
Northumbria Research Link

Citation: Woolrych, Alan, Cockton, Gilbert and Hindmarch, Mark (2004) Falsification
testing for usability inspection method assessment. In: Proceedings of HCI 2004.
Proceedings of HCI2004: Design For Life, Bristol, pp. 137-140. ISBN 1897851138

Published by: Proceedings of HCI2004: Design For Life

URL:

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/25681/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

FALSIFICATION TESTING FOR
USABILITY INSPECTION METHOD ASSESSMENT

 Alan Woolrych Gilbert Cockton Mark Hindmarch
School of Computing and Technology, University of Sunderland,
Sir Tom Cowie Campus, St Peters Way, Sunderland, SR6 0DD

alan.woolrych@sunderland.ac.uk gilbert.cockton@sunderland.ac.uk mark.hindmarch@sunderland.ac.uk

ABSTRACT
We need more reliable usability inspection methods
(UIMs), but assessment of UIMs has been unreliable [5].
We can only reliably improve UIMs if we have more
reliable assessment.
When assessing UIMs, we need to code analysts’
predictions as true or false positives or negatives, or as
genuinely missed problems. Defenders of UIMs often
claim that false positives cannot be accurately coded, i.e.,
that a prediction is true but has never shown up through
user testing or other validation approaches. We show this
and similar claims to be mistaken by briefly reviewing
methods for reliable coding of each of five types of
prediction outcome. We focus on falsification testing,
which allows confident coding of false positives.

Keywords
User testing, falsification testing, usability inspection
methods, model-based methods.

1. INTRODUCTION
Currently, there are two general ways to evaluate a
product’s usability: predictions by analysts or user testing
(with real participants). While the latter can be more
reliable, achieving this is very labour intensive, time
consuming and very expensive. When getting the product
right first time is essential, there is a pressing need for
more efficient methods of achieving satisfactory usability.
Usability Inspection Methods (UIMs) would appear to be a
suitable approach here, as they are generally quicker, and
consequently less expensive. However, speed and reduced
cost come at a price since UIMs can be significantly less
reliable than user testing. We thus need to improve UIM
usage, but before we can, we must have reliable methods to
assess UIMs. One key issue with UIM assessment is

confident coding of analyst predictions from usability
inspections. It is not a clear cut matter of successful
predictions vs. missed problems. A major concern is the
issue of false positives. How can we be sure that an
analyst prediction is really a false positive? In fact, some
believe that false positives don’t exist, i.e., research simply
fails to flush out predicted problems that really do exist!

2. HOW DO WE ASSESS UIMS?
UIMs are commonly assessed by their validity,
thoroughness and effectiveness [9], even though
percentages fail to comprehensively assess UIMs [10].
Validity drops as the number of problems found with a
UIM exceeds the real problems found. Analysts make
false predictions (false positives), as well as successful
ones. Fewer false positives mean a more valid UIM.
 Validity = Count of real problems found using UIM
 Count of problems predicted by UIM
Note that if false positives do not exist, both counts must
become identical and all UIMs have a perfect validity of 1!
The thoroughness of a UIM rises as more of the real
problems that exist that are found.
Thoroughness = Count of real problems found using UIM
 Count of known usability problems
The effectiveness of a UIM is the (weighted) product of its
thoroughness and validity [6]. To calculate this accurately,
we must correctly code all analyst predictions. This is not
just to get the right percentages. To understand how and
why false positives and genuine misses arise, we must first
be able to properly code analyst predictions.

3. ASSESSMENT VIA USER TESTING
The “count of known usability problems” used to calculate
thoroughness can become known from:

• Helpdesk logs
• Logging (via software)
• Observation in real use

This space must be left blank as it is required for the copyright
notice

• User interviews
• User diaries
• User testing

User testing is thus just one approach. The approach
below uses examples for user testing to validate UIMs, but
much generalises to other empirical problem sources.

4. RELIABILITY IN VALIDATION VIA USER TESTS
Reliable assessment of UIMs (or model based methods)
starts with accurate coding of predictions. We need to be
absolutely sure that when we assess UIMs that a ‘hit’ really
was a true positive and a ‘miss’ is a missed problem (i.e.,
not a false negative but a genuine miss). Accurate coding
requires confidence in genuine misses and in classifying
analysts’ predictions as true or false positives or negatives.

Correct Coding Result
(miscoded as) Source of Error

Genuine Miss
NOT DISCOVERED

REAL PROBLEM
 (found in tests)

True +ve Incorrect extraction

Incorrect extraction
False +ve

Incomplete coverage

True +ve (hit)
PREDICTED (discovered

and confirmed)
REAL PROBLEM Genuine miss Merging error

False +ve
PREDICTED

NOT FOUND IN TESTS
True +ve Incorrect extraction

Incorrect extraction
True -ve

Incomplete coverage

False –ve
NOT PREDICTED
(discovered and

eliminated)
REAL PROBLEM Genuine Miss No evidence of

elimination

False -ve Incorrect extraction True –ve
NOT PREDICTED

NOT FOUND IN TESTS Not detected No evidence of
elimination

Table 1: Sources of coding errors and their results

There are five types of (non)-prediction when assessing
UIMs. Each has associated risks, as shown in Table 1. We
can see that a problem that should be a genuine miss
(correct coding) could be miscoded (result = true positive)
if a problem is incorrectly extracted from empirical data
(source of error, [7]) and matched to an analyst prediction.
The same source of error miscodes a false positive as a hit.
A true positive (i.e., a ‘hit’) could be miscoded as a false
positive from two sources of error: a real problem
incorrectly extracted from empirical data; empirical
coverage that misses the problem. A third source of error,
poor merging of analyst predictions, results in miscoding
as a genuine miss if a correct prediction was not kept
separate from others — analyst agreement on problem
identification can widely vary [7] and great care needs to
be taken with merging and matching analyst predictions
[2].
True and false negatives do not arise with all UIM usage,
since instruments such as extended report formats are
required to reveal analyst elimination of (im)probable
problems [4]. Without evidence of elimination (source of

error), a false negative will be miscoded as a genuine miss.
Another source of error,
incorrect extraction from user test data, will result in
miscoding as a hit (true positive).
For true negatives, incorrect extraction results in miscoding
as false negatives. Without evidence of elimination, true
negatives are undetectable, and thus analysts’ abilities to
spot fair to excellent design cannot be assessed.
There are thus four sources of error when validating UIMs:

1. Incorrect extraction: finding and describing
problems from empirical data

2. Incomplete coverage: finding real problems
(e.g., via user testing)

3. Merging error: incorrect or misleading merging
of analyst predictions

4. No evidence of elimination: recording analyst
decision making

Our approach to these errors has been developed over four
years and applied in two major studies [2, 3]. The first
source of error can be addressed by structured problem
extraction methods such as SUPEX [1]. The last two
sources of error can be addressed by Extended Structured
Problem Report Formats (ESPRFs [4]). Within our DARe
model for analyst behaviour [11], usability inspection has
two distinct phases. Analysts discover possible problems,
then analyse them (using a variety of knowledge resources
in both discovery and analysis), keeping probable
problems, and eliminating improbable ones. ESPRFs
allow for the reporting of both false negatives and true
negatives. Without ESPRFs, both true and false negatives
will be miscoded unless the UIM explicitly records success
and failure cases (e.g., [8]). We have not yet fully
reported our approach to the second source of error, and
we are often challenged to defend the existence of false
negatives.
The first source of error is the most cited reason for
mistrusting unfavourable UIM assessments. We have
addressed this to ensure reliable validity scores over five
years via falsification testing. As many still believe that
false positives cannot be reliably coded, we explain our
approach in detail to show that doubts are poorly grounded.

5. PERFORMING FALSIFICATION TESTING
The method for falsification testing involves the rigorous
testing of analyst predictions via user testing (Figure 1).
Analyst predictions are analysed and merged into a master
problem set, taking care not to distort predictions. The key
to falsification testing lies in analysing individual problems
to identify likely user difficulties that should arise in
testing. Within the context of the test application, task sets
are systematically derived to expose these likely
difficulties, that is, if the prediction is valid. Put simply,
the individual predicted problems are ‘stressed’ via user
testing to ensure a high level of confidence in final coding.

The principle is simple, if a prediction is accurate, then it
will be confirmed by user testing. If a prediction does not
materialise as a problem, we can have confidence that it
does not exist, and that the particular prediction can be
confidently coded as a false positive. Falsification testing
ensures that false positive coding of predictions is not a
consequence of incomplete coverage in user testing.

 Figure 1: Process of Falsification Testing
In summary, falsification testing is fixed task user testing.
It is not open, users have restricted choice. Thus it cannot
be used for accurate thoroughness scores, which are
achieved via a complementary method of asymptotic
testing [6]. Nor can the process distinguish between
genuine misses and false negatives without evidence of
analyst elimination (hence ‘misses’). The goal of
falsification testing is accurate validity scores, so task sets
for testing are systematically derived from analyst
predictions.

 Predicted Problem Description

1 Ambiguity of start screens regarding the selection of
presentations and types of layouts

2 Toolbar command buttons small and hard to discriminate

3
Visual status of toolbar command button availability.
No visual distinction between (un)available buttons

4 User has imited time to read error messages (5 secs)

5
Unfilled objects and ‘white’ filled objects are displayed the
same, but selection and manipulation of these objects
require different methods

6 Incorrect and misleading information on status bar when
manipulating text

7 The task of ungrouping objects is not complete until the
user performs a secondary unprompted action

8 Status Bar is badly positioned resulting in much of the
system feedback being missed by the user

9 The user is forced to reselect the toolbar button

10 Cursor feed back, no change for circles or squares,
remains as cross hairs

11 Graphic representation of toolbar buttons, hard to interpret

12 Right mouse button functions (shortcuts), hard to find

Table 2: Predicted problems from [2,12]

5.1 Example mapping
It is not always necessary to develop unique tasks for every
predicted problem. Quite often individual tasks will
address several predictions. Three tables from a previous
study [2,12] show how tasks are mapped to specific
usability problem predictions. Table 2 briefly describes 12
predicted usability problems. The study involved a
‘drawing editor’ (PowerPoint version 4.0), with which
multiple analysts performed a heuristic evaluation. There
were clearly many usability issues with selecting
appropriate slides and layouts depending on the task at
hand. Furthermore, issues with the drawing tools and
manipulating objects were also of concern. In keeping to
the context of use of the application, the general scenario
involved a relatively inexperienced individual replicating a
sketch in PowerPoint for an up-coming presentation.
After first of all recreating the drawing, the users were then
required to manipulate various objects in order to address
potential usability problems associated with such actions.

User test instructions in Table 3 specify tasks that address
both specific and general potential problems (analyst
predictions).

 User Task

a Launch the application and create the drawing you have
been supplied on a blank slide

b The barrier in the drawing should be positioned at 60o to the
horizontal

c
The default setting for the colour of generated objects is
blue. Do not change the colour of any of the objects until all
objects have been created and positioned

d
Text sizes differ. Do not alter text size of any text until all of
the text has been completed (exact font size is not critical,
only maintain approximate proportionality).

e Reposition the demonstration stands as shown in Drawing 2

f Reposition the barrier to its new horizontal position

g Remove stands 4, 8 and 11

h

There is a command button on the toolbar for generating
squares. Create a box to surround the barrier and three of
the display stands. Make sure that the information beneath it
is visible. This can be achieved by selecting the 'no fill'
option from the fill colour command on the toolbar

j Reposition the square you have just created so that it
surrounds the display stands

Table 3: User test instructions from [2,12]

Table 4 brings together the potential problem set and the
instructions. The predicted problems are listed in the first
column. The second column gives a brief description of
the action that will expose the predicted problem. The
third refers to the instruction(s) in Table 3 that, in the
course of user testing, should cause users to encounter
elements that were predicted as causes of potential
usability problems.

Analyse
predictions

Derive task
set for all

predictions

Rigorously
‘stress’ all

prediction in
user testing

Confident coding
of predictions as

hits, false
positives and

‘misses’

Prediction Exposing User Action Task

1 Selecting desired slide format a

2 Selecting various toolbar buttons c,d,k

3 Selecting various toolbar buttons c,d,g,k

4 Actions resulting in error messages k

5 Need to manipulate filled and
unfilled objects differently

e,g,h

6 Following incorrect information on
status bar

d

7 Separate unprompted action
required when ungrouping objects

e,g

8 Feedback on status bar often
missed by user

b,f,k

9 Reselection of tool after one action k

10 Limited cursor feedback k

11 Perception of graphical
representation of toolbar buttons

c,h,k

12 Right mouse button functions
(shortcuts)

c,d,k

Table 4: Mapping from predictions to test instructions [2,12]

In Table 4, some problems are addressed by several
actions, e.g., Problem 2, Toolbar command buttons are
small and difficult to discriminate, is addressed by tasks:
(c) Changing object colours after they have been created
(d) Changing text size after all text has been inserted
(k) Wildcard.
A unique task is not always necessary to address potential
problems. For example, no specific task was needed to
address Problem 10 (limited cursor feedback). As test
participants carried out various tasks designed to address
other predictions, difficulties with cursor feedback would
be apparent. k in Table 4 indicates such ‘wildcard’ steps.

5.2 Mapping and card sorts
Table 4 uses a 1:n mapping strategy from predictions to
test tasks This was manageable due to the relatively small
master problem set. With larger sets, a m:n mapping of
several predictions to the same test tasks is possible. We
used card sorts to create such compact mappings in a more
recent study [3]. Predictions were sorted by the third
author into groups that could be tested by the same (group
of) test task(s). Larger problem sets can thus be handled
without having a linear increase in test task set size.

6. CONCLUSIONS
Reliable assessment of UIMs depends on accurate coding
of analyst predictions. Random user testing for UIM
assessment carries the risk of miscoding. A combination of
ESPRFs [4], asymptotic [6] and falsification testing
(presented above) reduces the risks of miscoding, allowing

for more accurate assessment of UIMs. These approaches
increase confidence in the reliability (within their scope) of
our studies [2,3,11,12]. Hopefully, sceptics on the
existence of false positives will reconsider their position,
and the true validity of UIMs will be acknowledged.

REFERENCES
[1] Cockton, G. & Lavery, D. "A Framework for Usability

Problem Extraction”, in INTERACT 99 Proceedings,
eds. A. Sasse and C. Johnson, 347-355, 1999

[2] Cockton, G. & Woolrych, A., “Understanding Inspect-
ion Methods: Lessons from an Assessment of
Heuristic Evaluation," in People & Computers XV,
eds. A. Blandford & J. Vanderdonckt, Springer, 171-
192, 2001.

[3] Cockton, G., Woolrych, A., Hall, L., & Hindmarch,
M., “Changing Analysts’ Tunes: The Surprising
Impact of a New Instrument for Usability Inspection
Method Assessment” in People & Computers XVII,
eds. O’Neill, Johnson & Palanque. Springer, 145-161,
2003

[4] Cockton, G., Woolrych, A. & Hindmarch, M.
“Reconditioned Merchandise: Extended Structured
Problem Report Formats in Usability Inspection” in
Extended Abstracts of CHI 2004, ACM, 2004.

[5] Gray, W.D. & Salzman, M., “Damaged Merchandise?
A Review of Experiments that Compare Usability
Evaluation Methods”, HCI, 13(3), 203-261, 1998

[6] Hartson, R.H., Andre, T S., Williges, R.C. “Criteria
For Evaluating Usability Evaluation Methods”. Int. J.
of HCI, 15(1), 145-181, 2003

[7] Hertzum, M. & Jacobsen, N.E., “The Evaluator Effect:
A Chilling Fact about Usability Evaluation Methods”,
Int. J. of HCI,13(4), 421-443, 2001

[8] Polson, P., Lewis, C., Rieman, J., & Wharton, C.,
“Cognitive walkthroughs: a method for theory- based
evaluation of user interfaces,” IJMMS, 36, 741-73,
1992

[9] Sears, A., “Heuristic Walkthroughs: Finding the
Problems Without the Noise”, International Journal of
Human-Computer Interaction,9(3), 213-23, 1997

[10] Woolrych, A. and Cockton, G. "Assessing Heuristic
Evaluation: Mind the Quality, not just Percentages" in
HCI 2000: Vol 2, Eds. S. Turner and P. Turner, 35-36,
2000.

[11] Woolrych, A. and Cockton, G., "Testing a Conjecture
based on the DR-AR Model of UIM Effectiveness," in
Proceedings of HCI 2002, Vol 2, eds. Sharp, Chalk,
LePeuple and Rosbottom, BCS, 30-33, 2002

[12] Woolrych, A. Assessing the Scope and Accuracy of
the Usability Inspection Method Heuristic Evaluation,
MPhil Thesis, University of Sunderland, UK, 20

	Introduction
	How do we Assess UIMs?
	Assessment via User Testing
	Reliability in Validation via User Tests
	Performing Falsification Testing
	5.1 Example mapping
	5.2 Mapping and card sorts

	Conclusions
	References

