
Northumbria Research Link

Citation:  Brown,  Meghan,  Green,  Benjamin,  James,  Lewis,  Stevenson,  Emma  and
Rumbold, Penny (2016) The Effect of a Dairy-Based Recovery Beverage on Post-Exercise
Appetite and Energy Intake in Active Females. Nutrients, 8 (6). p. 355. ISSN 2072-6643 

Published by: MDPI

URL: http://dx.doi.org/10.3390/nu8060355 <http://dx.doi.org/10.3390/nu8060355>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/26984/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


nutrients

Article

The Effect of a Dairy-Based Recovery Beverage on
Post-Exercise Appetite and Energy Intake in
Active Females
Meghan A. Brown 1,†, Benjamin P. Green 1,*,†, Lewis J. James 2, Emma J. Stevenson 3

and Penny L. S. Rumbold 1

1 Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences,
Northumbria University, Northumberland Building, Newcastle upon Tyne NE1 8ST, UK;
meghan.brown@northumbria.ac.uk (M.A.B.); penny.rumbold@northumbria.ac.uk (P.L.S.R.)

2 School of Sport, Exercise and Health Sciences, Loughborough University, Loughbororugh LE11 3TU, UK;
L.James@lboro.ac.uk

3 Institute of Cellular Medicine, Human Nutrition Research Centre, William Leech Building, Medical School,
Newcastle University, Newcastle upon Tyne NE2 4HH, UK; emma.stevenson@newcastle.ac.uk

* Correspondence: benjamin.green@northumbria.ac.uk; Tel.: +44-0-191-243-7778
† These authors contributed equally to this work.

Received: 11 March 2016; Accepted: 31 May 2016; Published: 8 June 2016

Abstract: This study was designed to assess the effect of a dairy-based recovery beverage on
post-exercise appetite and energy intake in active females. Thirteen active females completed
three trials in a crossover design. Participants completed 60 min of cycling at 65% VO2peak, before
a 120 min recovery period. On completion of cycling, participants consumed a commercially
available dairy-based beverage (DBB), a commercially available carbohydrate beverage (CHO),
or a water control (H2O). Non-esterified fatty acids, glucose, and appetite-related peptides alongside
measures of subjective appetite were sampled at baseline and at 30 min intervals during recovery.
At 120 min, energy intake was assessed in the laboratory by ad libitum assessment, and in the
free-living environment by weighed food record for the remainder of the study day. Energy intake at
the ad libitum lunch was lower after DBB compared to H2O (4.43 ˘ 0.20, 5.58 ˘ 0.41 MJ, respectively;
p = 0.046; (95% CI: ´2.28, ´0.20 MJ)), but was not different to CHO (5.21 ˘ 0.46 MJ), with no
difference between trials thereafter. Insulin and GLP-17-36 were higher following DBB compared
to H2O (p = 0.015 and p = 0.001, respectively) but not to CHO (p = 1.00 and p = 0.146, respectively).
In addition, glucagon was higher following DBB compared to CHO (p = 0.008) but not to H2O
(p = 0.074). The results demonstrate that where DBB consumption may manifest in accelerated
recovery, this may be possible without significantly affecting total energy intake and subsequent
appetite-related responses relative to a CHO beverage.

Keywords: females; dairy; energy intake; subjective appetite; cycling exercise

1. Introduction

In recent years, interest surrounding the role of dairy-based beverages (DBB) as post-exercise
recovery aids has increased [1]. Research observing the effects of post-exercise DBB consumption have
identified enhanced muscle protein synthesis [2], reduced exercise-induced muscle damage [3–7], and
increased rehydration [8], thus accelerating recovery and subsequent performance [9]. Based on
the available literature, it appears that many of these effects are a product of the nutritional
composition of DBB which comprises high-quality proteins, low glycemic carbohydrates, in addition
to electrolytes, vitamins, and minerals [10]. Dairy proteins, specifically casein and whey, constitute
approximately 80% and 20%, respectively, of the total protein in milk, and provide an abundance
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of essential amino acids [11,12]. These amino acids are necessary to increase protein turnover and
may subsequently act to repair and remodel damaged tissues following exercise. In addition to
muscle tissue repair, the carbohydrate present in DBB (combined with dairy proteins) act to replace
depleted glycogen stores [13], and the mixture of nutrients (again combined with dairy proteins) may
enhance post-exercise rehydration compared to the ingestion of a carbohydrate-electrolyte beverage or
water [8,14].

Outside of the recovery-related benefits, an emergent body of evidence supports the hypothesis
that dairy-based foods elicit anti-obesity properties, providing a modest protective effect against
adiposity [15,16]. To date, efforts to establish the underlying relationship between dairy consumption
and adiposity have identified several putative mechanisms. Evidence from adult studies indicates that
the consumption of dairy may inhibit lipid accretion and influence adipocyte lipid metabolism [17].
Furthermore, dairy consumption may act to potentiate several anorexigenic hormonal peptides
of gastrointestinal, pancreatic, and adipose tissue origin that might influence appetite regulation
compared to energy-equivalent products [18–21], improving subjective satiety and reducing energy
intake [22,23]. Consequently, it has been suggested that dairy-based foods contribute to body
mass regulation and, thus, energy balance, through actions on appetite and eating behaviour [24].
Interestingly, the same may stand true for exercise [25,26]. Certainly, regular exercise is often cited as a
method for body mass maintenance and weight loss purposes. Taken together, it could be argued that
dairy-based foods/beverages may enhance post-exercise recovery, whilst also beneficially modulating
energy balance to facilitate body mass maintenance and/or weight loss. Many individuals, particularly
women, exercise on a regular basis for weight loss or weight maintenance purposes [27] and, therefore,
a DBB post-exercise may be an ideal drink to consume.

Presently, little information exists on the effects of post-exercise DBB consumption on subsequent
appetite-related responses, especially in females. This is surprising given that both exercise and
dairy-based foods/beverages may exert influence on appetite and eating behavior. The authors have
previously demonstrated that post-exercise skimmed milk consumption reduces energy intake in
recreationally-active females relative to an energy and volume matched serving of fruit-juice [28].
While our preliminary findings provide promise, in this study we observed no effect on measures of
subjective appetite. Furthermore, the authors failed to quantify appetite-related peptides which may
have provided valuable insights concerning the mechanisms impacting on appetite and energy intake.
Consequently, there is a need to better understand the behavioral and physiological effects of exercise
and post-exercise DBB consumption. Therefore, the aim of this study was to investigate the effect of a
DBB following moderate intensity exercise on subsequent appetite and energy intake in recreationally
active females.

2. Materials and Methods

2.1. Experimental Design

This study was a repeated measures, within-subject crossover study. The counterbalance
randomization process was performed by one member of the research team and completed with
the use of a web-based randomization tool [29]. Participants attended the nutrition and metabolism
laboratories at the University of Northumbria on four occasions. The first visit served as a
familiarization session and preliminary testing also took place. During the next three visits participants
performed 60 min of cycling, before a 120 min recovery period, with all exercise carried out using
a cycle ergometer (Monarch Weight Ergometer 839 E, Varberg, Sweden), followed by one of three
randomly assigned recovery beverages. Samples of antecubital-venous blood and subjective measures
of appetite were collected at baseline and at 30 min intervals for 120 min during recovery.
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2.2. Participants

Thirteen recreationally-active females (mean ˘ SD, age 23 ˘ 4 years, body mass 63.5 ˘ 9.0 kg,
stature 165.7 ˘ 6.3 cm, BMI 23.1 ˘ 2.9 kg¨m´2, VO2peak 43.5 ˘ 11.6 mL¨kg¨min´1) agreed to
participate in this study. The study was conducted according to the guidelines laid down in
the 2013 Declaration of Helsinki, and all experimental procedures involving human participants
were approved by the Faculty of Health and Life Sciences Ethical Committee of the University of
Northumbria. Written informed consent was obtained from all participants prior to data collection.
Participants completed a self-report menstrual cycle questionnaire to determine menstrual cycle phase
and contraceptive use (all participants were using oral contraceptives). Subsequently, all testing
took place during the follicular phase of menstruation (days 1–14) to remove the impact of hormone
interaction on substrate utilization [30].

2.3. Visit 1

Seven days preceding data collection, all participants underwent a familiarization session.
Participants were familiarized with the equipment and methodological procedures that were
to be employed in the study. This included the subjective appetite visual analogue scales
(VAS), blood sampling, gas collection equipment, and all test foods. Secondly, as recommended
by Livingstone et al. [31] participants were trained and educated on the processes required to
appropriately document free-living energy intake. In addition, anthropometric measures of stature
(stretch stature technique; Seca, Birmingham, UK) and body mass (Seca, Birmingham, UK) were
collected to the nearest 0.1 cm and 0.1 kg, respectively. Finally, participants completed a discontinuous
exercise test using a cycle ergometer to determine peak oxygen consumption (VO2peak). The test
comprised of 4 min increments separated with 2 min rest, during which workload increased until
volitional exhaustion. From this, a work rate equivalent to participants’ 65% VO2peak was established
and used for subsequent visits. The VO2peak protocol was completed at 70RPM. The first stage of the
discontinuous test commenced at 70 watts (W), and the workload was subsequently increased by 35 W
per stage until the participant reached volitional exhaustion.

2.4. Pre-Trial Standardization

For the 24 h preceding the first experimental trial participants recorded all food and fluid
consumption using a self-reported, weighed food diary. Participants were also instructed to refrain
from caffeine and alcohol consumption (ě12-h) and strenuous physical activity (ě24-h) preceding
data collection periods. These dietary and exercise habits were replicated preceding subsequent trials.

On the morning of each experimental trial, participants consumed a pre-prepared standardized
breakfast meal. This was consumed in the participants’ home at 0700 h, following at least a
10 h overnight fast. Breakfast consisted of semi-skimmed milk (Tesco, London, UK) and cereal
(Kellogg’s Rice Krispies, Manchester, UK), provided to participants in a cereal to milk ratio of
30 g:125 mL. The quantity issued provided 10% of the participants estimated daily energy requirement
(with 14%, 14%, and 72% of the energy in the breakfast derived from protein, fat and carbohydrate,
respectively) as previously used and drawn from recommendations from the National Diet and
Nutrition Survey [32]. Individual daily energy requirements were computed according to age- and
sex-specific calculations [33], providing an estimate of basal metabolic rate. Estimated values of basal
metabolic rate were further multiplied against a physical activity factor of 1.7. To ensure and monitor
compliance, participants were requested to return empty breakfast containers.

2.5. Visit 2, 3, and 4

For other trials, participants arrived at the nutrition and metabolism laboratory at 0900 h.
Upon waking and until arrival at the clinical testing laboratory the consumption of water only was
permitted. Participants were requested to record, document, and replicate morning water consumption
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(if any) for subsequent trials. On arrival, participants were rested and an indwelling cannula was
inserted into an antecubital vein for blood sampling. A pre-exercise (´60 min) blood sample was drawn
and participants completed a series of pre-exercise subjective appetite VAS. Following pre-exercise
measurements, participants completed 60 min continuous cycling exercise at a work rate that elicited
65% of each participants VO2peak. During exercise, samples of expired air, heart rate, and ratings of
perceived exertion (RPE) were obtained at regular intervals. On immediate termination of exercise,
a recovery beverage was consumed (Table 1). Following consumption, participants remained at rest
and completed a 120 min recovery period in an environment free from food cues, where further blood
samples and VAS were collected every 30 min. At 120 min, a homogenous ad libitum pasta meal was
provided. Participants were instructed to eat until comfortably full and satisfied, and were given
30 min to consume the meal. On completion of the ad libitum pasta meal participants were free to
leave the laboratory. For the remainder of the study day, participants were requested to not engage
in any type of activity and were asked to record any further food and drink intake using a weighed
food diary.

Table 1. Nutritional composition of the recovery beverages.

Nutritional Composition DBB CHO H2O

Serving size (+mL water) 500 (24) 524 524
Energy (MJ) 1.36 1.36 0

Energy (kcal) 325 325 0
Carbohydrate (g) 56.7 78.6 0

Fat (g) 1.1 0 0
Protein (g) 22.2 <0.5 0

Abbreviations: DBB, Dairy-based beverage; CHO, carbohydrate beverage; H2O, water control.

2.6. Recovery Beverages

Participants were given 15 min to consume the entire contents of the beverage which included
(1) a commercially available DBB (nouriSH me now™, Sheffield, UK); (2) a 15% commercially available
carbohydrate beverage ((CHO) Lucozade Energy Orange™, GlaxoSmithKline, London, UK); or (3) an
energy-free water control (H2O). All beverages were matched for volume, and DBB and CHO matched
for energy content. Post-exercise recovery beverages were distributed in a counterbalanced manner.
Beverages were served chilled at 4 ˝C and in opaque water bottles.

2.7. Gas Analysis

To collect gas samples, a mouthpiece attached to a two-way, non-rebreathing valve (model
2730, Hans Rudolph, Kansas City, MO, USA) was used. Gas samples, collected in Douglas Bags,
were analysed for concentrations of oxygen and carbon dioxide using paramagnetic and infrared
transducers, respectively (Service 5200S, Crowborough, Sussex, UK). In addition, bag volume and
temperature of expired gas samples were determined using a dry gas meter (Harvard Apparatus,
Edenbridge, Kent, UK) and thermistor (model 810-080, ETI, Worthing, UK), respectively. Expired gas
samples (60 s) were collected at the end of every 10 min period (6 samples). From this the energy cost
of exercise was estimated.

2.8. Subjective Appetite

Subjective measures of appetite were assessed using validated 100 mm, paper based VAS [34].
Scales were anchored with diametrically opposed feelings of extremity, and addressed hunger
(“how hungry do you feel?”), gut fullness (“how full do you feel?”), prospective food consumption
(“how much do you think you can eat?”), satisfaction (“how satisfied do you feel?”), and nausea
(“how nauseous do you feel now?”). Participants were required to report their self-perceived appetite
immediately prior to each blood sample (pre-exercise (´60), 30, 60, 90, and 120 min). Scales were
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issued in the same order at each sample point, and ratings measured by the same researcher to
minimize discrepancies.

2.9. Blood Sampling and Analysis

At five separate intervals, antecubital-venous (4.0 mL) blood samples were drawn into pre-cooled
EDTA-treated monovettes. Samples were collected at pre-exercise (´60) and at 30, 60, 90, and
120 min following recovery beverage consumption. Participants lay supine for approximately 5 min
prior to each blood sample. Patency of the cannula was preserved by flushing a small volume of
non-heparinized saline (0.9% NaCl; Becton, Dickinson and Company, Franklin Lakes, NJ, USA) through
the connector tube on completion of each sample. Residual saline waste was discarded immediately
before succeeding sample points, avoiding contamination and dilution of antecubital-venous blood.

Pre-analytical (e.g., sample treatment) and analytical (e.g., sample handling) procedures were
followed in an identical manner to our previous studies [35,36]. Consequently, monovettes contained
aprotinin (25 µL/mL whole blood) for the preservation of glucagon-like peptide 17-36 (GLP-17-36) and
glucagon. On collection, samples were placed on ice and centrifuged at 1509ˆ g (3000 rpm) for 10 min
at 4 ˝C within 5 min of collection. Aliquots of plasma supernatant were stored immediately at ´80 ˝C
for later determination of glucose, non-esterified fatty acids (NEFA), GLP-17-36, glucagon, insulin,
and leptin. From the aliquots, a 20 µL capillary tube was filled with plasma to determine glucose
using an automated glucose analyser by the glucose oxidase method (Biosen C_Line, EKF Diagnostics,
Cardiff, UK). Concentrations of NEFA (mmol/L) were determined using enzymatic colorimetric assays
(Randox Laboratories, County Antrim, UK). Quantitative assessments of GLP-17-36 (pmol/L), glucagon
(pg/mL), insulin (pmol/L), and plasma leptin (ng/mL) were simultaneously determined in 40 µL of
plasma by electrochemiluminescence using a human hormone multiplex assay kit (Sector Imager 2400,
MesoScale Discovery, Rockville, MD, USA). Of note, the addition of protease inhibitors to samples for
the preservation of GLP-17-36 and glucagon does not influence measured concentrations of plasma
leptin and insulin [37]. Each participant’s samples were analyzed on the same plate to minimize
variation. Intra-assay CVs were <7% for all biochemical analysis except for GLP-17-36, which was 12%.

2.10. Energy Intake Assessment

Energy intake was assessed at two occasions. Firstly, lunchtime food intake (120 min) was assessed
through ad libitum intake of a homogenous pasta meal. The meal comprised of pasta (Tesco, London,
UK), tomato sauce (Tesco, London, UK), cheddar cheese (Tesco, London, UK), and olive oil (Tesco,
London, UK). Detailed information concerning the nutrient composition of the pasta meal and the
method of cooking has been reported previously [35]. The ad libitum test meal was consumed in
isolation in a room free from social influences. Participants were initially provided with a sub-serving
of the whole portion, which was continuously replenished by the research team at regular intervals
throughout consumption. Continuously replenishing the pasta meal ensures participants terminate
eating when comfortably full, and not due to the cue of an empty bowl. Energy intake from the pasta
meal was calculated based on the amount consumed and nutritional composition as indicated by
the manufacturer. To facilitate this, research staff covertly weighed the meal prior to serving, and
immediately following meal termination. Secondly, participants recorded all food and drink items
consumed for the remainder of each trial day, utilizing self-reported weighed records to document
food intake. One member of the research team examined all food records utilizing the nutritional
software package Nutritics (Nutritics Professional v3.09, Nutritics, Dublin, Ireland).

2.11. Statistical Analysis

All data are presented as mean ˘ standard error of the mean (SEM). Statistical software package
(IBM SPSS v22, Armonk, NY, USA) was used for inferential analysis and significance was accepted at
the p < 0.05 a priori. For data with multiple time-points (blood analyte concentrations and subjective
appetite sensations), two-way (trial, 3 ˆ time, 5) repeated measures analysis of variance (ANOVA)
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was performed to assess for differences in trial and time. Blood analyte concentrations and subjective
appetite sensations during the 120 min recovery period (time points: 30, 60, 90, and 120 min) were also
computed as time-averaged (90 min) concentrations using the trapezoidal rule [38]. Time-averaged
concentrations for these variables during each trial were analyzed using one-way repeated measures
ANOVA. Due to difficulties associated with blood sampling, where data for a single time point was
missing (14 time points were missing out of a total 190 (<8%)) for each blood-based variable, linear
interpolation was used to complete the data set. In addition, due to difficulties in data collection,
subjective appetite data is presented for 10 participants.

One-way repeated measures ANOVAs were also used to detect differences between trials in
exercise energy expenditure (MJ), absolute and relative energy intake at the test meal (MJ), and total
energy intake (MJ). Absolute energy intake (MJ) was considered as the absolute amount of pasta
consumed at the ad libitum test meal. Relative energy intake (MJ) (accounting for the energy content
of the recovery beverages and energy cost during the cycling exercise) was determined by totalling
absolute energy intake at the pasta meal with the energy content of the beverages and subtracting the
energy cost of exercise (MJ). Total energy intake was determined as the sum of breakfast, recovery
beverage, ad libitum test meal and free-living energy intake. Data were checked for normal distribution
with the use of the Kolmogorov-Smirnov normality test and were log-transformed if appropriate
before statistical analysis. Mauchley’s test assessed the sphericity of the data and where appropriate,
violations were corrected using the Greenhouse-Geisser estimate. Where significant effects occurred,
post-hoc analyses were Bonferroni-adjusted paired t-tests. Unless otherwise stated, 95% confidence
intervals (95% CI) are presented for mean differences between trials.

3. Results

3.1. Exercise Measurements

Gross energy cost during the 60 min cycling exercise was 2.64 ˘ 0.26 MJ (DBB), 2.69 ˘ 0.29 MJ
(CHO), and 2.59 ˘ 0.24 MJ (H2O) and was not different between trials (p = 0.409; (grand mean 95%
CI: 2.07, 3.21)). Sessional RPEs were not significantly different between trials (p = 0.657; (grand mean
of 12 ˘ 1 and 95% CI: 11, 13)). Similarly the mean HR during the 60 min exercise was not different
between trials (p = 0.326; (grand mean of 155 ˘ 4 and 95% CI: 146, 164 bpm)).

3.2. Energy Intake

Energy intake at the ad libitum pasta meal (Figure 1) was lower following DBB compared to H2O
(4.43 ˘ 0.20, 5.58 ˘ 0.41 MJ, respectively; p = 0.046; (95% CI: ´2.28, ´0.20)), but was no different to
CHO (5.21˘ 0.46 MJ p = 0.211; (95% CI:´1.88, 0.31)). Further analysis revealed this was not influenced
by trial order (p = 0.164). No statistical differences were found between trials for relative energy intake,
free-living energy intake or total energy intake. At the ad libitum meal, the Delta (∆) relative energy
intake between trials were 0.16 ˘ 0.38, 0.89 ˘ 0.29, and ´0.73 ˘ 0.42 MJ for DBB-H2O, CHO-H2O,
and DBB-CHO, respectively. For total daily energy intake, Delta (∆) values between trials were
´0.34 ˘ 0.89, 0.95 ˘ 0.61, and ´1.29 ˘ 0.67 MJ for DBB-H2O, CHO-H2O, and DBB-CHO, respectively.

3.3. Subjective Appetite Responses

Analysis revealed differences across all trials for time-averaged subjective appetite measures,
except for nausea (Table 2). Relative to H2O control, DBB, and CHO enhanced subjective fullness
(p = 0.003; (95% CI: 10.8, 44.9 mm), and p = 0.021; (95% CI: 2.0, 24.5 mm), respectively), and satisfaction
(p = 0.014; (95% CI: 5.3, 44.0 mm), and p = 0.012; (95% CI: 3.8, 30.1 mm), respectively). Consistent with
this, subjective hunger was lower following DBB and CHO compared to H2O control (p = 0.032; (95% CI:
´37.9, ´1.7 mm), and p = 0.019; (95% CI: ´18.5, ´1.8 mm), respectively). In addition, DBB reduced
prospective food consumption (p = 0.008; (95% CI: ´31.5, ´5.4 mm)) compared to H2O. Analysis
revealed main effects of time and trial for all subjective appetite measures. Time ˆ trial interaction
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(p = 0.005) showed that satisfaction was reduced at 30 and 60 min following H2O control relative to
DBB (p = 0.019; (95% CI: ´62.8, ´5.8 mm), and p = 0.009; (95% CI: ´53.8, ´8.6 mm), respectively) and
CHO (p = 0.032; (95% CI: ´37.9, ´1.7 mm), and p = 0.004; (95% CI: ´34.2, ´7.2 mm), respectively).
At 120 min, satisfaction following CHO consumption was greater than that following H2O (p = 0.036;
(95% CI: 0.6, 17.6 mm)).Nutrients 2016, 8, 355  7 of 16 
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Figure 1. Mean and individual responses for absolute (A, n = 13), and relative (B, n = 13) energy
intake at the ad libitum meal, free-living (C, n = 13) and total (D, n = 13) energy intake (MJ). Values are
presented as mean alongside individual responses. Significance at the p < 0.05 level. * denotes a
significant difference compared to H2O.

Table 2. Time-averaged concentrations in the 2 h postprandial recovery period for all subjective
appetite sensations (mm), n = 10, mean ˘ SEM.

Subjective Sensation DBB CHO H2O

Hunger 63 ˘ 8 a 72 ˘ 4 a 83 ˘ 4 b

Fullness 42 ˘ 6 a 27 ˘ 5 a 14 ˘ 4 b

Satisfaction 37 ˘ 6 a 29 ˘ 5 a 12 ˘ 3 b

Prospective Food Consumption 65 ˘ 3 a 76 ˘ 4 a,b 84 ˘ 3 b

Nausea 13 ˘ 5 17 ˘ 8 9 ˘ 5

Abbreviations: DBB, dairy-based beverage; CHO, carbohydrate beverage; H2O, water control. a,b Values with
unlike letters denote significant difference between trials. Significance at the p < 0.05 level.

3.4. Blood Parameters

3.4.1. Plasma Glucose

Time-averaged glucose was higher following CHO compared to DBB (4.84 ˘ 0.39, 3.67 ˘ 0.17
mmol/L, respectively; p = 0.001; (95% CI: 0.38, 1.96)) but not to H2O (4.05 ˘ 0.16 mmol/L; p = 0.169;
(95% CI: ´0.16, 1.75)). There was no difference between DBB and H2O (p = 0.355; (95% CI: ´0.96, 0.22))
(Figure 2A). A time ˆ trial interaction (p < 0.001) revealed that the increase in glucose at 30 min post
beverage ingestion was highest in CHO compared to DBB and H2O control (p = 0.023; (95% CI: 0.23,
3.23), and p = 0.007; (95% CI: 0.58, 3.61) respectively), and remained elevated compared to DBB at 60
and 90 min post beverage consumption (p = 0.015; (95% CI: 0.22, 2.01), and p = 0.007; (95% CI: 0.29,
1.67), respectively) (Figure 2B).
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3.4.2. Plasma NEFA

Time-averaged NEFA was lower following DBB (0.36 ˘ 0.06 mmol/L) compared to CHO
(0.58 ˘ 0.09 mmol/L; p = 0.039; (95% CI:´0.47, 0.03)) and H2O (1.21˘ 0.16 mmol/L; p < 0.001; (95% CI:
´1.33, ´0.37)). There was no difference between CHO and H2O (p = 0.068; (95% CI: ´1.25, ´0.01))
(Figure 2C). Main effects for time and trial were observed following two-way repeated measures
ANOVA. A time ˆ trial interaction (p = 0.001) revealed that increases in NEFA at 30 min post beverage
consumption were greater in H2O compared to DBB (p = 0.042; (95% CI: 0.01, 0.61)). Plasma NEFA
concentrations 60 min post beverage consumption were reduced in DBB (p = 0.001; (95% CI: ´0.93,
´0.25)), and for both DBB and CHO at 90 min (p < 0.001; (95% CI: ´1.04, ´0.43), and p = 0.028; (95% CI:
´0.97, ´0.05), respectively) and 120 min (p < 0.001; (95% CI: ´0.62, ´0.22), and p = 0.030; (95% CI:
´0.62, ´0.03), respectively) post beverage consumption compared to H2O (Figure 2D).
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Figure 2. Time-average (90 min) (A,C,E) and plasma concentrations (B,D,F) of glucose (mmol/L),
NEFA (mmol/L), and leptin (ng/mL), respectively, pre (´60) and throughout the 120 min recovery
period (n = 13). Vertical grey shaded area (B,D,F) represent the 60 min cycling bout. Values are
presented as mean ˘ SEM. Values with unlike letters (a,b) denote significant difference between trials.
White filled boxes (

Nutrients 2016, 8, 355  9 of 16 

 

Values are presented as mean ± SEM. Values with unlike  letters  (a,b) denote  significant difference 

between  trials. White  filled boxes  (‐ ‐) represent DBB, grey  filled boxes  (‐ ‐) represent CHO, and 

black  filled  boxes  (‐ ‐)  represent  H2O.  Significance  at  the  p  <  0.05  level.  ϕ  denotes  significant 

difference between DBB and H2O; # denotes significant difference between CHO and H2O; * denotes 

significant difference between DBB and CHO. 

3.4.3. Plasma Leptin 

No  differences  in  time‐averaged  leptin were  evident  between  test  beverages  (17.17  ±  1.59,   

22.08 ± 6.79, 25.30 ± 6.67 ng/mL for DBB, CHO and H2O, respectively; p = 0.289; (grand mean 95% CI: 

11.42, 31.62))  (Figure 2E) and  two‐way anova demonstrated main effect of  time across  trials only 

(Figure 2F). 

3.4.4. Plasma Insulin 

Time‐averaged insulin was higher following consumption of DBB compared to H2O (783.85 ± 83.96, 

392.58  ±  98.14  pmol/L  respectively;  p  =  0.015;  (95% CI:  69.18,  713.36))  but  not  to CHO  (747.3  ±   

109.73 pmol/L; p = 1.00; (95% CI: −270.02, 343.11)). There was no difference between CHO and H2O   

(p  =  0.152;  (95% CI:  −136.94,  846.39)  (Figure  3A). Main  effects  for  time  and  trial were  observed 

following two‐way repeated measures ANOVA. A time × trial interaction (p < 0.001) revealed that 

the increase in insulin was greater in DBB compared to H2O at 30 min (p = 0.001; (95% CI: 0.27, 0.96)) 

and 60 min (p < 0.001; (95% CI: 0.22, 0.69)) post beverage ingestion (Figure 3B). 

) represent DBB, grey filled boxes (

Nutrients 2016, 8, 355  9 of 16 

 

Values are presented as mean ± SEM. Values with unlike  letters  (a,b) denote  significant difference 

between  trials. White  filled boxes  (‐ ‐) represent DBB, grey  filled boxes  (‐ ‐) represent CHO, and 

black  filled  boxes  (‐ ‐)  represent  H2O.  Significance  at  the  p  <  0.05  level.  ϕ  denotes  significant 

difference between DBB and H2O; # denotes significant difference between CHO and H2O; * denotes 

significant difference between DBB and CHO. 

3.4.3. Plasma Leptin 

No  differences  in  time‐averaged  leptin were  evident  between  test  beverages  (17.17  ±  1.59,   

22.08 ± 6.79, 25.30 ± 6.67 ng/mL for DBB, CHO and H2O, respectively; p = 0.289; (grand mean 95% CI: 

11.42, 31.62))  (Figure 2E) and  two‐way anova demonstrated main effect of  time across  trials only 

(Figure 2F). 

3.4.4. Plasma Insulin 

Time‐averaged insulin was higher following consumption of DBB compared to H2O (783.85 ± 83.96, 

392.58  ±  98.14  pmol/L  respectively;  p  =  0.015;  (95% CI:  69.18,  713.36))  but  not  to CHO  (747.3  ±   

109.73 pmol/L; p = 1.00; (95% CI: −270.02, 343.11)). There was no difference between CHO and H2O   

(p  =  0.152;  (95% CI:  −136.94,  846.39)  (Figure  3A). Main  effects  for  time  and  trial were  observed 

following two‐way repeated measures ANOVA. A time × trial interaction (p < 0.001) revealed that 

the increase in insulin was greater in DBB compared to H2O at 30 min (p = 0.001; (95% CI: 0.27, 0.96)) 

and 60 min (p < 0.001; (95% CI: 0.22, 0.69)) post beverage ingestion (Figure 3B). 

) represent CHO, and black filled boxes
(

Nutrients 2016, 8, 355  9 of 16 

 

Values are presented as mean ± SEM. Values with unlike  letters  (a,b) denote  significant difference 

between  trials. White  filled boxes  (‐ ‐) represent DBB, grey  filled boxes  (‐ ‐) represent CHO, and 

black  filled  boxes  (‐ ‐)  represent  H2O.  Significance  at  the  p  <  0.05  level.  ϕ  denotes  significant 

difference between DBB and H2O; # denotes significant difference between CHO and H2O; * denotes 

significant difference between DBB and CHO. 

3.4.3. Plasma Leptin 

No  differences  in  time‐averaged  leptin were  evident  between  test  beverages  (17.17  ±  1.59,   

22.08 ± 6.79, 25.30 ± 6.67 ng/mL for DBB, CHO and H2O, respectively; p = 0.289; (grand mean 95% CI: 

11.42, 31.62))  (Figure 2E) and  two‐way anova demonstrated main effect of  time across  trials only 

(Figure 2F). 

3.4.4. Plasma Insulin 

Time‐averaged insulin was higher following consumption of DBB compared to H2O (783.85 ± 83.96, 

392.58  ±  98.14  pmol/L  respectively;  p  =  0.015;  (95% CI:  69.18,  713.36))  but  not  to CHO  (747.3  ±   

109.73 pmol/L; p = 1.00; (95% CI: −270.02, 343.11)). There was no difference between CHO and H2O   

(p  =  0.152;  (95% CI:  −136.94,  846.39)  (Figure  3A). Main  effects  for  time  and  trial were  observed 

following two‐way repeated measures ANOVA. A time × trial interaction (p < 0.001) revealed that 

the increase in insulin was greater in DBB compared to H2O at 30 min (p = 0.001; (95% CI: 0.27, 0.96)) 

and 60 min (p < 0.001; (95% CI: 0.22, 0.69)) post beverage ingestion (Figure 3B). 

) represent H2O. Significance at the p < 0.05 level. φ denotes significant difference between DBB
and H2O; # denotes significant difference between CHO and H2O; * denotes significant difference
between DBB and CHO.

3.4.3. Plasma Leptin

No differences in time-averaged leptin were evident between test beverages (17.17 ˘ 1.59,
22.08 ˘ 6.79, 25.30 ˘ 6.67 ng/mL for DBB, CHO and H2O, respectively; p = 0.289; (grand mean
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95% CI: 11.42, 31.62)) (Figure 2E) and two-way anova demonstrated main effect of time across trials
only (Figure 2F).

3.4.4. Plasma Insulin

Time-averaged insulin was higher following consumption of DBB compared to H2O
(783.85 ˘ 83.96, 392.58 ˘ 98.14 pmol/L respectively; p = 0.015; (95% CI: 69.18, 713.36)) but not to
CHO (747.3 ˘ 109.73 pmol/L; p = 1.00; (95% CI: ´270.02, 343.11)). There was no difference between
CHO and H2O (p = 0.152; (95% CI: ´136.94, 846.39) (Figure 3A). Main effects for time and trial were
observed following two-way repeated measures ANOVA. A timeˆ trial interaction (p < 0.001) revealed
that the increase in insulin was greater in DBB compared to H2O at 30 min (p = 0.001; (95% CI: 0.27,
0.96)) and 60 min (p < 0.001; (95% CI: 0.22, 0.69)) post beverage ingestion (Figure 3B).
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3.4.5. Plasma Glucagon

Time-averaged glucagon was higher following DBB compared to CHO (133.6 ˘ 6.1,
105.4 ˘ 9.0 pg/mL respectively; p = 0.008; (95% CI: 5.3, 51.1)) but not to H2O (113.2 ˘ 10.1 pg/mL;
p = 0.074; (95% CI: ´9.7, 50.6)). There was no difference between CHO and H2O (p = 0.911; (95% CI:
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´28.4, 12.9) (Figure 3C). While main effects for time and trial were observed, no interaction effects
were present (Figure 3D).

3.4.6. Plasma GLP-17-36

Time-averaged GLP-17-36 was higher following DBB compared to H2O (6.13 ˘ 0.69,
3.55 ˘ 0.38 pmol/L respectively; p = 0.001; (95% CI: 0.79, 4.36)) but not to CHO (5.24 ˘ 0.81 pmol/L;
p = 0.146; (95% CI: ´0.63, 2.41)). There was no difference between CHO and H2O (p = 0.249; (95% CI:
´0.53, 3.91) (Figure 3E). Two-way ANOVA demonstrated a main effect of time across trials and a main
effect of trial (Figure 3F).

4. Discussion

To our knowledge, while our previous work has examined the effect of post-exercise DBB
consumption on subsequent appetite and energy intake in active females [28], this is the first study
where measures of relevant hormonal appetite-related peptides were also quantified. The main findings
arising from this study are that post-exercise DBB consumption reduced energy intake at the ad libitum
meal by 23% (1.14 MJ; p = 0.046), and 16% (0.78 MJ; p = 0.211) compared to H2O and CHO consumption,
respectively, while subsequent appetite (subjective and hormonal appetite-related peptides) and
energy intake was similar between the commercially available beverages. In addition, although
significance was not obtained, DBB reduced overall energy intake by ´1.29 ˘ 0.67 MJ compared to
a volume and energy matched CHO beverage. It is recognized that post-exercise DBB consumption
may enhance muscle protein synthesis [2], attenuate exercise-induced muscle damage [3–7], and
increase rehydration [8], thus manifesting in accelerated recovery and improved performance [9].
Consequently, these data may begin to illustrate an additional role for DBB consumption in the
immediate post-exercise period for individuals exercising for weight loss/maintenance purposes,
though further research is warranted to substantiate these initial findings.

The results concerning energy intake at the ad libitum meal are concordant with a previous
study investigating the effects of post-exercise beverage macro-nutrient content on appetite and
energy intake [39]. Clayton and colleagues [39] found that ad libitum energy intake (following 30 min
cycling exercise and 60 min after drink ingestion) was lower following a 6% whey protein isolate
solution compared to a placebo, but was not different after an isoenergetic carbohydrate beverage.
Early research suggests that the energy content of a beverage is the only property that significantly
affects energy intake at a subsequent meal as opposed to nutritional composition [40]. Consequently,
considering the recovery beverages used in this study were matched for energy content it may
be unsurprising that energy intake at a subsequent ad libitum meal was similar between DBB and
CHO. Interestingly, at the ad libitum meal, 10 of 13 participants consumed less energy following
DBB when compared to both H2O and CHO. However as expected, when the energy content of
the beverages were considered, H2O elicited the greatest reduction in relative energy intake at the
ad libitum meal as demonstrated by the delta (∆) values; 0.16 ˘ 0.38, 0.89 ˘ 0.29, and ´0.73 ˘ 0.42 MJ
for DBB-H2O, CHO-H2O and DBB-CHO, respectively. Similarly, when all food intake was considered,
total daily energy intake was not significantly different between DBB (9.86 ˘ 0.33 MJ) compared to
H2O (10.20 ˘ 0.79 MJ) and CHO (11.15 ˘ 0.58 MJ). These findings are in agreement with the recent
study by Clayton et al. [39]. However, when delta (∆) between trials for total daily energy intake is
considered, DBB delivered the greatest reduction in total daily energy intake compared to other trials
(´0.34 ˘ 0.89, 0.95 ˘ 0.61 and ´1.29 ˘ 0.67 MJ for DBB-H2O, CHO-H2O ,and DBB-CHO, respectively).
Indeed, 11 of 13 participants consumed less total daily energy following DBB compared to CHO and six
compared to H2O. It has been suggested in the scientific literature that daily deficits in energy intake
of 0.71 MJ (712 kJ, 170 kcal) may be “clinically” meaningful from a weight loss and/or maintenance
perspective [41]. Based on our findings, one may speculate that post-exercise DBB and/or H2O
consumption shows some promise as a potential application for weight maintenance or loss compared
to a volume and energy matched CHO beverage, although the added nutritional benefit of DBB must
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be considered. Nevertheless, further research is certainly warranted to establish whether longer-term
post-exercise DBB consumption serves as a beverage to aid weight maintenance and weight loss.

Relative to carbohydrate-based beverages and water, dairy beverages contribute significantly to
the consumption of high-quality proteins. It is suggested that dietary proteins are more satiating than
energetic equivalents of carbohydrate or fat under most conditions, and suppress short-term energy
intake at the next available opportunity [19,42,43]. In support of this, the effect of high protein food on
short-term food intake reflects subjective measurements of appetite [19]. Foods high in protein not
only suppress short-term food intake to a greater extent than carbohydrate and fat but also provide
strong feelings of satiety after their consumption [43,44]. In this study, consumption of DBB and
CHO recovery beverages elicited similar responses on subjective appetite compared with H2O, and
may suggest that the energy content of a beverage remains the primary characteristic influencing
subsequent appetite responses [39]. It is important to note, however, that alterations in subjective
perceptions of food-related emotions do not always translate and reflect actual eating behaviour [45].
In our previous study, for example, significant reductions in relative energy intake were observed
60 min following 30 min of cycling, yet did not impact on subjective appetite [28]. Furthermore,
reductions in subsequent energy intake and appetite responses have principally been observed after
consuming beverages containing large amounts (30 + g) of protein [28,46]. It is probable that our study
was underpowered to detect differences in energy intake deemed clinically meaningful [41] following
DBB consumption. In addition, we may not have observed a sufficiently large reduction in energy
intake following DBB consumption due to our methodological approach (e.g., insufficient protein
content of the beverages, exercise duration, and time lapse between exercise and consumption of the
test meal).

In an attempt to establish the physiological effects of exercise and post-exercise dairy beverage
consumption, we measured hormonal peptides of gastrointestinal, pancreatic, and adipose tissue
origin that are implicated in appetite regulation and metabolism. Importantly, a growing body of
evidence suggests that an acute bout of aerobic exercise (perhaps more so than resistance exercise)
influences appetite-related hormones (for review please refer to [47]). While exercise may confer only
transient changes in circulating hormones, the suppression offered by the exercise itself may have
contributed to the appetite responses and subsequent energy intake that was observed in the present
investigation. Having said this, given that the acute exercise bout employed was repeated across trials,
the contribution of exercise would have been analogous. Consequently, any differences between trials
were likely due to the recovery beverage consumed. The postprandial response of these peptides is
profoundly influenced by energy consumed as well as the distribution of ingested macro- (and micro-)
nutrients. For example, circulating concentrations of GLP-17-36 increase immediately following food
consumption in direct proportion to energy content [48], but similarly when carbohydrates and fats
are present [49]. Postprandial concentrations of glucagon are more capricious, but rise following
fasting, protein ingestion [50] or exercise [51]. It may therefore be unsurprising that post-exercise
DBB and CHO consumption resulted in a greater plasma GLP-17-36, considering both beverages were
isoenergetic (1.36 MJ). Furthermore, the elevated postprandial glucagon and insulin concentrations
following DBB consumption may have been predictable due to its protein content. Although several
studies have demonstrated glucagon, GLP-17-36 and insulin to potently increase satiety and acutely
reduce food intake in humans [52–54], the findings from this study do not fully support this. Together,
the differences in subjective appetite and appetite-related peptides may have been insufficient to
stimulate larger differences in subsequent energy intake; namely when comparing CHO and H2O, and
DBB and CHO at the ad libitum meal, and energy intake beyond the first meal. Outside of the effects of
protein on satiety, it is well established that protein elicits a greater effect on diet induced thermogenesis
(20%–35% of energy consumed) compared to energy matched intakes of carbohydrate (5%–15% of
energy consumed) or fat (0%–3% of energy consumed) [55]. Indeed, early investigations have reported
an increased thermogenic effect after consumption of a DBB in comparison to an energy matched
sugary beverage [56]. Additionally, there is evidence suggesting that glucagon [57,58] and calcium
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exerts properties that may stimulate energy expenditure and lipid utilization [58]. While not directly
measured in the present investigation, collectively, this suggests that post-exercise DBB consumption
may have further impacted on energy balance through an increase in energy expenditure and, perhaps,
through altered substrate utilization.

Though the work presented throughout this manuscript has numerous strengths, the findings
are not without limitation and warrant mention. Firstly, the results arising from this manuscript are
drawn from an acute intervention. Consequently, observations require careful interpretation, as study
findings may not translate over extended periods. In addition, the present findings are limited by the
relatively small population sample of healthy recreationally-active females and, thus, the relevance to a
wider population needs further evaluation. Nonetheless, research concerning the consumption of DBB
on appetite and postprandial hormonal response is sparse, particularly in females. The observations
arising from this study are therefore novel and present important information about post-exercise
beverage consumption for females, especially as differences in energy-regulating hormones following
exercise have been reported between men and women [59]. In turn, participants’ preconceived attitudes
concerning the recovery beverages may have confounded any observations. While our study design
provided robust experimental control, the provision of a limited meal (cheese and tomato pasta) and a
pre-determined volume of the recovery beverage may not truly reflect actual free-living behaviours,
especially considering this was repeated over three trials. Indeed, factors associated with palatability
and gastrointestinal discomfort may have induced an element of progressive dislike that (if faced with)
may have influenced subsequent eating behaviour and, thus, satiety.

5. Conclusions

Considered together nonetheless, the present study demonstrates that the consumption of
a DBB beverage immediately following exercise reduces overall energy intake by approximately
´1.29 ˘ 0.67 MJ, compared to a volume and energy matched CHO beverage, despite eliciting similar
responses concerning subsequent appetite and hormonal peptide responses. Consequently, the
influence of post-exercise DBB consumption on subsequent appetite and energy intake remain unclear.
Despite this, it is important to consider that DBB represent a nutrient-dense foodstuff and encompass
an array of nutrients that confer numerous health benefits and may enhance post-exercise recovery,
while contributing significantly to the consumption of high-quality nutrients and numerous bioactive
constituents. Further research is warranted to fully elucidate the mechanisms influencing subsequent
appetite and energy intake suppression in response to DBB and exercise, both alone and in combination.
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