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Smart environments and monitoring systems are popular research areas nowadays due to its potential
to enhance the quality of life. Applications such as human behavior analysis and workspace ergonomics
monitoring are automated, thereby improving well-being of individuals with minimal running cost. The
central problem of smart environments is to understand what the user is doing in order to provide the
appropriate support. While it is dicult to obtain information of full body movement in the past, depth
camera based motion sensing technology such as Kinect has made it possible to obtain 3D posture with-
out complex setup. This has fused a large number of research projects to apply Kinect in smart environ-
ments. The common bottleneck of these researches is the high amount of errors in the detected joint
positions, which would result in inaccurate analysis and false alarms. In this paper, we propose a frame-
work that accurately classi‘es the nature of the 3D postures obtained by Kinect using a max-margin clas-
si“er. Different from previous work in the area, we integrate the information about the reliability of the
tracked joints in order to enhance the accuracy and robustness of our framework. As a result, apart from
general classifying activity of different movement context, our proposed method can classify the subtle
differences between correctly performed and incorrectly performed movement in the same context. We
demonstrate how our framework can be applied to evaluate the useres posture and identify the postures
that may result in musculoskeletal disorders. Such a system can be used in workplace such asoces and
factories to reduce risk of injury. Experimental results have shown that our method consistently outper-
forms existing algorithms in both activity classi“cation and posture healthiness classi“cation. Due to the
low cost and the easy deployment process of depth camera based motion sensors, our framework can be
applied widely in home and oce to facilitate smart environments.

© 2016 The Authors. Published by Elsevier Inc.
This is an open accessarticle under the CCBY license (http://creativecommons.org/licenses/by/4.0/ ).

1. Introduction

loskeletal disorders. A smart environment with an automatic pos-
ture monitoring system is a potential solution to save the high cost

One of the main purposes of smart environments and monitor-
ing systems is to enhance the quality of life. On one hand, by un-
derstanding the needs and intention of the user, smart systems can
provide the appropriate support. On the other hand, by monitoring
the movement behavior of the user, these systems can alert the
user in dangerous situations, such as performing movement that
would result in injury. In particular, according to the Health and
Safety Executive Annual Statistics Report for Great Britain [1], more
than 1.1 million cases of work-related ill health were reported be-
tween 2011 and 2012, in which more than 39% belongs to muscu-

Corresponding author.
E-mail address: edmond@comp.hkbu.edu.hk (E.S.L. Ho).

http://dx.doi.org/10.1016/j.cviu.2015.12.011

of workplace injury and ill health.

One major challenge of a smart environment is to understand
what the user is doing, in order to decide how to react properly
to the useres behavior. Motion capturing is a traditional method to
obtain the useres posture [2]. However, most of the existing tech-
nigues such as the optical motion capturing system require care-
ful setup and calibration. These systems usually require the user
to wear special devices on the body, making it dicult to be de-
ployed and used in daily life environments. Alternatively, identify-
ing human posture with traditional 2D video cameras can be per-
formed using computer vision techniques [3]. However, because of
the lack of details in the source video, as well as the 3D informa-
tion of joints, only bigger limbs such as the body trunk and the

1077-3142/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ).
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legs can be identi‘ed and evaluated. This greatly reduces the ac-
curacy especially for evaluating subtle posture differences.

Recently, motion sensor with depth camera such as the Mi-
crosoft Kinect has shown its effectiveness in tracking 3D human
posture in real-time [4]. Its advantage is that it can track 3D hu-
man posture without requiring the user to wear any special equip-
ment. The low cost of the hardware camera, as well as the easy
setup of the tracking system, also make it preferable to be used
in daily indoor environment such as oce and home. By pro-
cessing the captured depth image, it becomes possible to iden-
tify depth-based edge extraction and ridge data, which are used
to track human body parts [5]. However, unsupervised approaches
require careful algorithm design and may not be easily general-
ized. To solve the problem, anatomical landmarks trained by sam-
ple data using random forests are used. The body skeleton is rec-
ognized by analyzing the depth silhouettes of the user and locat-
ing the anatomical landmarks [6]. However, run-time detection of
such landmarks is not always accurate, which results in degrading
the activity recognition accuracy. Similarly, utilizing the skeleton
recognized by Kinect for action recognition suffer from the same
problem, as the recognized joint can be different from the trained
data due to occlusions, which results in noisy skeletons [7]. Previ-
ous motion analysis algorithms that assume a reliable input stream
do not work well with Kinect, as the tracked joints returned by the
depth camera could be wrong [8]. The main focus of this work is to
propose new methods to account for the accuracy of the skeleton,
such that activity recognition can be more accurate.

We propose a new posture classi“cation framework for Kinect,
which has an improved accuracy over previous algorithms. To
cope with the noisy input posture, we design a set of reliability
measurement [9] to evaluate how reliable the tracked joints are.
The more reliable joints then contribute more in a max-margin
classi“cation system, which is used to classify postures of different
context. Our framework allows a smart environment to understand
what the user is doing from the noisy data obtained by Kinect.
Due to the improved accuracy, the system can even classify the
subtle difference between healthily and unhealthily performed
postures, such as operating equipment with postures that may lead
to injury. This facilitates automatic posture monitoring for work-
place, which can alert the user whenever an unhealthy posture
is performed. Since our method is robust, affordable and easily
deployable, it is a preferable solution for smart environments and
monitoring  systems.

To facilitate further research in the “eld, the posture healthi-
ness database created in this research will be made available to
the public. Up to now, such a kind of database is not openly avail-
able. The comprehensive database consists of more than 8000 3D
postures for different behaviors such as working at an oce desk
in sitting and standing postures, together with the source 3D depth
images and color images obtained from the depth camera. It is also
carefully annotated with information of the behavior, such as the
nature of the movement and the potential health risks.

1.1. Contributions

There are three major contributions in this paper:

dah

We propose a new framework to monitor and classify user pos-
tures. It evaluates the reliability of the observed joints from
Kinect, and applying such reliability as weights in a customized
max-margin classi“er to robustly classify noisy posture data.
Our system can accurately distinguish the subtle differences be-
tween healthy and unhealthy postures.

We propose a set of new reliability measurement terms on top
of those presented in [9] to enhance the accuracy of joint re-
liability estimation. Apart from the traditional kinematic-based
reliability measurements, we make use of the color and depth

a

images from Kinect to identify joint that are wrongly tracked or
corrupted by noise.

€ We implement the “rst open access motion database targeting
at posture healthiness. The database includes correctly and in-
correctly performed postures for different work purposes, an-
notated posture information, as well as depth and color images
obtained from the depth camera.

1.2. Outline

In the rest of this paper, we will “rst review the related work
in Section 2. An overview of our proposed method will be given in
Section 3. Next, we explain how to evaluate the reliability of each
tracked joint by our proposed reliability measurements (Section 4).
A max-margin classi“cation framework which takes into account
the reliability of each joint will be introduced in Section 5. We
then explain how our motion database is constructed (Section 6)
and present experimental results in Section 7. Finally, we conclude
this paper in Section 8.

2. Related work

In this section, we review how human motion is obtained us-
ing traditional methods, and point out why these methods can-
not be applied e ciently for smart environments. We also review
depth camera based systems for motion tracking, and describe
their weakness on noise control. We “nally review works that eval-
uate posture based on the motion capture input, focusing the dis-
cussion on how they perform with depth cameras.

2.1. Wearable activity recognition

In computer animations and games, 3D human postures are
usually captured using wearable motion capture systems. Lara and
Labrador [10] provide a comprehensive survey on using wearable
sensors for activity recognition. In a smart environment, wearable
sensors can provide information to log the emotional status of the
user [11]. Using different streams from smartphone such as audio
and accelerometer can identify different activities for the purpose
of life logging [12].

Different wearable systems come with different strengths and
weaknesses. The optical motion capturer gather the useres 3D pos-
ture using a set of re”ective markers attached on the useres body
[2]. However, successful captures require the markers to be vis-
ible by the cameras, which is dicult when the user is partly
occluded by surrounding objects. The accelerometer-based [13,14]
and the magnetic-based [15] motion capturers overcome this con-
straint. By applying linear discriminant analysis (LDA) on a training
action database, one can recognize the contextual meaning of the
captured action using signals from accelerometers and gyroscopes
[16]. By introducing audio signals captured from microphones on
top of accelerometers, the action recognition accuracy can be im-
proved [17].

Nevertheless, in these systems, the user has to wear the sen-
sors and the system requires careful calibration before actual us-
age, which is not suitable for autonomous motion monitoring. On
the other hand, video-based activity recognition serves as an alter-
native that utilizes an easier setup process, which will be reviewed
in next section.

2.2. Video activity recognition

Traditional video activity recognition is performed by analyzing
2D color images captured by video cameras and identifying mov-
ing objects [18]. By tracking the non-deformable parts of a human
body, 2D human postures in the video can be recognized [19]. It
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is then possible to gather high level information such as human...
object interaction [20] and scene geometry [21]. The problem of
these color image based algorithms is the relatively low precision
for smaller body parts and the lack of 3D support, making them
unsuitable for analyzing the “ne details of complex human move-
ment.

Depth camera based motion tracking system such as the Mi-
crosoft Kinect has become popular in recent years. It obtains a
depth image using structured infrared light. Human posture can
then be tracked by training a decision tree using a depth image
database to identify different human joints [22,23]. Another class
of tracking technique is to “t a skeleton structure into the de-
tected human point cloud [24,25]. Using depth camera, tracking
can be performed without requiring the user to wear any equip-
ment, which is by de“nition a natural user interface to capture hu-
man motion in real-time [26].

Apart from tracking body postures, a popular research direc-
tion is to apply depth cameras to identify high level activities
using different features such as 3D point cloud with relative lo-
cation descriptors [27] and depth silhouettes [28,29]. To enhance
recognition accuracy, skin joint features that use body skin color
to identify human body parts are suggested [30]. Shape features
with movement information that are represented and silhouette
history information with silhouettes motion variation data are also
proposed [31]. Hybrid features that combines different features in-
cluding tracked joint movement and surface shape take advantage
on the diversity of features to improve the system performance
[32]. Utilizing translation and scaling invariant features can en-
hances the robustness of the activity recognition system [33]. To
better handle occlusions between joints, rigid body parts features
that consist of binary edge extraction and ridge data are used [5].

Utilizing Kinect in smart environments is a popular research
topic. It can be applied in smart home to monitor older people
and detect when they are likely to fall [34], to log daily activities
[35...37] and to monitor residents [29]. It is also applied in smart
oce to evaluate the seating postures [38,39]. In the area of er-
gonomic, Kinect can be used for evaluating if lifting and carrying
motion is detrimental to the health of workers [40]. Kinect is also
applied in rehabilitation monitoring [41] and physiotherapy [42]. It
is found to be suitable to assessrehabilitation performance if the
error bounds are set [41]. While these researches attempt to uti-
lize Kinect in smart environments, they do not formally handle the
noisy input problem. It is pointed out that using Kinect for surveil-
lance or monitoring applications would usually require mounting
the device in high positions, which further degrades the tracking
performance [43]. In this work, we propose a framework to deal
with the noisy data for more accurate motion classi“cation.

2.3. Posture evaluation

Posture evaluation is the process to understand the nature of
a given posture. While geometric rules can be de“ned to evalu-

ate a posture [44] and thereby to classify it [45], the rules have
to be manually crafted in order to obtain the best system perfor-
mance. The domain of the rules also need to be selected based on
the nature of the postures to represent the posture context e -

ciently [46], making it inecient to be extended to a wide variety
of movement.

Data-driven approaches overcome the diculty by evaluat-
ing the postures with prior knowledge obtained from a posture
database [47]. Traditional data-driven algorithms usually assume
a consistent [48] or reliable input signal [8] in order to evaluate
the posture with respect to the database. However, the movement
tracked by a depth camera is highly noisy due to occlusion and
mis-tracking. In order to apply data-driven algorithms on depth
camera based systems, it is important to assessthe reliability of
the input signal to identify the noise [9]. In this work, we adapt
the kinematic-based reliability measurements from [9] and pro-
pose new terms utilizing the color and depth images, which en-
hances the overall system accuracy.

A naive method to classify an observed posture using data-
driven approaches is to “nd a best match in the posture database
[4]. However, the result will easily be affected by outliers in the
database. A better approach is to search for the K nearest neigh-
bors and do the classi“cation based on the set of retrieved pos-
tures [49]. To avoid the high run-time cost for searching neighbors,
Gaussian Process can be used to produce an abstract representa-
tion of the posture space [50].

In this work, we propose a new data-driven framework to clas-
sify Kinect postures. It includes a max-margin classi‘cation system
that takes into account the reliability of the input data. Different
from [9], which applies reliability measurements with a lazy learn-
ing algorithm to reconstruct the observed posture, this work uti-
lizes the reliability measurements to enhance posture classi“cation
accuracy from noisy input data.

3. Overview

Fig. 1 shows the overview of our proposed system. Since the
posture from Kinect is noisy and inaccurate, we introduce a set of
reliability measurement to evaluate the reliability of the captured
joints (Section 4). The reliability measurement is computed ac-
cording to the consistency of the (1) joint displacement, (2) bone-
length, image pixels around the joint in (3) RGBimage, and (4)
depth image over consecutive frames. Such reliability estimations
are then integrated with the captured posture data into a max-
margin classi“er for posture classi‘cation (Section 5). Our pro-
posed classi‘cation framework will learn the weighting for each
reliability term to maximize the discriminative power of the clas-
si“er. During run-time, we monitor and analyze the userss pos-
ture in real time by computing the reliability measurements from
the captured pose and classify it using our proposed max-margin
classi“cation framework. Depending on the application, our sys-
tem can be used to classify different types of movement, or even

2
Annotated Kinect || Reliability Latent SVM
Posture Database Measurements |} Learning weights %
Training Latent Max-margin
_____________________________ i| Representation |--- Posture P
. veil ngr J . .
Query : (v s:glnt;‘i“:,mbrhr’\ Classifier
e Reliability
. | Measurements Posture
Run-time 1 Label
Kinect Posture

Fig. 1. The overview of our proposed framework for robust posture classi“cation.
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the healthiness status of a posture. Finally, we collect annotated
human motion data using Kinect and create a motion database
(Section 6) for training the classi‘er.

4. Reliability measurement

While Kinect can capture 3D skeletal information in real-time,
the tracked human motion data are too noisy to be used in seri-
ous applications such as health monitoring systems. Therefore, it is
necessary to identify the unreliable joints in order to improve the
classi“cation accuracy.

The reliability of the source data can be measured by a set of
heuristics. On top of the existing behavior and kinematics reliabil-
ity terms that evaluate the movement behavior and the segment
length of the skeleton, respectively [9], we design two new terms
that utilize the color and depth image to evaluate extra features.

4.1. Behavior reliability term

The behavior reliability term evaluates abnormal behavior of a
tracked part, which is de“ned based on the amount of high fre-
quency vibration of the detected joint position.

Kinect detects the user posture with the acquired depth image.
The position of a joint is determined based on the depth pixels
that are classi“ed to it using a decision tree based algorithm [22].
As a result, when some joints are occluded, or when they are in-
correctly recognized, the detected positions of the parts become
unstable due to the lack of expected features. By evaluating the
high frequency vibration of the tracked joints, we can model their
respective reliabilities.

Assuming p;(f), pi(f + 1) and p;(f + 2) to be the 3D position of
a tracked joint i in three successive frames, we can calculate the
displacement vectors of the joint in frame f and f + 1 as:

di(f) = pi(f+1)S pi(f) 1)

di(f+1) = pi(f+2)Sp(f+1) @)
Since human movements are smooth in nature, the displacement
vectors of a joint over consecutive frames should be similar and
consistent. The inconsistency between the displacement vectors of
a joint will result in high frequency of vibration and it can be eval-
uated by the acute angle calculated by the dot product between
the two displacement vectors in consecutive frames:

di(f)-di(f+1)

arccos if 1|1d;i(f)||>d, and
0 Ta(OMacryy 19Ol
I ”d,(f + l)” > dmin

0 otherwise

®)

where d,;, is the minimum length of an acceptable displacement

vector, and is set to 3 cm in our experiment. It is used to avoid get-

ting a large angle change when the joint position is almost steady.
The behavior term is de“ned as:

ARG <

max min —f " roof S oor» 0

Rh(f)=1S

4)

roof S “oor
where Rp(f) [0.0, 1.0], f, is the total number of frames we con-
sider to detect vibration, .o, is an acceptable amount of rotation
for each frame, oo iS the amount of rotation we consider to be
the most unacceptable. Empirically, we found that setting f, = 3,
woor = 90 ,and o = 135 gives a good result.

Notice that Kinect works best when the user is 6 feet away
from the camera and is facing directly to it. In many workspace en-
vironments, it is impossible to have such a setup due to the limita-
tion of space. We found that the postures obtained by Kinect when

the camera is too far/close, or shooting the user in an angle, usu-
ally result in a higher level of noise. The behavior term described
in this section can detect such noise to enhance the usability of
the system.

4.2. Kinematics reliability term

The kinematics term evaluates the reliability of joints based on
their kinematics correctness, which is de“ned with the consistency
of segment length.

Kinect recognizes joints individually when determining their
position, and does not explicity maintain the kinematic correct-
ness of the resultant postures. As suggested in [51], the length
of each body limb needs to be constant over time during a real
human movement. Therefore, when the position of a joint is in-
correctly determined, the corresponding segment length will be
changed. Here, we evaluate the reliability of a joint based on the
corresponding segment length difference with respect to the refer-
ence value.

A pose initialize process is usually required to obtain reference
values of body dimensions [5,52]. In [9], the reference segment
length is obtained by requesting the user to perform prede‘ned
postures, such as a T-pose, in order to accurately recognize all
joints. However, for anonymous tracking, it is impossible to ask in-
dividual user for initializing the system. Also, because of the space
limitation, the depth camera may be setup to look at the user in
an angle, making it dicult to accurately obtain the positions of all
joints. Here, inspired by Jalal et al. [52] in which torso area is ini-
tialized using left and right extremes values, we propose to utilize
the distance between the left and right shoulder joints detected by
Kinect to estimate the body segment length, as the shoulders can
be tracked accurately in a wide range of shooting angles. Based on
the shoulder width, we evaluate the length of other segments with
the segment length proportion described in [53].

In each pose, a joint can connect to multiple segments depend-
ing on the skeleton structure, such as the hips connecting to three
segments. Assuming the joint i is connected t0 Sya (ora1 DOy seg-
ments, for each connecting segment s, the segment difference ratio
at frame f is calculated as:

abs(ls(f) é Is_ref) 1

| s ref

ds(f) = min (5)
where | ¢ is the reference segment length and Is(f) is the current
segment length for segment s at frame f.

The kinematics reliability value of a joint is de“ned asthe mean
segment different ratio for all connecting segments:

. Spart_total d-(f
Rk(f)=18 9175() (6)
Spartitotal

where Rk(f) [0.0, 1.0]. The whole kinematic terms calculation
process is summarized in Algorithm 1.

4.3. Color image reliability term

The color image term evaluates the reliability of joints based on
their closeness of gradient features between two adjacent frames
in the RGB color video.

Since human movements are continues in nature, the appear-
ance of the joints in adjacent frames as shown in the color
video should be visually similar. Dissimilar joint appearance across
frames usually indicates mis-tracked joint in at least one of the
frames. In our system, the color image reliability of a joint is com-
puted by extracting a square patch of pixels centered at the joint
from the color image, and evaluate the difference in color across
frames. We convert the RGB pixel into gradient representation to
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Algorithm 1 Computing the kinematics reliability term.

1. Given a data set D which contains skeletal data, the kinematics
reliability values associated with each joint are extracted from
each frame (Section 4.2)

2: for each body segment do
estimate reference body segment length based on the shoul-

der width

. end for

. for each joint do
for each connecting body segment do

compute the segment difference ratio (Eq. (5))
end for
compute the kinematics reliability value as the mean seg-
ment difference ratio of all connecting segments (Eqg. (5))
10: end for

w

© QN2 R

isolate color changes from lighting condition differences. We also
guantize the computed gradient into eight bins to avoid the effect
of small color difference error. Example frames are shown in Fig. 2,
in which the left elbow and left wrist are not correctly tracked in
the middle column.

For each tracked joint i at frame f, the color patch is repre-
sented by a vector

CpatChi,f = [g:L. 92, - gpatch_size] (7)

which concatenate the binned gradient g; 0 Gyaen size COMpuUted
from each pixel within the patch. The color image reliability term
of joint i is calculated as the cosine distance between two corre-
sponding patches extracted from two consecutive frames:

. cpatch; ¢ - cpatch; 44
Rg(f)= 1S : :
s(f) cpatch; ¢ cpatch; ¢4

®

where Rqg(f) [0.0, 1.0], cpatch; ; and cpatch; ;,, are the patches
extracted at joint i in frame fand f + 1, respectively.

The size of the color patch is set according to the size of the
skeleton in pixel with respect to the screen resolution. Under a
typical setup, that is, an adult user facing the Kinect and standing
6 m away from it, a patch size of 27 by 27 pixel works very well
in the resolution of 640 by 480. Such a size can be dynamically
adjusted based on the camera angle and position.

4.4. Depth image reliability term

The depth image term evaluates the reliability of joints based
on their closeness of gradient features between two adjacent
frames in the depth image sequence.

The idea of the term is to evaluate if there is any sudden change
of depth at the detected joint position across two frames, which
usually indicates that the joint is mis-tracked. Similar to the color
image reliability term, we extract a patch of depth image dpatch
centered at a given joint and compare such a patch in consecu-
tive frames. Again, the gradients are quantized into eight bins and
dpatch is composed by concatenating the binned gradient values
of the pixels within the patch. The depth image reliability term of
joint i is then computed by:

. dpatch; ; -dpatch; ;.
Rq(f)= 18 p if p i,f+1
dpatch; ¢ dpatch; ¢4,

(©)

where Rd(f) [0.0, 1.0], dpatch;  and dpatch; ., are the patches
extracted at joint i in frame f and f + 1, respectively.

The advantage of introducing the color and depth image terms
on top of the behavior and kinematics terms, is enabling the sys-
tem to evaluate the reliability of a joint from the raw data point
of view. The major weakness of the behavior and kinematics terms
is that they cannot distinguish a correct but unstable joint from
a mis-tracked joint. Unstable joints contains some usable informa-
tion, but mis-tracked ones as shown in Fig. 2 should not be used.
The proposed color and depth image terms “ll the gap by ana-
lyzing low level image-based information, in which we evaluate if
a joint resembles similar features across frames. Notice that since
mis-tracked joints are usually highly unstable in Kinect, the im-
age terms only compare two consecutive frames. If the mis-tracked
joints would remain at a “x position in other tracking systems, a
longer time window should be considered.

5. Max-margin classi“‘cation with reliability ~measurement

In this section, we explain our proposed posture classi“cation
algorithm that considers both the skeletal features (e.g., joint posi-
tions, relative joint positions) and the respective reliability terms.
Since the reliability of the joint is taken into account, our classi‘er
is more robust than existing methods especially for noisy data.

Fig. 2. Examples of image patches (shown in red squares) extracted around the body joints for computing the color and depth images reliability terms. Mis-tracked joints
such as the left elbow (in the middle column) result in large difference in the patches. (For interpretation of the references to color in this “gure legend, the reader is

referred to the web version of this article.)
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We adapt the max-margin learning framework [54] as our clas-
si“er as it can directly classify data in which some of the features
are unavailable in each data instance. Traditional max-margin sys-
tems formulate the learning process as maximizing the worst-case
instance margin in the training data. In particular, the calculation
of the margin of each instance is based on the availability of the
features, meaning that absent features do not contribute to the
classi“cation process. This process allows instances with incom-
plete features to be compared and classi“ed directly.

The problem of applying traditional max-margin framework
to our problem is that joint positions detected by Kinect may
be available but incorrect due to sensor error. Furthermore, the
noise level of different joints is different according to the type
of the motion performed, making it dicult to applying pre-
de“ned threshold to “lter joint with low reliability. We therefore
formulate the instance margin calculation as a feature weight-
ing process according to the corresponding reliability measure-
ment. This enables the system to determine the importance of
a joint based on its reliability in order to achieve high system
robustness.

Here, we “rst review the max-margin classi‘cation framework
for data with absent features [54] in Section 5.1. We then point
out how we adapt it to classify data with different reliability in
Section 5.2. Finally, due to the reliability measurements we intro-
duced, our max-margin framework has more system parameters
than existing ones. We explain how we design a solver that solves
the system effectively in Section 5.3.

5.1. Max-margin classi“cation with absent features

Classifying data with absent features with a max-margin frame-
work [54] is based on a classical support vector machine (SVM)
approach [55]:

. 1 "
min Sw 2+C i
w, b =1 (10)

subject to  y; wxi+b 1S ;, i=1...n

where x; and y; are the features and label of instance i, Cis the
tradeoff parameter between model complexity and accuracy, b is a
threshold and are slack variables for handling training instances
that are linearly non-separable. In particular, w is learned by max-
imizing the margin min ;y;(wx; + b)/ w .

When handling instances with missing features, however, the
whole feature vector x; will contribute to the margin calculation in
the classi‘er training process without ignoring the absent features
(usually the missing features will be replaced by predicted values
or simply zeros). As a result, the performance of the learned classi-
“er will be degraded. In order to classify data with absent features,
Chechik et al. [54] treat each instance in its own subspace of the
full feature space by calculating the instance margin  (i):

(i) = yiw
~ [IwO]
where w() contains a subset of entries in w that are correspond to

the valid (i.e., non-absent) features in x;. The geometric margin of
the classi‘er is represented by the minimum instance margin:

(1)

|
max min M (12)
we i lw O
The readers are referred to [54] for further details.

An important design in Eq. (12) is that the score (i.e., yiw(i)xi)
is normalized according to the availability of features (i.e., w® )
of the instance, allowing the system to classify instances with in-
complete features. The equation implicitly increases the weight of
the present features, and absent features would not contribute to
the margin calculation.

5.2. Max-margin classi“cation with reliability measurement

Here, we exploit the feature weighting design of traditional
max-margin classi‘er such that it can be adapted to features of
different reliability. We formulate our classi“er learning problem
as maximizing the discriminative power by weighting the features
according to the reliability measurements.

In our framework, the vector of weight t; has the same dimen-
sion with the feature vector in an instance i (i.e., a posture), t; ; is
the weight of a skeletal feature j and it is calculated as a weighted
sum of the corresponding reliability measurements:

ki RK,j + ai,jRA (13)

where RR j, Rk j, RG j, Rd ; are the reliability values of feature j
in instance i, and is vector contains the coe cients of the reli-
ability terms. Using a single value to represent the weight allows
an ecient coupling of weights and features. Here, we learn a set
of  for each sample when training a classi“er.
The instance margin is then calculated as:
£

YiW ——Xi (14)
|

tij= i RO+ i jRG,j +

in which the weight vector t; is normalized by t; . As a result,
features with higher reliability values contribute more in the in-
stance margin calculation.

Finally, the classi“er can be learned by maximizing the discrim-
inative power of the max-margin classi‘er to separate two differ-
ent classes:

1

max —_—
w, ,b w

. ti
subject to ; wt—'xi +b 1,
i

ti= bR+ i jRK*+ cijRG+ g R,
0 fkedhij 1 fokedhij o
0 t; 1

(15)

where t; contains the reliability measurements of instance i. The
objective function in Egq. (15) is equivalent to minimizing w 2
without the slack variables.

With the solved values of the support vector w and the coe -
cient vector , the label of an instance can be predicted by com-
puting the sign of the decision score using:

. t
sign w—t' Xi+ b (16)
i

The classi‘er explained above is a binary classi“er. For multi-
class classi“cation, the framework learns multiple binary classi‘ers
and select the predicted label with highest score as the “nal re-
sults.

5.3. Max-margin solver

Given the max-margin classi“cation with reliability measure-
ment formulated in Section 5.2, both w and need to be opti-
mized. However, “nding the global optimum is a hard problem
since the objective function is non-convex because of the depen-
dency of the values on w. Here, we propose a block based opti-
mization algorithm that iteratively optimize w and [56] to max-
imize the discriminative power. To further improve the classi‘ca-
tion performance, we formulate the “nal representation of each in-
stance as latent variables which will be computed when learning
a max-margin classi“er using Latent SVM [56]. The details of our
proposed method will be given below.
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5.3.1. Model inference

Given w, our method computes a latent representation of each
instance by “nding to maximize the decision score. This is done
by optimizing the entries in  for each reliability measurement ac-

cording to a given classi‘er w = [wy, ..., wq]™:
f
S(w, R, %) = max WTxi
i
subject to bijt kijt cinjt oaij= L

0 fokedij 1L
i=1...n.

{b,k,c.d}.i,j )

(17

where R contains the reliability values (i.e., Rh, Rk, Rg and Rd) of
instance i, t; is calculated asin Eq. (13), and x; contains the features
of instance i. We constrain the sum of the entries in  as 1 such
that t; is the normalized weighted sum of the associated reliability
measurements for each feature.

5.3.2. Learning

Having presented the calculation of latent representation of
each instance, we now explain how w is obtained by our proposed
max-margin classi“cation framework. Similar to conventional SVM
formulation, w is solved by:

1 n
min Zw?+C i
w,b 2 .
i=1 5 (18)
subject to  yi(S(w,R,x)+b) 1S ;,
i=1... n, 0 i
where ; is slack variable introduced for non-separable training in-

stances, S(w, R, x;) (Eq. (17)) returns the decision score of instance
i by multiplying the latent representation with the given w, and C
is the trade-off parameter, which is set as 1 in our experiments.

By solving Egs.(18) and (17) alternatively, the classi‘er and rep-
resentation (i.e., the latent variable) of each instance will be up-
dated and the classi“cation performance will be improved. Since
w is a dependent of the latent representation, poor choice of
initial conditions of in the latent representation results in lo-
cal minima. To tackle this problem, the classi“er learning process
will be performed several times (maxTrainNum = 20 in our exper-
iments) by randomly initializing to solve Eq. (18). The classi“er
that produces the minimum value will be chosen as in previous
work [56]. The whole classi“er learning process is summarized in
Algorithm 2.

Algorithm 2 Reliability-value based max-margin classi“cation.

1. Given the training set X, the reliability values associated with
each joint are extracted from each instance (Section 4)

2: for i =1 to maxTrainNum do

3: randomly initialize

4: repeat

5: compute latent variables to represent each instance (Eg.
1n)

6: train classi“er w using the latent variables (Eq. (18))

7: until no change in w

8: end for

9: select the classi“er w which produces the minimum value from

the objective function in Eq. (18)

6. Posture database creation

In this section, we explain how our posture is represented in
the database, and detail what kind of posture we have included to
create the database.

6.1. Posture representation and capturing

We use the Microsoft Kinect to capture posture data for the
database, as it is one of the most popular depth camera based mo-
tion sensors. The Kinect SDK [57] provides the utility to record the
depth and color images, and the corresponding posture is tracked
by SDK function calls. We manually annotate descriptions such as
the nature of the motion and the potential risk of injury for each
captured sequence.

Each posture Pin the database is represented by a vector of 3D
points:

P= [p1' p21"'!pn] (19)

where p; is the 3D location of the ith joint of the user and n is
the total number of joints. Each posture is normalized by remov-
ing the global 3D translation and rotation along the vertical axis,
as the nature of most postures is de“ned by local joint movement.
Examples of the captured scene and the extracted 3D skeletal in-
formation are shown in Fig. 3.

Since the training samples are extracted from motion se-
guences, consecutive frames tend to be similar. We “lter the
database by removing similar postures base on the Euclidean dis-
tances of the 3D joint locations as explained in [9]. This allows
the database to cover a wide variety of representative postures
while being compact. This also uni‘es the density of samples in
the database.

6.2. Database construction

In order to identify postures that involve health hazards, we
capture both correctly and incorrectly performed postures in differ-
ent working environments. We follow the guidelines produced by
the European Agency for Safety and Health at Work [58] to capture
movement that involves potential health risk. Both healthy and un-
healthy postures of 10 participants, with ages ranged from 21 to
35, are captured. During capturing, the users are given instructions
on how to perform the postures. To avoid real injury, especially
when capturing unhealthy postures, extra care has been taken and
the users are given time breaks during each capture. We created
two databases focusing on different work environments.

The “rst database involves motion of standing and performing
hand operations on a work bench, which is very common in “eld-
based working environments. According to European Agency for
Safety and Health at Work [58], one should prevent postures in
which the joints are not in their natural position to avoid potential
tendons, ligaments, and nerves damage. For a correctly performed
standing posture at work, the neck should keep vertical and re-
laxed, the head and the back should maintain an upright position,
and the shoulder should be relaxed. We follow these guidelines to
capture a set of healthy postures performed by multiple people.
We also design the unhealthy postures including (A-1) working on
a short bench in which the user has to bend the head, neck and
back, (A-2) working on a short bench that is far away from the
user, and the user has to bend the back and stretch the body, (A-3)
working on a work bench that is placed at the side of the user, and
the user has to twist the back and raise the arms. We summarize
the details of the posture classesin Table 1 to indicate the body
parts are involved. The acute angles between the body part (i.e.,
the bone) and the vertical axis are computed from our dataset. For
the torso, the angle of rotation about the vertical axis is reported.
Examples of 3D pose and the corresponding RGBvideo are shown
in Fig. 4 and different views of the standing poses are illustrated
in Fig. 5.

The second database involves motion of sitting on a chair and
working on a work bench, which is a usual posture for oce work-
ers. Similar to the standing posture, one should prevent bending
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Fig. 3. Examples of postures captured in an oce environment. (a) Healthy postures, (b) and (c) are considered as unhealthy postures.

Table 1

Details of the dataset of standing poses used in the experiments.

Dataset Action class Pose type Body parts (angle)
Neck Back Torso
Standing Stand straight Healthy Vertical (15°) Vertical (13°) Vertical (0°)
(A-1) Bend back Unhealthy Bended (50°) Bended (40°) Relaxed (0°)
(A-2) Bend and extend Unhealthy Relaxed (35°) Bended (30°) Relaxed (0°)
(A-3) Twist body Unhealthy Vertical (15°) Vertical (18°) Twisted (15°)

Table 2
Details of the dataset of sitting poses used in the experiments.

Dataset Action class Pose type Body parts (angle)
Neck Back
Sitting Straight back Healthy Vertical (15°) Vertical (10°)
(B-1) Bend neck Unhealthy Bended (40°) Relaxed (15°)
(B-2) Bend back Unhealthy Vertical (40°) Bended (50°)

the head, neck and back [58]. Apart from the correctly performed
postures, we capture incorrect postures including (B-1) bending
the neck when working, and (B-2) bending the back when work-
ing. Since the user is in a sitting pose and is working on a work
bench, the lower body is usually not visible to the depth cameras.
We therefore only capture and evaluate the posture of the upper
body in this database. The details are listed in Table 2. Again, the
acute angles between the body part (i.e., the bone) and the vertical
axis are computed from our dataset. Examples of 3D pose and the
corresponding RGB video are shown in Fig. 3 and different views
of the sitting poses are illustrated in Fig. 6.

7. Experimental results

In this section, we evaluate the effectiveness of our proposed
method by classifying postures captured from two working envi-
ronments and two benchmark datasets,MSR Action3D [59] and
Florence 3D [60].

In our experiment, we trained max-margin classi‘ers explained
in Section 5.2 to classify the postures into different classes.We car-
ried out leave-one-subject-out cross validation, in which we used
postures from one of the participants as testing data and all

the rest postures as training data in our healthy pose datasets
(Sections 7.3 and 7.4). The validation was repeated for all different
combinations of the training datasets. For the benchmark datasets,
we followed the data split as in the state-of-the-art approaches
and the details will be given in Sections 7.5.1 and 7.5.2. Finally, we
calculated the average accuracy, which is de“ned as the number of
samples correctly classi“ed divided by the total number of testing
samples.

7.1. Datasets details

The details of the datasets used in the experiments are sum-
marized in Table 3. To obtain a fair comparison with other ap-
proaches, we used the same data splitting (i.e., training and testing
sets) among all approaches in each experiment.

For our healthy pose datasets, 20 and 10 joints are tracked in
each frames for the standing and sitting datasets, respectively. For
both the RGBand depth videos, the resolutions of each frame are
both 640 x 480 pixels. As stated in Table 3, 10 subjects were in-
vited to perform various kind of actions in an oce environment.
Their age range is 21...35years old.

7.2. Experimental settings

To fully evaluate the performance of different
framework, we design four setups as below:

Baseline classi‘cation:  The baseline posture classi“cation
method does not consider the reliability of the captured 3D skele-
tal information, which is comparable to existing motion classi“ca-
tion algorithms. In other words, the feature vectors is de‘ned as
the positions of all joints (i.e., joint positions) and the relative po-
sitions between every pairs of joints (i.e., relative joint positions)

parts of our
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Fig. 4. Examples of postures captured in an oce environment. (a) is a healthy pose, and (b)...(d) are considered as unhealthy poses.

Fig. 5. Showing the captured standing poses in different view angles.

105
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Fig. 6. Showing the captured sitting poses in different view angles.

Table 3
Details of all the datasets used in the experiments.

Dataset Number of Number of Size Time duration (min)
subjects classes — - (approx.)
Training Testing
Standing 10 4 1722 poses 2869 poses 6
Sitting 10 3 1621 poses 2702 poses 5
MSR Action3D [59] 10 20 284 motions 273 motions 25
Florence 3D [60] 10 9 109 motions 106 motions 4

as used in [61]. Comparing the proposed method to the baseline
method can demonstrate the accuracy improvement by using reli-
ability measurements.

Individual reliability terms classi“‘cation: To show the per-
formance of individual reliability measurement, we train the four
max-margin classi‘ers by using the reliability term independently.
The classi“cation is performed by:

i=1
) R - (20)

subject to y; W?Xi+ b 1S

i= 1...n, 0 i

where R, contains one reliability term (i.e., Rb, Rk, Rcor Rd) of all
features in instance i.

Equal weight reliability terms classi“cation: To show the ac-
curacy improvement of optimizing the weight for the reliability
terms in Section 5.3, we setup a naive system of using all four re-
liability terms with the same weight:

1
min Zw?2+cC i
w,b 2
i=1
. Ra“i ~
subject to Yy, w———Xx;+ b 1S 4, 21
ubj i Wi i (21)
i=1...n, O i
where Rall; = 0.25Rh + 0.25Rk + 0.25R¢g + 0.25Rd
Variable weight reliability terms classi“cation: Finally, we

show the performance of our proposed method to “nd optimal
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Table 4
Details of our healthy posture datasets used in the experiments.

Table 6
Accuracy in classifying postures in the sitting to work experiment.

Dataset Action class Pose type Size (poses)
Standing Stand straight Healthy 459

(A-1) Bend back Unhealthy 469

(A-2) Bend and extend Unhealthy 521

(A-3) Twist body Unhealthy 463
Sitting Straight back Healthy 669

(B-1) Bend neck Unhealthy 602

(B-2) Bend back Unhealthy 531

Table 5
Accuracy in classifying postures in the standing to work experiment.

Method Average %
accuracy
Joint positions 80.84
Relative joint positions (RJP)[61] 86.32
Lie group representation [62] 84.90
Moving pose [63] 8179
Moving pose [63] with pose normalization and noise removal 81.04
Proposed RJPwith Rb only 85.72
RJPwith Rk only 86.32
RJPwith Rconly 86.44
RJPwith Rd only 85.34
RJPwith Rb, Rk, Rcand Rd,equal weight 85.61
RJPwith Rb, Rk, Rcand Rd,variable weight 88.67

weights for the reliability terms to improve the classi“cation per-
formance by alternatively solving Egs. (18) and (17).

7.3. Standing to perform hand operations on a work bench

Here, we perform leave-one-subject-out classi“‘cation on our
standing to work motion database, which includes healthy, A-1, A-
2, and A-3 postures as explained in Section 6.2. Example postures
are shown in Fig. 4 and details of the data used in the experiment
can be found in Table 4. On average, 1722 and 2869 postures were
used as training and testing data in each classi“cation trial. The
feature vector size of the joint position and relative joint position
features are 60-d and 570-d, respectively. The average classi“cation
accuracies are shown in Table 5.

According to the results:

€ The variable weight classi“er with RJPfeatures outperforms the
classi“er with the RJPfeature by 2.35%.This shows that the use
of reliability measurements can enhance classi“cation accuracy.

€ The variable weight classi‘ers with RJP features outperforms
the equal weight classi‘ers by 3.06%. This shows that the
weight optimization algorithm enhances the system accuracy.

€ In all tests, the variable weight classi“er performs better than
all of the individual reliability term classi“ers. This supports our
algorithm of using multiple reliability terms.

€ The variable weight classi“er with RJPfeatures outperforms the
state-of-the-art approaches Lie group representation [62] and
moving pose [63] by 3.77% and 6.70%, respectively. This high-
lights the effectiveness of our proposed variable weight classi-
“er.

The reliability measurements are estimation of the true relia-
bility. While they correctly evaluate the joints in general, individ-
ual terms may be inaccurate under speci‘c situations. This ex-
plains why the classi“cation accuracy drops for some individual
term classi‘ers comparing to the classi“er using relative joint po-
sition only. Our proposed method has the strength of combining
multiple reliability terms, such that we can tolerance errors in in-
dividual terms and produce consistent results.

Method Average %
accuracy
Joint positions 66.67
Relative joint positions (RJP)[61] 70.58
Lie group representation [62] 7141
Moving pose [63] 69.94
Moving pose [63] with pose normalization and noise removal 68.55
Proposed RJPwith Rb only 7172
RJIPwith Rk only 72.57
RJPwith Rconly 71.57
RJPwith Rd only 72.25
RJPwith Rb, Rk, Rcand Rdequal weight 72.60
RJPwith Rb, Rk, Rcand Rdyvariable weight 79.45

7.4. Sitting on a chair and working on a work bench

Here, we perform evaluation on the sitting to work posture
database, which includes healthy, B-1 and B-2 postures as ex-
plained in Section 6.2. Example postures can be found in Fig. 3
and details of the data used in the experiment can be found in
Table 4. On average, 1621 and 2702 postures were used as training
and testing data in each leave-one-subject-out classi“cation trial.
The feature vector size of the joint position and relative joint posi-
tion features are 30-d and 135-d, respectively. The average classi“-
cation accuracies are shown in Table 6.

According to the results:

ah

Our variable weight classi“er with RJPfeatures has made a sig-
ni“cant improvement over the classi“er with RJPfeatures only.
Accuracy is enhanced by 8.87%.

The variable weight classi“er outperforms equal weight classi-
“er by 6.85%,supporting our weight optimization algorithm.
The variable weight classi‘er outperforms all single reliability
term classi“ers in both tests, supporting our algorithm of using
all four terms.

All of the single reliability term classi“ers with RJP features
perform better than the classi“er with RJPfeatures only. This
shows that accuracy is enhanced by reliability measurement in
general. More discussion about this can be found in Section 8.
The variable weight classi“er and all of the individual reliability
term classi‘ers outperform the state-of-the-art approaches Lie
group representation [62] and moving pose [63] by 0.16%...8.04%
and 3.02%...9.51%gespectively. This highlights the effectiveness
of our proposed method.

(]
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ah

7.5. Posturesof different semantic meaning from benchmark datasets

Here, we show that our proposed algorithm can enhance the
accuracy of movement semantic classi“cation. We utilize the 3D
skeletal data in the MSR Action3D dataset [59] and Florence 3D
Actions dataset [60] in Sections 7.5.1 and 7.5.2, respectively.

7.5.1. MSRAction3D dataset

The dataset contains 20 action classes and each action is per-
formed by 10 subjects with 2...3trials, and 557 motion sequences
were used in the experiment asin [61]. We follow [61] to conduct
a cross subject test by classifying motions from 20 action classes:
high arm wave, horizontal arm wave, hammer, hand catch, forward
punch, high throw, draw x, draw tick, draw circle, hand clap, two
hand wave, side-boxing, bend, forward kick, side kick, jogging, ten-
nis swing, tennis serve, golf swing, pickup and throw . The motions of
half of the subjects are used in training and the rest are used as
testing data.

We classify the motions by training the proposed binary clas-
si“er in a one-versus-all manner. Since the length of the motions
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Table 7
Accuracy in classifying postures in the MSR Action3D [59] dataset with
20 action classes.

Method Average %
accuracy
Joint positions 87.74
Relative joint positions (RJP)[61] 88.23
Bag of 3D points [59] 74.70
Histogram of 3D joints [65] 78.97
Shape and motion features [66] 82.10
EigenJoints [67] 82.30
Joint angle similarities [68] 83.53
Actionlet ensemble [61] 88.20
Spatial and temporal part-sets [69] 90.22
Covariance descriptors on 3D joint locations [70] 90.53
Random forests [71] 90.90
Moving pose [63] 91.70
Lie group representation [62] 92.46
Proposed RJPwith Rb only 89.88
RJPwith Rk only 90.70
RJPwith Rd only 88.81
RJPwith Rb, Rk and Rd,equal weight 90.39

RJPwith Rb, Rk and Rd,variable weight 93.36

are not equal, we temporally align each motion to a classtemplate
motion which is having the minimum variance with all other pos-
itive training motions in each class. Then, to reduce the temporal
dimensionality of the motions, we extract representative keyframes
(17 keyframes in our experiment) to represent the class template
using Frame Decimation [64]. Next, all training data (i.e., posi-
tive and negative) are aligned to the class template by dynamic
time warping (DTW) and we train a classi“er using the temporally
aligned training data in each class. When classifying a testing mo-
tion, we temporally align the testing motion to all class templates
and compute the decision value using the trained classi‘er in each
class. The feature vector representing each motion is created by
concatenating the temporally aligned frame-based features. On av-
erage, the number of motions for training is 284 and that of test-
ing is 273. Since only the skeletal data and depth image sequences
are available in this dataset, we can only calculate three reliabil-
ity terms Rb, Rk, and Rd in our experiments. The accuracy of the
classiers is shown in Table 7.
According to the results:

dh

Our variable weight classi‘er with RJPfeatures has made an
signi“‘cant improvement over the classi‘er with RJP features
only. Accuracy is enhanced signi“cantly by 5.13%.

The variable weight classi“er outperforms equal weight classi-
“er by 2.97%,showing the effectiveness of our weight optimiza-
tion algorithm.

The variable weight classi‘er outperforms all single reliability
term classi‘ers by 2.66%...4.55%upporting our algorithm of us-
ing all three terms.

All of the single reliability term classi‘ers perform better than
the classi“er with RJPfeatures only. This shows that accuracy
is enhanced by reliability measurement in general. More dis-
cussion about this can be found in Section 8.

Even though the state-of-the-art approaches such as Lie group
representation [62] and moving pose [63] achieved very high
performance in this dataset, our variable weight classi‘er
achieves an even better result by taking into account the re-
liability measurement in motion classi“cation.
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When compared with the Lie group representation [62] on the
MSR Action3D dataset, our proposed variable weight optimizing
approach outperforms the previous method with a smaller mar-
gin than other experiments in this paper. It is because the motions
are captured in higher quality in general when compare with other

Table 8
Accuracy in classifying postures in the Florence 3D [60] dataset with
nine action classes.

Method Average %
accuracy
Protocol of [62] Half...half data split
Joint positions 85.44
Relative joint positions (RJP)[61] 89.66
Moving pose [63] 81.42
EigenJoints [67] 87.28
Lie group representation [62] 90.88
Proposed RJPwith Rb only 86.95
RJPwith Rk only 89.76
RJPwith Rband Rk,equal weight 89.97

RJPwith Rband Rkyvariable weight 93.29

Protocol of [60] ,Leave-one-subject-out

Joint positions 84.69
Relative joint positions (RJP)[61] 91.42
NNBB + parts + time [60] 82.00
EigenJoints [67] 89.53
LARP+ TSRVF[72] 89.50
LARP+ mfPCA [72] 89.67
Elastic shape analysis [73] 89.67
Taha et al. [74] 96.20
Proposed RJPwith Rb only 91.08
RJPwith Rk only 91.75

RJPwith Rband Rk,equal weight 91.75

RJPwith Rb and Rk,variable weight 98.33

datasets used. In particular, all motions are recorded in a front-
facing manner and the subjects are in standing pose without occlu-
sion by other objects. As a result, the motions are in higher quality
and there is less room for improvement by analyzing the joint ac-
curacy in this dataset. Nevertheless, our method still outperforms
the state-of-the-art approaches and this highlight the robustness
and consistency of our proposed method.

7.5.2. Florence 3D Actions dataset

In this experiment, we evaluate the accuracy of classifying mo-
tions from the skeleton data in the Florence 3D Actions dataset
[60]. The dataset contains nine action classes: wave, drink from a
bottle, answer phone, clap, tight lace, sit down, stand up, read watch,
bow. Each action which is performed by 10 subjects with 2...3tri-
als, and 215 motion sequences were used in the experiment as in
[60].

We follow [62] to classify motions from all nine action classes
by using the motions of half of the subjects as training and the rest
as testing and follow [60] to perform leave-one-subject-out classi-
“cation, and report the average classi‘cation accuracy. Similar to
Section 7.5.1, we classify the motions by training the proposed bi-
nary classi“er in a one-versus-all manner. We also “nd the class
template motion (with nine keyframes) and all training and testing
data are aligned to the class template by DTW as explained in last
section. On average, the number of motions for training is 109 and
that of testing is 106. Since only the skeletal data are available in
this dataset, we can only calculate two reliability terms Rband Rk
in our experiments. The results are shown in Table 8.

According to the results, in the experiments using the half...half
data split setting asin [62]:

€ Our variable weight classi“er with RJPfeatures has made an
signi“‘cant improvement over the classi“er with RJP features
only by 3.63%.

€ The variable weight classier signi“‘cantly outperforms equal
weight classi“er by 3.32%, showing the effectiveness of our
weight optimization algorithm.

€ The variable weight classi“er outperforms all single reliability
term classi‘ers by 3.53%...6.34%upporting our algorithm of us-
ing all two terms.
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€ Our variable weight classi“er out-perform the state-of-the-art
approaches such as Lie group representation [62] and moving
pose [63] by 2.41%and 11.87%, respectively. This highlights the
effectiveness of our proposed method.

In the experiments using the leave-one-subject-out data split
setting as in [60], the results also showed the same pattern as our
proposed variable weight classi‘er outperforms all single reliabil-
ity term classi‘er aswell as existing approached. This highlight the
consistency and robustness of our method across different experi-
ment settings.

8. Discussion and conclusions

In this paper, we presented a data-driven framework that con-
siders the reliability of the source data to classify postures cap-
tured from depth cameras. We propose new reliability terms
to better evaluate the features, and present a customized max-
margin classi“cation framework that takes in the measurements.
Our framework can classify the subtle different between healthy
and unhealthy postures in a workplace environment. We made our
motion database available to public usage in order to facilitate fur-
ther research in this area.

Since the postures captured by Kinect is incomplete and noisy
due to occlusion, it is proposed to reconstruct the unreliable joints
using prior knowledge [9]. A traditional method of posture clas-
si“cation is to evaluate the reconstructed posture. However, since
the reconstruction process involve modifying unreliable features,
it introduces another major source of error. We opt for a max-
margin classi“cation framework, which evaluates posture consid-
ering joints with high reliability more, and do not require altering
the posture.

As a common problem of data-driven approaches, if there is no
posture similar to the observed one in the database, our method
may fail. This is because we do not have the knowledge to accu-
rately classify the posture. This could happen if the user has a sig-
ni“cant different body size or segment length proportion. In the
future, we would like to explore motion retargeting techniques to
retarget the observed posture.

Apart from unhealthy postures, moving rapidly or keeping the
body static for extensive long duration can also result in injury. To
identify these kind of movements, the spatio-temporal information
of the motion has to be considered. In order to e ciently classify
long duration of movement, abstraction in the temporal domain
may also be needed. We are interested to explore this area in the
future to broaden the scope of our classi“cation algorithm.

This research demonstrates how our framework can be applied
in smart environments to identify incorrectly performed working
posture. There are other motions, such as wheelchair handing, "oor
sweeping and window cleaning, that have a high risk of injury. As
a future work, we wish to enhance the database to include a wide
variety of motions. Apart from capturing data ourselves, we would
like to set up a standard format for capturing different types of
motion in the topic of workspace health and safety, such that in-
terested researchers can contribute and share captured motions.
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