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The behaviour of magnetoacoustic waves in the neighbourhoaaf a two-dimensional
null point: initially cylindrically-symmetric perturbat ions

J. A. McLaughlin

Department of Mathematics and Information Sciences, Northumbria Utivers
Newcastle-upon-Tyne, NE1 8ST, United Kingdom

Abstract:

The propagation of magnetoacoustic waves in the neighbourhood of alRidmt is investigated
for both 8 = 0 and 8 # o plasmas. Previous work has shown that the &tfspeed, herey O r,
plays a vital role in such systems and so a natural choice is to switch to paetditates. For
the B = o plasma, we derive an analytical solution for the behaviour of the fast et@gcoustic
wave in terms of the Klein-Gordon equation. We also solve the system with assetyitical WKB
approximation which shows that th2= o wave focuses on the null and contracts around it but,
due to exponential decay, never reaches the null in a finite time. F@ he plasma, we solve the
system numerically and find the behaviour to be similar to that ofiteeo system at large radii,
but completely different close to the null. We show that for an initially cylindiyesymmetric
fast magnetoacoustic wave perturbation, there is a decrease in watkapag the separatrices
and so the perturbation starts to take on a quasi-diamond shape; with tleesclmrated along
the separatrices. This is due to the growth in pressure gradients thataeaaximum along the
separatrices, which in turn reduces the acceleration of the fast wawg thie separatrices leading
to a deformation of the wave morphology.

Keywords: Magnetohydrodynamics (MHD) — Waves — Magnetic fields — Sun: atmospher
Corona

1 Introduction

MHD waves are ubiquitous in the Sun’s atmosphere (e.g. Tomeizgk 2007) and a variety of
observations have now demonstrated the existence of wave activity filr&efundamental MHD
wave modes: namely Alen waves and fast and slow magnetoacoustic waves. Non-thermal line
broadening and narrowing due to Afie waves has been reported by various authors, including
Banerjeeet al. (1998), Erelyi et al. (1998), Harrisoret al. (2002) and O’Sheat al. (2003;
2005) and investigated both analytically (e.g. Dwivedi & Srivastava @08 numerically (e.qg.
Chmielewskiet al. 2013, and references therein).

MHD wave behaviour is influenced strongly by the underlying magnetictstrei§topology) and
so it is useful to look at the topology itself. Potential field extrapolations ottrenal magnetic
field can be made from photospheric magnetograms and such extrapolatienthe existence of
two key features of the magnetic topologyagentic null points andseparatrices. Null points are
weaknesses in the magnetic field at which the field strength, and thus thenAdpeed, is zero.
Separatrices are topological features that separate regions otdiffeagnetic connectivity and
are an inevitable consequence of the isolated magnetic flux fragments inatospinere. Detailed
investigations of the coronal magnetic field, using such potential field céimsacan be found in
Beveridgeet al. (2002) and Brown & Priest (2001). The number of resultant null paletsends
upon the complexity of the magnetic flux distribution and tens of thousandsstineaged to be



present (see, e.g., Closeal. 2004; Longcope 2005; &jnieret al. 2008; Longcope & Parnell
2009).

MHD waves and magnetic topologyill encounter each other in the solar corona, e.g. waves
emanating from a flare or CME will at some point encounter a coronal mititp MHD wave
propagation within an inhomogeneous magnetic medium is a fundamental plasteagpand the
study of MHD wave behaviour in the neighbourhood of magnetic null poinéstly contributes to
this area; see McLaughliet al. (2011a) for a comprehensive review of the topic.

The behaviour of linear MHD waves, both magnetoacoustic waves anémifiaves, has been
investigated in the neighbourhood of a variety of 2D null points (e.g. Mghtén & Hood 2004;
2005; 2006a; 2006b; McLaughlin 2013). Nonlinear and 3D MHD wastévity about coronal null
points has also been investigated (e.g. Galsgetaald 2003; Pontin & Galsgaard 2007; Ponéiral .
2007; McLaughlinet al. 2008; 2009; Galsgaard & Pontin 2011a; 2011b; Thurgood & McLéngh
2012; 2013a; 2013b).

Authors have also considered an X-point magnetic field configuratio with a longitudinal
(along the X-line) magnetic fieldB. This has the effect that now the fast magnetoacoustic
wave and Alfven wave are linearly coupled by the gradients in the field. McClementst al.
(2006) investigated such a coupling with a weak longitudinal guide fieldresent 8| < B,) and
Ben Ayedet al. (2009) considered a strong guide-fieldg, > B,). These authors found that
the Alfvén wave is coupled into the fast mode, with the coupling strongest dhe separatrices
and far from the X-line. In the limit of B — o, the two modes are decoupled and the results of
2D work are recovered. More recently, Kizma et al. (2015) investigated similar coupling for
a X-line formed above two magnetic arcades, but now embedded in aadel solar atmosphere
with a realistic temperature distribution. They found that the form ation of the Alfvén waves
at the initial phase of temporal evolution is followed by linear coupling etween Alfven and
magnetoacoustic waves at a later time. The Alfen waves also experience phase mixing and
scattering from inhomogeneous regions of Alfén speed, and partial reflection from the model
transition region.

It is also clear that the plasnfa-i.e. the ratio of thermal plasma pressure to magnetic pressure,
plays a key role. A very detailed and comprehensive set of 2D numsiialations of wave prop-
agation in a stratified magneto-atmosphere was conducted by Rosetrath#2002) and Bogdast
al. (2003). In these simulations, an oscillating piston generated both fastamd/i$iD waves on
a lower boundary and sent these waves up into the stratified magnetizethplBseir calculations
showed there was coupling between the fast and slow waves, and traiupigg was confined to
a thin layer where the sound speed and the &ifvelocity are comparable in magnitude, i.e. where
the plasmg3 approaches unity. Away from this conversion zone, the waves weaugkd as ei-
ther the magnetic pressure or thermal plasma pressure dominated. Onaiofishaf these papers
was to see how the topology affected the propagation of waves, with thefalie sound speed to
the Alfvén speed varying along every magnetic line of force. In this, their wodkoams have the
same ultimately goal; a fully 3D understanding of MHD wave propagation in tlae sorona.

Other authors have also looked at MHD mode coupling: Cally & Bogdan7)L88scribes 2D
simulations in which bothf-modes andgp-modes are partially converted to slow magnetoacoustic
gravity waves due to strong gravitational stratification. De Moatte@l. (2004) investigated driv-
ing slow waves on the boundary of a 2D geometry with a horizontal dengiigtioa, where they
found coupling between slow and fast waves and phase mixing of the shoesw The coupling
of different wave modes has also been investigated by Ferraro & Plur(if68), with Meijer G-
functions by Zhugzhd & Dzhalilov (1982), and with hypergeometFcfunctions by Cally (2001).



All these works considered mode coupling through a gravitational straitifica.e. a vertical den-
sity inhomogenity. Finally, the coupling of fast waves and A&liwvaves has been investigated by
Parker (1991) for linear MHD with a density gradient and by Nakariak@/. (1997) for nonlinear
excitation.

In this paper, we will investigate the behaviour of magnetoacoustic wavemwittomogeneous
magnetic media. We will concentrate our investigations on wave behavioue@xda initially
cylindrical-symmetric perturbations. Our paper has two aims: Firstly, we widdtigate the be-
haviour of (fast) magnetoacoustic waves i a& o plasma using numerical, analytical and semi-
analytical techniques. Secondly, we lift tife= 0 assumption and study A # o plasma. This
naturally introduces slow waves to the system and so we will investigate theibahof both types
of magnetoacoustic waves around a null point.

Two papers are key to our investigation: Firstly, McLaughlin & Hood (90@xestigated the
behaviour of the fast magnetoacoustic wave & & o plasma within a Cartesian geometry. They
found that the fast magnetoacoustic wave was attracted to the null vieaatiedfr effect and that
all the wave energy accumulated at the null. Secondly, McLaughlin & H2088b) extended the
2004 model to include plasma pressure i & o system. This led to the introduction of slow
magnetoacoustic waves and coupling between the two types of magnettae@yes. However,
the resultant behaviour was extremely complex and the investigate was agaid tiorgt€artesian
geometry. In this paper, we will investigate the behaviour of magnetoacauaties in a8 # o
plasma excited via initially cylindrical-symmetric perturbations. It is hoped thatresults will
help begin to explain the complex resultant behaviour observed in Mcliaugiood (2006b)
and hence contribute to the overall understanding of MHD mode conneasioss thg = 1 layer.

Our paper has the following outline: The basic setup, equations and assusgre described in
§2. The analytical, numerical and semi-analytical results fBr=ao plasma are presented§g and
the numerical results for @ # o plasma appear ify. The discussions and conclusions are given in
§5.

2 Basic Equations

We utilize the usual MHD equations appropriate to the solar corona, witlsymesnd resistivity
included. Hence

ov 1
p[at—i—(v-D)v] = H(DxB)xB—Dp,
(f;? = Ox(vxB)+n(’B,
ap B
W+D~(pv) = o,
7]
S vDp = —ypl-v, ®

wherep is the mass density, is the plasma velocityB the magnetic induction (usually called the
magnetic field) pis the thermal plasma pressuges= 471x 10~7 Hm™1 is the magnetic permeability,
n = 1/uo is the magnetic diffusivity in fs~* and o the electrical conductivity. We have also
neglected viscous terms in equations (1). Investigations involving viscogsetaluids can be
found in Kumar & Bhattacharyya (2011) and McLaughditral. (2011b) and references therein.



Figure 1: Our choice of equilibrium magnetic field.

2.1 Basic equilibrium

The basic magnetic field structure is taken as a simple 2D X-type null pointeftiner the magnetic
field is taken as

B
E (X>07_Z) 9 (2)

whereB is a characteristic field strength ahdis the length scale for magnetic field variations.
This magnetic field can be seen in Figure 1. Obviously, this magnetic cortfuia no longer
valid far away from the null point since the field strength tends to infinity. el@y, McLaughlin
& Hood (2006a) looked at a magnetic field that decays far from the rardlgB = o plasma) and
they found that the key results from McLaughlin & Hood (2004) remain treiy close to the
null. In addition, equation (2) is potential, although in general coronaldiatd twisted and thus a
potential field is a coarse approximatiorhe aim of studying waves in a 2D configuration is one
of simplicity: there are a lot of complicated effects including mode trasition and coupling,
and a 2D geometry allows us to better understand and explain thedeehaviours before the
extension to 3D. Our modelling philosophy is to build up our models incremetally, with an
emphasis on understanding the underlying physical processes a@h step, since (as detailed
in the introduction) the solar corona is extremely inhomogeneous inlbits characteristics.

In this paper, the linearized MHD equations are used to study the naturegyokoacoustic wave
propagation near the null point. Using subscrigor equilibrium quantities (e.gB,), b to denote
perturbed magnetic field and subscripfior all other perturbed quantities, the linearized equation
of motion becomes

B, =

ov, Oxb
p()ﬁ— ( ) XB()_Dp17 (3)
the linearized induction equation
%:Dx(leBo)JrnWb, 4
the linearized equation of mass continuity
ap, _
ot +D‘(pov1)—07 (5)



and the adabatic energy equation

L N GRA ©
We will not discuss equation (5) further as it can be solved fully oncemnesviv/, . In this paper, we
assume the background gas density is uniform and labepif.a& spatial variation irp, can cause
phase mixing, e.g Heyvaerts & Priest (1983) and Heioal. (2002). The phase mixing of Alan
waves near a 2D magnetic null point has been looked at specifically in ddtllia (2013).

2.2 Coordinate system and non-dimensionalization

We now consider a coordinate system forsuch that we split the velocity into parallel;,vand
perpendicular, v, components. This will make our MHD mode interpretation and detection easier
later, e.g. since a loys-slow wave is wave-guided and therefore will appear primarily in Vhus,

we let

B, —0A,
V, =V | —— V| ——— vV,
I(\/B()'Bo>+ L(\/B()'Bo>+ yy

whereA, is the vector potential and the terms in brackets are unit vectors. To aid therical
calculation, our primary variables are considered to be-w/B, - B,V, and v = \/WVH.
We now consider a change of scale to non-dimensionalizer, letw?, v, = \TBVj,VH = \TBV|*‘,
B, =BB}, b=Bb*, x=Lx*,z=LzZ", p, = p,p}, O =0%/L,t =tt*, A, = BLA; andn = n,, where
we let * denote a dimensionless quantity an@, L, p,, t andn, are constants with the dimensions
of the variable they are scaling. We then Bgt/fip, = vV andv = L/t; this setsv as a constant
equilibrium Alfvén speed. We also sgit/L*> = R,,!, whereRy, is the magnetic Reynolds number,
and sef3, = 2 p,/B?, wheref, is the plasmg3 at a distance unity from the origin; see afgo4.
This process non-dimensionalizes equations (3) - (6) and under tbaléegst* = 1 refers to
t =t =L/Vv; i.e. the time taken to travel a distancat the equilibrium Alf\en speedFor example,
for typical coronal parameters of, say,v = 1000 km/s (for fast waves) andL = 1 Mm gives
t =L /v =1 second For the rest of this paper, we drop the star indices; the fact that teeyosay
non-dimensionalized is understood.



2.3 Linearized equations

Implementing our choice of coordinate syste§n.¢), equations (3) - (6) become

0 Oxb
poavl = _(BO'BO)< >+DA0‘Dp1
0
poEVH = _(B()'D) P.
d
poavy = (BO'D)by
0 17} 1,
be = _;ZVL—F@D bx
0 1,
ot = (Bo:D)wi o Oy
0 17} 1,
Ebz - E(VL—F@D bz
7] o BOVH VLDAO
Epl B _ypO |:D.<BO'BO>_D'<BO'BO>:| ‘ (7)

Note that in this geometry, the linearized MHD equations naturally decouple intsdtg of equa-
tions: one for the magnetoacoustics waves and another for thérAlfave. In other words, the
y—components o¥, andb (namelyvy andby) entirely decouple from thg— andz—components.
The behaviour of the Alfén wave has already been investigated in McLaughlin (2013) and so we
do not consider these-components further: we can sgt= by = o without any loss of generality.

We substitute in the form of our equilibrium magnetic field (equation 2) and apptynon-
dimensionalization fron§2.2, e.g. nowB, = (X,0,—2) andA, = —xz, where B, =0 x A, 9. We
also assume that the background gas density is uniform apglsa in our non-dimensionalized
units. This gives our linearized, non-dimensionalized perturbation eegatiith pressure and
resistivity included. These are

EVJ_ = vi(x,z)(dbz—dbx)—ﬁo<zdp1+xap1>

ot ox dz) =2\"ox oz

o _ B(,9p. _Op

at'l = 2(X0x Zaz>

oby 17} 1 [(0%°by  0°by

i —anﬁRm(axz - azz>

dby _ 0, (3 oD,

ot~ dx " Rm\ox 07

ap. B -y 0VH dv” X2 —2Z2

at x2+z2[<xax “0z) etz
ov, ov, 4XZ

N (Z ox X dZ)_X2+Z2 Vl] ®

where the (non-dimensional) An speedya (X, z), is equal to\/x2 + 2. These are the equations
we will be solving in the subsequent sections.
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Figure 2: Regions of high and lo@ in our equilibrium magnetic field, wheig = xfiozv The black
circle indicates the position of tHe = 1 layer, where +z° = f3,.

2.4 PlasmaB

A parameter of key importance in equations (8Bis= 2 p,/B?, wheref, is the plasmg3 at a
distance of unity from the null point. This dimensionless parameter goveenstitbngth of the
coupling between the equations for &nd v|. The plasma3 parameter is defined as the ratio of the
thermal plasma pressure to the magnetic pressure. In most parts of tha,dbmplasmg is much
less than unity and hence the pressure gradients in the plasma can béagedlear magnetic null
points however the magnetic field is diminishing (actually reaching zero at thésalf) and so
the plasmg3 can become very large. Note that in this pag#rlenotes the true plasnfa-and
B, denotes the value of the plasrfaat a radius of unityr = 1. Thus, the true plasm@-varies
through the whole region, since magnetic field is varying everywhere ghaut our model; see
Figure 2. In our systemB3 [ (x*+2*) " and thus will reach infinity at the null; here the origin.
Thus, considering equilibrium quantities

thermal plasma pressure Po _2up,/B* B, B

B = = — 9

magnetic pressure  (B,-B,)/2u  x2+z  x2+z  r2’

wherer? = x> 47> and so we can think of th = 1 layer as occurring at radius= \/E i.e. this
is the radius at which the thermal plasma pressure and magnetic pressagualr.

There is coupling between the perpendicular and parallel velocity comfzspecifically through
B, and this coupling is most effective where the sound spagdnd the Alf\en speedya, are com-
parable in magnitude, i.e. wheog = vi. Bogdanet al. (2003) refer to this zone the magnetic
canopy or thg8 ~ 1 layer. Here we define the equilibrium sound speed as

Co = /‘g’o where B, = 2/p, /B = 2p,/p,V° = Cs:\/g_: EB(XQHQ)V

where we non-dimensionalize the sound speed suchcthatvc; and, as before, drop the star
indices.
Thus, thec? = v; layer occurs at:

yBo

2

(10)

gﬁ(x2+22):x2+22 = gB:1 or alternatively gﬁozx"’jtz2 = r=

7



where we recall’; = x* +Z* in non-dimensionalized variables. Thus, ttie= v; layer, or alter-
natively thef3 = 2/y layer, occurs at a radius= /yf3,/2. This is the radius at which the Alén
speed and sound speed are comparable, and it is through this that the amieting coupling arises
with the greatest efficiency. Of course, the difference betweef tha layer atr = \/[70 and the
Cs =V, layer atr = \/yB,/2 is very small, and hence can be grouped together ag tha layer.
Thus, Bogdaret al. (2003) are justified in considering tifiex 1 layer to be the critical layer.



3 [ =o magnetoacoustic wave propagation

In this section, we begin our investigation under ghe- o assumption; equivalent 8, = 0. We
also neglect the magnetic resistivity)(but will discuss its role in the conclusions. Thus, we take
n = o which is equivalent to lettingy — oco. This is referred to as an ideal plasma. This simplifies
the governing equations (8) to the following

Sv. = ilx2 (abz - %X)

ot ox 0z

oby 0 1 [(0%by 0%by

e ‘anﬁRm(axz * azz>

ob, 9 1 (0%b, 0%,

o o'?xVH_Rm(dx? azz> (11)

where, as before, the Alén speeda (X,z)=+v/%x>+ 22 andb = (by,0,b;).

Note that here y= constant and so, if initially absent, the slow magnetoacoustic wave is always
absent under th8 = 0 assumption; as expected.

We note that these equations can now be combined to form a single wav®eaquith a spatially-
varying speed

%VL =i (;X + ;;) Vi =(¢+2) (jx + 522) V= 0¢+2)0, (12)
From equation (12) is apparent that the Afvspeed; = x> + z* plays a vital role in the wave
evolution. Thus, the natural choice here is to switch to polar coordinatesr @uthors have looked
at the behvaiour around a null point using a Cartesian system, e.g. Mblia® Hood 2004.
However, changing to polar coordinates allows these equations to be exhunsimg analytical and
semi-analytical approaches, and so may add to our understandindhad system.
In polar coordinates, the magnetic field described by equation (2) andrsEaure 1 is

B, = —rcosz6f +rsinz6 6 (13)
Thus
5 1|0 17} 1,
By,-B,=r*, D><b_F [dr(rbe)debr] 9, A_—;r Sin209 . (24)

Here, the linearised equations for {Bie-= o fast magnetoacoustic wave, i.e. the non-dimensionalized
equivalents of equations (11), are

dvlr2[1o"' 10

'L - v oby idvl dbgi ov,
ot~ |rae" ror

“be)} C aree o
As in equation (12), these can be combined to form a single wave equation:

03V o 1 0%V 10 oV, oo
e [r2 96> v or (r ar )] =riv (15)

where we have used the polar coordinates forfi®of 1 2- (r %) +L 2. Note that we can change

between equations (12) and (15) using the substitutien cosf, z=rsinf andr? = x> 4 2°.

9



3.1 Analytical solution: Klein-Gordon and Bessel functions

Equation (15) is a 2D wave equation with an equilibrium A&livspeed that is spatially varying.
Since itis a wave equation, we would expect to proceed by the usuaéFoomponent substitution.
However, we are unable to do this here because we do not have dartstitents in equation (15).
Instead we shall perform some mathematical manipulation. The right-haaadfsédjuation (15) is
r% ( "VL) + %gj and we can proceed by considering a change of variableu ketnr —Inr,

wherer /1, is a dimensionless quantity. Thus equation (15) becomes

aQVL 6 ov, 03V 7] ov, 03V 0?v, 0%,
= — f— 1
ot or ( ar >+ 96> au ( du> 96> ow 06 (16)
where ¢+ and soau SL 5= rdr Note this substitution works equally well far= +In =
oru= —In L smce the signs just cancel out. Heges an imposed constant and has the effect of

settingu = 0 atr = r, and sar, can be thought of as a boundary. This is discussed furth&gy.in
Using this substitution, we now have constant coefficients. Typically wddvoow try a har-
monic solution such that v= &®@+n+mé) gnd this would give a dispersion relation via normal
mode analysis. However, we have to be carefuh asay be complex due to our substitution. In
fact, the only separable part we can really justify is that@rsependence satisfie®™ so that we
have periodicity, wherenis an integer and represents the azimuthal wavenumber.
We now assume we can separate variables such tHaty, 6) = o (u,t)-©(68). So

0?0 0o 020
%% % T %6
= O _Ow _ O = constant= —nv’
g o C]
- BGgg = —NFrO — ©O(6)=Acosmb+Bsinmo,

whereA andB are constants. Tth?gg—; = Bygo = —NPOO0 = —nPv, and so equation (16) simpli-
fies to

03V 03V 0?0 0%0
- o VL T e T e

—nro. (17)
We identify this equation asklein-Gordon equation.

3.1.1 Klein-Gordon with m=o

The Klein-Gordon equation (17) is a modified wave equation and it can lvedsanalytically.

Firstly, we look at the simplest solution wheme= 0. Settingm = o reduces the Klein-Gordon

eqguation to the familiar wave equatiég?f = gu‘j This has a D’Alembert solution and so

o=%(u—t)+9 (u+t) ,

where.# and¥ are arbitrary functions determined by the initial and boundary conditionte te
arguments are dimensionless. Using our substitutioasn - wherer®> = x* 4z andr? = x2 + z,
and recalling tha® = Acosmf + Bsinmf and so@ is a constant fom = o that we can absorb into

10



the arbitrary functions, gives

(6]

vy = Iog() T — llog(r) "
2 |2 re
1

(1 x2+z2- X2 + 22 ;
= 7 |- —t|+¥ t
B °g<x3+zg> ]+ L °g<x%;+zs>+]
= 7 ilog<:> —t +9 ilog<:> +t| . (18)

3.1.2 Klein-Gordonm=# o

We can also solve the Klein-Gordon equationtfof o. Starting with the casm_ 1, equation (17)

becomes? = 9.2 —g. Lettings= {2 —w? gives & = L& and 2 = — 4 and so our equation
becomes
t2d20+1d0 t2do B wd?c 1do uwdo o
£ds2 sds ssds 2 sds sds s ds
- d*o + Ldo +0 = o
ds®  sds -

This is aBessel Equation of the formv = o. Thus, it has solution
0= C1Jo(5) + CzYo(S)

where

— 22N (nl)z 22n. (n!)2

J"(S):Zﬂ and Y()(S)ZIZT[J() <Iog +l‘)+Z_1n+thQn 7

whererl is the Euler-Mascheroni constart,= Xlim (hm—logx) andhy, is the harmonic number
— 00

m
such thatyp =) k.

k=1
Our parametes is valid fort > u and sos= o is allowed, thus we discount ol solution, due
to its logarithmic term. Hence = ¢, J,(s). Now v, = g® and so our solution is

v, =J,(s)- (AcosO +Bsinb) ,

where we have absorbed the constaninto A andB. Substitutings back to the original variables

gives
v, =J, ( t2— <In rr> > -(AcosB +Bsin@) .

This can easily be extended to the casée o or 1 by rescaling andu. Thus, our generah +# o
formforv, is

(6]

vV =J, (m t2— <Inrr> ) - (Acosm@ +Bsinm@) . (19)

11



Thus, in this section we have solved the Klein-Gordon equation analyticallinatoing so found
an analytical solution to oy = o fast magnetoacoustic wave equation. Note that a great deal of
work has been caried out on the Klein-Gordon equation; e.g. Lamb [(19#») worked with
this equation whilst looking at the behaviour of sound waves. Howeveyudin making certain
substitutions we have actually solved the equation for a particular solution ioalyan initial
condition of the formd (r —r,). To solve the Klein-Gordon in general, we would need to use
numerical techniques. Thus, §3.2 we will consider a numerical solution of our system.

3.2 Numerical simulation

Equation (15) can be solved with a number of numerical schemes with thélearidefined in
polar coordinates. However, polar coordinate systems have a funtidmesblem when it comes
to crossing the origin; firstly, the radial coordinate decreases to zemjribreases from zero. This
movement through zero also causes an instantaneous shifhdhe angular coordinate. This can
cause a problem in many numerical codes. Secondly, dividingby is always a problem.

Hence, instead of utilising a 2D polar coordinates numerical code to sobaieqs (15) where
the wave is driven on the (now circular) boundary, we utilised the Cartgsia-step Lax-Wendroff
numerical scheme detailed in McLaughlin (2013) withiaitial pulse condition as oppposed to a
driven boundary. The numerical scheme was run in a box with< x < 6 and—6 <z < 6 and an
initial pulse was set up around= 3 such that

for 2.5 <r <35

for 0<0<2m (20)

v, (r,8,t =0) =./3sin[m(r —=2.5)] {
Of course, this pulse was written into the code in terms efr cosf andz = r cosf so what was
actually solved was

Vi(xzt=0)=/3sin[m(Vx+2—25)] for25<V¥+2<3s5,
9 9 9 0

—V, =0, —=Vi| =o0, =V —V,
Ox - OX ’ =6 A P

i =0.
X=—6 X=6 0z

This gave a suitable initial pulse.

When the numerical experiment began, the initial condition pulse split into twesyaeach
propagating in different directions. The waves split apart naturallyvemdhen concentrate our
attention on the incoming circular wave. The outgoing wave is not of primargero to us and the
boundary conditions let the wave pass out of the box. This can be séggure 3. The top left
hand shaded surface shows the intial pulse-ab. The top right subfigure shows the pulse split
into two aftert = o.5. The lower left hand side shows the pulse again &ften.5 but from above.
We see that the two waves have disassociated in the sense that we &gusteoncentrate on the
incoming solution. The bottom right subfigure will be discussed below.

We can also understand the splitting of the initial condition into two wave pulsesnirs tef
D’Alembert’s solution, as discussed$3.1.1. Here our initial condition has the form

Jasin[m(r—2.5)] = éﬁ‘ (t+logr) + ;y(t—logr)
= g sin[rr(éM°9" —2.5)] + ? sin[m(e 19" —2.5)]
These analytical descriptions match the evolution of the two waves satigégtand the agree-
ment can be seen in the bottom right subfigure of Figufdd@e how the numerical solution has
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Figure 3: The top left hand shaded surface shows the intial putse at The top right subfigure
shows the pulse split aftér=o0.5. Lower left hand side shows pulse again aftef 0.5 but from
above. Bottom right shows a cut along (x,z= o) with the black line showing the numerical
solution and the coloured lines showing the analytical agreement.

some small dispersion as the two waves split; this is due to our choicé pulse (20) having
discontinuities in the first-derivative at its edges.

The simulation was run with a resolution ofoo x 1000 points and successful convergence tests
were performed. However, since we expect the important/interestingibeh&o occur close to the
origin/null, a stretched grid was implemented to focus the majority of the grid pdiods to the
origin. The stretching algorithm smoothly stretched the grid such that 50%edgritl points lay
within a radius ofi.5. This gave a better resolution in the area of prime interest. The behaviour of
the fast wave with a circular geometry can be seen in Figure 4. Note howitia¢ prulse can be
seen in the top left subfigure and that it has magnity@ethen at a later time the wave has split
and has magnitudg’/2.

13



N
3
x x xr
-3 -3 T -3
2 2r 2
1 7 15
-1 -1 —1F
-2 -2F -2
-3 . . -3 . . -3
-3 -2 -1 0 7 2 3 -8 -2 -1 0 1 2 3 -8 -2 -1 0 1 2 3
x xr T
. g ‘ - 2.0
2 2
15
7 1F 7
O O o H
N0 L] n 0
-1 —1 —1 0.5
-2 -2F —2 0.0
-3 -3 . -3
-8 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 7 2 3
x x x

Figure 4: Contours of numerical simulation of Yor a fast wave pulse initially located about
a radiusy/x* + 2z = 3, and its resultant propagation at timgs t=0, (b) t=0.25, (c) t=0.5, (d)

t =0.75, (e) t=1.0 and(f) t=1.25, (g) t=1.5, (h) t=1.75 and(i) t=2.0, labelling from top left to
bottom right. The black cross indicates the location of the null point (at igendr

3.3 Semi-analytical approach: WKB approximation

We can also solve equation (15) using the WKB approximation. The WKBoappation is an
asymptotic approximation technique which can be used when a system cantaige parameter.
It is named afteMentzel, Kramers and Brillouin, who pioneered its use in quantum mechanics
around 1927. Details of the theory can be found in Murray (1927), &medl957), Bender &
Orszag (1978) and Evans, Blackledge & Yardley (2001).

Substituting vy = €¢-9) . =1t into equation (15) gives

o[- () ()]

Now we make the WKB approximation such th@at w > 1, which yields

(4)2 :r2p2+q2

14



wherep = ‘;—‘r” andq = g—‘g. This leads to the construction of a first-order, non-linear partial @iffer
tial equation of the forn (r, 8, ¢, p,q) = o such that

4 (r,0,90,p,q) =—-(r’p’+¢ —w?)=o.

1
2
Note all the imaginary terms have disappeared. We choose to intragdu@eto the construction of
¢ to make the equations simplify later.

We can now apply thdlethod of Characteristics to solve this first-order, non-linear partial dif-
ferential equation. This gives

o9 o9 ., 09 09 ., 0Y

a9 % ap P g ar TP 59 T

Now we can apply Charpit’s Relations to solve these equations. Charpitsidtes are general
characteristic equations first used by Charpit in 1784 and Lagrangé&/@®, Where the method is
attributed to Charpit who perfected it. Applying Charpit’s Relations yields

dp ., dp dg dar ., dé _
ds Y ds” as =% ds P ds T
wherew is the frequency of our wave arsds some parameter along the characteristic. These five

ordinary differential equation can be solved using, for example, afeander Runge-Kutta method.
The initial conditions are

—rp*, q, (21)

w
®=o0, r(s=o)=r,, 0<f, <21, pp=—, =0,

wherer, is the radius of the boundary that the disturbance starts frompatisl negative so this
disturbance propagates towards the origin, as we concluded §gone. We can also see that
g=q, = o. Finally, d%(pr) =0 = pr = pofo, =—win agreement with the form .

Thus, we can use our WKB solution to plot the evolution of the fast wava fro initial radius
r = g in order to compare to the numerical solution givergz and Figure 4. This can be seen
in Figure 5. The lines represent the leading, middle and trailing edges of Ki& Wéve solution,
where the pulse starts at radiiloE 2.5, 3 ands.s5.
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Figure 5: Semi-analytical solution of vfor WKB approximation of a fast wave sent in from a
circular boundary at = 2.5, 3 ands.5, and its resultant propagation at times t=0, (b) t=0.25,
(c)t=0.5,(d) t =0.75,(e) t=1.0 and( f) t=1.25,(g) t=1.5,(h) t=1.75 and(i) t=2.0, labelling from
top left to bottom right. The lines represent the leading, middle and trailingsedigéhe WKB
(wave) solution.
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4 B # o magnetoacoustic wave propagation

In this section, we look at the behaviour of the fast magnetoacoustic wéwve neighbourhood of a
simple 2D X-point, as we did i§3. However, we now considerfa+ o plasma, i.e. we lift the cold
plasma restriction. This extends the mode§gtto include plasma pressure and pressure gradients
and the most obvious effect of this is the introductiomslofv magnetoacoustic waves to the system.
There will now also be the possibility of coupling between the two magnetotcoue/es; this can
be understood through the plasifiggarameter§z.4) since there can now be an interplay between
plasma pressure and magnetic pressure, and we expect this couplimjcandhtion exchange to
occur primarily near where the sound speed and&ifspeed become comparable in magnitude, i.e.
at the areas where the plasifia 1. Again, we will not consider the Alfén wave here and recall
that for Alfvén waves that are decoupled from fast waves, the value of the plassnanimportant
since the plasma pressure plays no role in its propagation. This can alserbmathematically in
the last of equations (8), i.e. neithgrnor by appears in the equation governipg

We approach this investigation by studying magnetoacoustic wave propaga#ccircular ge-
ometry with a similar numerical set-up to that§p.2. Again, in a circular geometry, our particular
choice of magnetic field gives rise to equations (13) and (14). Howexenow solve the8 # o
linearized equations (8) as opposed to the redyed set in§3.2.

There is a lot of freedom in setting,, where we recall from equation (10) that our choicgBpf
only affects the location of th = 1 andcg = v; layer. This is an arbitrary choice, since our system
does not have any obvious length scales. Here we choose £ seb.25 and we present these
results below. We also investigated other valueg,adnd these all give similar results; it is only the
radius of theB = 1 layer that changes in accordance with equation (10). Note thg,fero.25,
the 3 = 1 layer occurs at a radius= , /0.25 = 0.5 and correspondingly the = v layer occurs at
aradius off = \/5/24 = 0.456.

As in §3.2, we now solve our equations (8) numerically using our 2D Cartesian LexeVéff
numerical code (instead of writing a polar coordinates version of the)cdties, as before, we use
the Cartesian code with an initial pulse condition and this will give us a simulatiaheg® # o
plasma behaviour. The numerical scheme was run in a square box@ithx < 6 and—6 <z<6
and an initial pulse was set up aroung 3 such that

for 2.5 <r <3.5

for 0<@<om and v(r,8,t=0)=o0.

v, (r,0,t =0) =/3sin[m(r —2.5)] {

Of course, this pulse was written into the code in terms-efr cosd andz =r cosf so what was
actually solved was

V| (X,zt=0) = \/gsin[n(\/x2+z2—2.5)] for 2.5 <X+ <3.5,

9 \% 0 9 \Y 0] 9 \ 0 9 Vv 0
VL = R S =0, VL =0, ZzVL =0,
oX |, 0X |y 0z ~|,__4 0z |,
vi(X,zt=0) = o,
ov
iVH = 0, iVH =0, iVH =0, | =0. (22)
ox X=—06 ox X=6 0z 7=6 0z 7z=—06

This gave a suitable initial pulse. When the numerical experiment beganjtiedandition pulse
split into two waves; each propagating in different directions. The wapétnaturally apart and
we can then concentrate our attention on the incoming circular wave. Theirgitgave is of no
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concern to us and the boundary conditions let the wave pass out ofthéhisoconcept is similar
to that of§3.2. The simulation was run with a resolution ofoo x 1000 points, and successful
convergence tests were performed. However, since we knew the impbeiaaviour would occur
close to the origin, a stretched grid was used to focus the majority of the gritspose to the

null point. The stretching algorithm smoothly stretched the grid such that 5@8 grid points lay

within a radius ofi.5. This gave better resolution in the areas of interest.

Note that considering a3 # o plasma may now also introduce the entropy mode into our
system (see e.g. Goedbloed & Poedts 2004; Murawsgial. 2011). The entropy mode is a non-
propagating MHD mode and is a solution to the ideal MHD equations with zeo frequency. It
can be represented as a local increase/decrease in the temperatand a decrease/increase in
the mass density, but with no net pressure changes. In our syste the initial velocity pulse is
generated atr = 3, where 3 = f3,/r* = 0.25/3> = 0.028. Thus in our system, the entropy mode,
if present, cannot propagate from its initial location and so is outsi@ the region of interest for
our investigation.

4.1 Numerical Simulation: v

The evolution of thg3 +# o, linear fast magnetoacoustic wave can be seen in Figure 6. We find that
the fast wave splits into two waves; one approaching the origin and thetodlieling away from

it; as expected. The wave propagating towards the origin initially has the stigm annulus. We
find that the annulus contracts (asSig.2 and Figure 6) and that, at least initially, this contraction
appeared to preserve the original ratios (distance between the leaingiddle wavefronts com-
pared to middle-and-trailing wavefronts). However, as the wave corgtitaugropagate towards the
origin, it is distorted significantly from its original shape: there is a deeré@asvave speed along
the axes, i.e. the separatrices, and so the annulus starts to take on digmasid shape; with the
corners located along the separatrices. This can be seen in the saddh@drow of subfigures of
Figure 6. Eventually, the wave crosses te= vi layer (indicated by a black circle in the figure,
located ar = 0.456 for B, = 0.25) where it begins a more complicated evolution: unlike that seen
in the equivalenfd = o case in Figure 6.
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Figure 6: Contours of numerical simulation of Yor a fast wave pulse initially located about a
radiusy/x* + 2 = 3, and its resultant propagation at times t=0, (b) t=0.2,(c) t=0.4,(d) t =0.6,
(e)t=0.8,(f) t=1.0,(g) t=1.2,(h) t=1.4,(i) t=1.6,(j) t=1.8,(k) t=2.0 and(l ) t=2.2, labelling from
top left to bottom right. The black circle indicates the position ofdhe- vz layer, which occurs at

VX HZ = % The cross denotes the null point in the magnetic configuration.

19



7.0 ‘ ‘ ‘ 7.0 " ‘ i 7.0
2.0
0.5 0.51 E 0.51 7 15
N 0.0 N 0.0F 4 N 001 1 1.0
—0.5" —0.5F ] -0.5F . 0.5
-1.0 ‘ ‘ ‘ —-1.0 ‘ ‘ ‘ -1.0 s s s 0.0

-1.0 05 00 0.5 1.0 -1.0 -05 00 0.5 1.0 -1.0 -05 00 05 1.0
x z x

Figure 7: Blow-up subfigures of vfrom Figure 6 at timega) t=1.4, (b) t=1.8 and(c) t=2.2,
labelling left to right.

Some of the subfigures from Figure 6 are shown as blown-up versidriglme 7, specifically
showing the wave evolution just before, during and just after crossancgtia v layer.

4.2 Numerical Simulation: V|

We can also look at the behaviour gf the parallel component of our wave. This has a much more
complicated behaviour than our perpendicular component and cantédeigure 8. Firstly, we
notice that there are both positive and negative parts to the wave, unliketbendicular compo-
nent which was always positive. We see that the wave has an alternatiomise in thef-direction.
Secondly, we have set an initial condition in nly: the initial condition on the parallel wave was
V| (X,z,0) = o in equations (22). Hence, the wave we are observing has been generated as a con-
sequence of our yinitial condition. By looking at equations (8) and our initial conditions, we see
that v, acts as a driver (forcing term) fog v

It is interesting to note that the waves in Figure 8 have a smaller amplitude thanithgure
6. The v, waves in Figure 6 have an amplitude-of/3/2 (recall the initial condition was a wave
of amplitude,/3 that split in half equally) compared to the waves in Figure 8 which have an
amplitude of~ 3,,/3/2.
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Figure 8: Contours of numerical simulation gffer a fast wave pulse initially located about a radius
VX2 + 22 = 3, and its resultant propagation at times t=0.02,(b) t=0.2,(c) t=0.4,(d) t =0.6, ()
t=0.8, (f) t=1.0, (g) t=1.2, (h) t=1.4, (i) t=1.6, (j) t=1.8, (k) t=2.0 and(l) t=2.2, labelling from
top left to bottom right. The black circle indicates the position offthe 1, X* +2° = 3, layer. The
cross denotes the null point in the magnetic configuration. The last stdfpows a blow-up of
the central region (axes have changed).
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5 Conclusions

In this paper, we have investigated the behaviour of magnetoacoustic watreén inhomoge-
neous magnetic media in two specific ways: we have investigated the behatiaarinitially
cylindrically-symmetric fast magnetoacoustic wave around a 2D null poirgmifidstly, thef3 = o
and, secondly, thg # o assumptions.

5.1 pB=oplasma

In §3, we investigated the behaviour of an initially cylindrically-symmetric fast magroetostic
wave around a 2D null point under tifie= 0 assumption. Using polar coordinates, we derived a
governing wave equation with a spatially-varying characteristic speedA({fhén speed) and we
solved this equation analytically by derivingkdein-Gordon equation and then solving separately
for m= o, which led to a D’Alembert-type solution, amd=£ o which led to a Bessel-type solution
(equation 19). Itis interesting to note that solution (19) is only validsfero, i.e.t > +In, and

that the same final result is gained from substituting /u? —t2 or s = /t2 — w2, smceJO( S) =
Jo(—s). We can interpret this as follows: if we consider the boundary of ouegys$o be a shell at
radiusr,, we can interpret the- ambiguity onu as a boundary disturbance splitting into two waves;
one propagating outwards {ncreasing sa > r,, i.e. u= Inf solution) and one propagating
inwards ¢ decreasing so < r,, i.e. u=—In’ ) Note that the inequality on here dictates the
flow of information; the perturbation starts on the boundary and there igstariiance in front
of the wave, i.e. the inequality that restrictérom taking certain values until time has elapsed is
interpreted as regions in the system not yet affected by the perturbasidhe information has not
yet had the time to reach there since the wavefront propagates at a fiede. sphus, if we are
interested in the region inside= r, including the origin (which is the location of our null) then
we are interested primarily in the substitution= —In rL with r starting atr, and decreasing ds
evolves.

We also solved thg8 = o governing wave equation using numerical technique$sire. We
find that the linearf3 = o fast magnetoacoustic wave splits into two waves; one approaching the
null and the other propagating away from it. The wave propagating t@thednull has the shape
of an annulus. We find that this annulus contracts, but keeps its origitias (distance between
the leading-and-middle wavefronts compared to middle-and-trailing wawsjroT his was seen in
Figure 4. Since the Alfén speed is spatially varying (i.e.r, see equation 15), r&fraction effect
focuses the wave into the null point. This is the same refraction effectifiouMcLaughlin & Hood
(2004).

Finally, we investigated our system using a semi-analytical WKB approaéh.g This can
be seen in Figure 5. As expected, the agreement between Figures 4dsaagcgllent; the semi-
analytical WKB and numerical solutions lie on top of each other. We can alsansFigure 5
how the ratio between the leading-and-middle and between the middle-andgtddiline pulse is
preserved. The wave focuses on the null point and contracts aiboundaddition, equations (21)
can be solved analytically by forming

dp ,dr dp p

%/ % E - — logr =—logp+constant — rp=—w

and so

dp _ I _or, p=—Ze popees, (23)



where the initial conditions dictate the constants of integration. From equdfi@hsve sea =
r.€ s and so the wave, which focuses on the null and contracts around it, actvrlly reaches
the null in a finite time, due to the exponential decay.of

5.2 B #oplasma

In §4, we investigated the behaviour of an initially cylindrically-symmetric fast magroetostic
wave around a 2D null point in & # o plasma. This can be seen in Figure 6. We find that the fast
wave split into two waves; one approaching the origin and the other travelisag from it; as ex-
pected. The wave propagating towards the origin initially has the shapeasiranus. We find that
the annulus contracts (as$g.2 and Figure 6) and that, at least initially, this contraction appeared
to preserve the original ratios (distance between the leading-and-middédframis compared to
middle-and-trailing wavefronts). However, as the wave continues teagaip towards the origin, it

is distorted significantly from its original shape: there is a decrease ialbwaave speed along the

X =0 andz= o axes (the separatrices) and so the annulus starts to take on a quasidig&mape;
with the corners located along the separatrices. This can be seen in tmel sew third row of
subfigures of Figure 6. Eventually, the wave crossesihev, layer (indicated by a black circle in
the figure, located at= 0.456 for 3, = 0.25) where it begins a more complicated evolution: unlike
that seen in the equivalefit= o case in Figure 6.

The formation of the quasi-diamond shape in Figure 6 is due to a decreasedndtall wave
speed along the separatrices. This decrease is wave speed carelsanttby investigating the
perturbed pressurey,, and this can be seen in Figure 9. We see thapropagates towards the
null similar to the propagation of the fast wave and is zero along the axethédinesx = o and
z=o0. Hence, because of the alternating nature of the pressure, the maxiradi@ngs in pressure
will occur along these locations, i.elong the separatrices. This pressure gradient acts against
the magnetic forces in the momentum equation and thus reduces the accelefr#t®fast wave
along the separatrices, i.e. the magnitud%zpﬁ is smaller along the separatrices leading to the
deceleration as seen in Figure 6. Note also that the pressure is incrathsirggtime and this can
be seen in Figure 10.

Note that in this paper we do not describe the evolution o&fter it crosses the; = vj layer;
this crossing occurs at approximatehy 1.5. As the wave crosses tiog = v3 layer, complex MHD
mode conversion occurs. However, the description of such mode simvés not the focus of this
current paper and the resultant mode conversion has already Ipeetedeby McLaughlin & Hood
(2006b). Instead, this paper focuses on (i) the nature of the waypagatonbefore crossing the
c: =V, layer and (ii) comparing and contrasting this behaviour to that seen iff the system.
Thus, our main conclusion for the = o system is related to the explanation of the quasi-diamond
shape in Figure 6 and that this deformation in wave morphology was abst ffh= o set-up.
Note that McLaughlin & Hood (2006kjoes not include our insights related to the formation of
the quasi-diamond pattern as well as its explanation in terms of the maximum gsadipressure
occurring along the separatrices. We also note that early on in its evolth®fi, = o fast wave
evolves in a similar manner to if3 = o equivalent. By looking at the equations (8), we see this
makes sense; at large radii the pressure terms are negligible and sovbe ggeed is essentially
spatially varying liker, and so the refraction effect dominates the evolution.

We can also looked at the behaviour gfim §4.2 and this can be seen in Figure 8. We observe
that the wave has an alternating structure inflhdirection, i.e. positive and negative parts to the
wave, unlike v. which was always positive, and we note that the ratio v, of the amplitude
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Figure 9: Contours of numerical simulationmffor a fast wave pulse initially located about a radius
VX2 422 = 3, and its resultant propagation at times t=0.2, (b) t=0.6, (c) t=1.0, (d) t =1.4, (e)
t=1.8, (f) t=2.2, labelling from top left to bottom right. The black circle indicates the position
the cZ = vz layer and the cross denotes the null point in the magnetic configuragpmas an
alternating form, where orange represemts> o and blue represenis < o. The pressure appears
to follow a sinz6 pattern.

of disturbances i, : 1. We also note that we have set an initial condition inonly: the initial
condition on the parallel wave wag(X,z,0) = o in equations (22). Hence, the wave we are
observing has been generated as a consequence of, dnitial condition. By looking at equa-
tions (8) and our initial conditions, we see that &cts as a driver or forcing term forj v Thus,
we are solving the equivalent of a second-order differential equatittna forcing term, which is
an inhomogeneous equation. The general solution to such equationsteo@hswo parts; aont
plementary function and aparticular integral. The complementary function is a solution to the
corresponding homogeneous differential equation whereas the pertittegral is a solution to the
inhomogeneous differential equation. Hence, returning our attention twe=8j we see that there
should be two parts to the wave. We do see a part which has the same speed and frequency as
the perpendicular component wave and, using the definition above, théscaa be thought of as
the particular integral to the equations. There is also be a complementatipfupart to the wave,
though it is difficult to see in the figure.

As a consequence of our results frégm and §4, we shall now explain how we interprete the
waves seen in the perpendicular and parallel velocities.
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Figure 10: Increase in pressure as fast wave approaches asgsithe? = vy layer. The wave
crosses thes = v, layer at approximately= 1.5.

5.3 Interpretating the waves we see iny and v

Our MHD system contains three key velocitiegw en Vsiow @NdViast, that are all orthogonal and
thus we may consider them as arthogonal basis of vectors for our system. In this paper, we do
not consider the Alfén wave varen= W¥, and so our 2D vectors may be described in terms of
the vectorsvias; andvgiow. Due to our choice of coordinate syste§z.2) we choose to work in
the directions perpendicular and parallel to the magnetic field. Thus, we epagsent these two
vectors in terms 0¥, andvgiew, NamMely

V| = AVast+ BVsiow V| = CViast+ DVsiow -
Alternatively, we may express our two magnetoacoustic velocities in terms afdv, namely
Viast=EV +FV| ,  Vsow=Gv,_ +Hy|,

whereA, B, C, D, E, F, G andH are unknown functions that depend upon the magnetic geometry
and (possibly) the plasm@- This representation is only possible because bgthandvgey and
v, andv form orthogonal bases.

However, we must be cautious: the concepts of fast and slow wavesarigmally derived for
a uni-directional magnetic field and so these ideas may not carry over toaoonglex magnetic
geometries quite as simply as claimed here. However, we recommend still utilizmmodogy
such as fast and slow wave in the interpretation of the waves in complex tpgslas well as the
intuition gained from the uni-directional magnetic field models. We believe thatod gvay of
interpreting the waves we see in our magnetic configuration is as follows

fastwave = (large perpendicular component (parallel component
= (large componentiny) + (componentiny),

slowwave = (small perpendicular componéent (parallel component
= (small componentiny) + (componentiny) .

In addition, our system consists of a region of I@wlasma outside th = 1 layer and a region
of high-8 plasma within; see Figure 2. This is understood from our definition of theral#s
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for this magnetic fieldB O (x> +22)"'. Recall that slow and fast waves have differing properties
depending on whether they are in a high or IBvenvironment. To summarise:

] \ Fast Wave \ Slow Wave \
High-B Behaves like sound wave Guided along3, _
(speects) Transverse wave travelling &t
Low-B Propagates roughly isotropically Guided alongB,
(speedva) Longitudinal wave travelling at speex

In our investigations, we have sent a wave pulse into our system fromtiaytar radius, i.e.
in the low3 region. At some point this wave has crossed fhe 1 layer and entered the high-
B environment. Thus, we have a Igdvwave approaching the layer, coupling and mixing inside
the layer and emerging as a mixture of highfast and slow waves. We are driving waves in
the perpendicular velocity component in a Iwegion (see Figure 2) and so we interpret this as
predominantly lowB fast wave. At this time there does not exist a robust set of rules ctingec
low and highf8 waves across thg = 1 layer. It is hoped that the work presented here will help
contribute to such a set of rules, specifically in what happens when # lfagt wave crosses the
B = 1 layer and becomes part highfast wave and part hig3-slow wave.

We conclude that in a3 = o plasma, the fast wave cannot cross the null point and all the
wave energy accumulates at that location. Thusaull points will be locations for preferential
heating from fast magnetoacoustic waves. For 3 # o, the evolution is more complex and the
fast wave now couples with the slow wave close to thg= 1 layer. The resultant behaviour is
controlled by the parameter 3.

Finally, there is as yet no unambiguous observational evidence for MD wave behaviour
in the vicinity of coronal null points. The successful detection of MID waves around coronal
null points will require advancements in two areas: high-spatial anchigh-temporal resolution
imaging data as well as magnetic extrapolations from co-temporal mgnetograms. Future
missions, such as théaniel K. Inouye Solar Telescope and Solar Orbiter may satisfy these
requirements, and so the first detection of MHD waves in the neighhurhood of null points
may be reported in the near future.
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