10 subjects with  2…3 tri-
ls, and 215 motion  sequences were  used in  the  experiment  as in
60]  . 

We follow  [62]  to  classify motions  from  all  nine  action  classes
y using the  motions  of half  of the  subjects as training  and the  rest
s testing  and follow  [60]  to  perform  leave-one-subject-out  classi-
cation,  and report  the  average classi“cation  accuracy. Similar  to
ection 7.5.1 , we classify the  motions  by training  the  proposed  bi-
ary  classi“er  in  a one-versus-all  manner.  We also “nd  the  class

emplate motion  (with  nine  keyframes)  and all  training  and testing
ata are aligned  to  the  class template  by DTW as explained  in  last
ection. On average, the  number  of motions  for  training  is 109 and
hat  of testing  is 106. Since only  the  skeletal  data are available  in
his  dataset, we can only  calculate  two  reliability  terms  Rb and Rk
n  our  experiments.  The results  are shown  in  Table 8 . 

According  to  the  results,  in  the  experiments  using the  half…half
ata split  setting  as in  [62]  : 

€ Our variable  weight  classi“er  with  RJP features  has made an
signi“cant  improvement  over  the  classi“er  with  RJP features
only  by 3.63%. 

€ The variable  weight  classi“er  signi“cantly  outperforms  equal
weight  classi“er  by 3.32%, showing  the  effectiveness  of our
weight  optimization  algorithm.  

€ The variable  weight  classi“er  outperforms  all  single  reliability
term  classi“ers  by 3.53%…6.34%, supporting  our  algorithm  of us-
ing  all  two  terms.  
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€ Our variable  weight  classi“er  out-perform  the  state-of-the-art
approaches such as Lie group  representation  [62]  and moving
pose [63]  by 2.41% and 11.87%, respectively.  This highlights  the
effectiveness  of our  proposed  method.  

In the  experiments  using the  leave-one-subject-out  data split
etting  as in  [60]  , the  results  also showed  the  same pattern  as our
roposed  variable  weight  classi“er  outperforms  all  single  reliabil-

ty  term  classi“er  as well  as existing  approached. This highlight  the
onsistency  and robustness  of our  method  across different  experi-
ent  settings.  

. Discussion  and  conclusions  

In this  paper, we presented  a data-driven  framework  that  con-
iders the  reliability  of the  source data to  classify postures  cap-
ured  from  depth  cameras. We propose new  reliability  terms
o better  evaluate  the  features, and present  a customized  max-

argin  classi“cation  framework  that  takes in  the  measurements.
ur framework  can classify the  subtle  different  between  healthy
nd unhealthy  postures  in  a workplace  environment.  We made our
otion  database available  to  public  usage in  order  to  facilitate  fur-

her  research in  this  area. 
Since the  postures  captured  by Kinect  is incomplete  and noisy

ue to  occlusion,  it  is proposed  to  reconstruct  the  unreliable  joints
sing prior  knowledge  [9]  . A traditional  method  of posture  clas-
i“cation  is to  evaluate  the  reconstructed  posture.  However,  since
he  reconstruction  process involve  modifying  unreliable  features,
t  introduces  another  major  source of error.  We opt  for  a max-

argin  classi“cation  framework,  which  evaluates posture  consid-
ring  joints  with  high  reliability  more,  and do not  require  altering

he  posture.  

As a common  problem  of data-driven  approaches, if  there  is no
osture  similar  to  the  observed one in  the  database, our  method
ay fail.  This is because we do not  have the  knowledge  to  accu-

ately  classify the  posture.  This could  happen if  the  user has a sig-
i“cant  different  body  size or segment  length  proportion.  In the

uture,  we would  like  to  explore  motion  retargeting  techniques  to
etarget  the  observed posture.  

Apart  from  unhealthy  postures, moving  rapidly  or keeping  the
ody  static  for  extensive  long  duration  can also result  in  injury.  To

dentify  these kind  of movements,  the  spatio-temporal  information
f the  motion  has to  be considered.  In order  to  e�ciently  classify

ong  duration  of movement,  abstraction  in  the  temporal  domain
ay also be needed. We are interested  to  explore  this  area in  the

uture  to  broaden  the  scope of our  classi“cation  algorithm.  

This research demonstrates  how  our  framework  can be applied
n  smart  environments  to  identify  incorrectly  performed  working
osture.  There are other  motions,  such as wheelchair  handing,  ”oor
weeping  and window  cleaning,  that  have a high  risk  of injury.  As
 future  work,  we wish  to  enhance the  database to  include  a wide
ariety  of motions.  Apart  from  capturing  data ourselves, we would
ike  to  set up a standard  format  for  capturing  different  types of

otion  in  the  topic  of workspace  health  and safety, such that  in-
erested  researchers can contribute  and share captured  motions.  
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