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Abstract 15 

The insulation of the building envelope contributes to the reduction of annual energy 16 

consumptions. The development of new materials, such as fibre reinforced insulating coatings, 17 

could be useful in order to obtain an effective solution for the improvement of energy performance 18 

and for reinforcement of the walls.  19 

The evaluation of the thermal and mechanical characteristics of building coatings with good 20 

thermal insulation properties and mechanical resistance is the aim of the present paper. A new 21 

experimental apparatus, Small Hot-Box, built at the University of Perugia, was used for the 22 

evaluation of the thermal conductivity of four different coatings (with and without a reinforced 23 

structure). No European standards are available for this innovative facility, but it takes into account 24 

some prescriptions of EN ISO 8990. The apparatus was calibrated with materials of known thermal 25 

conductivity. The thermal conductivity can be calculated with both the thermal flux meter and the 26 

mailto:cinzia.buratti@unipg.it


Hot Box method. Good values of the thermal conductivity, in the range of 0.09-0.11 W/mK were 27 

found for all the samples, except for one (0.21-0.24 W/mK). 28 

Mechanical tests were also carried out in laboratory on all the samples and results were used to 29 

evaluate  the shear modulus and strength of the wall panels.  30 

 31 

Keywords: Reinforced insulated coatings, Mechanical resistance, Thermal conductivity, 32 

Innovative experimental apparatus, Building insulated materials. 33 

 34 

1. Introduction 35 

Energy consumption for buildings heating and air conditioning represents on average the 40 36 

% of energy consumptions in Europe [1]. Furthermore a relevant part of the building heritage in 37 

Europe is constituted by old buildings [2,3,4] with poor quality insulation materials. Therefore, 38 

recent regulations, as for example the EU Directive 2010/31 [5] on energy efficiency in buildings,  39 

aims at increasing target energy efficiency standards, considering both the single components and 40 

the entire building. The building envelope plays a fundamental role in energy balance. The 41 

evaluation of the building components thermal properties requires a high level of accuracy and 42 

many experimental methods for the thermal characterization of materials have been performed 43 

from research efforts all over the world. Several methods for measuring the thermal properties are 44 

well known; the guarded hot plate is the most common method used for the evaluation of the 45 

thermal conductivity of an homogeneous or multilayer material [6]. Many studies concerning the 46 

characterization of thermal properties of materials are available; André et al. [7] presented an 47 

experimental set-up based on the hot wire method for the thermal characterization of materials, 48 

while a tiny hot plate method is proposed by Jannot et al. [8,9] for the thermal conductivity 49 

measurement of heterogeneous materials [10]. 50 

Furthermore, for non-homogeneous structures, composed by different materials or 51 

components (such as doors, windows or French windows), or when the heat transfer is two - or 52 

three-dimensional, different techniques are used; the most common method for the thermal 53 

transmittance evaluation is the calibrated Hot-Box [11,12]. Since Seventies the guidelines for Hot 54 



Box design criteria are reported in EN ISO 8990 [13] and EN ISO 12567-1 [14]. In particular EN 55 

ISO 12567-1 specifies a method to measure the thermal transmittance of doors or windows, but 56 

also the thermal conductivity of homogeneous materials can be evaluated. The heat flux through 57 

the sample can be evaluated by means of thermal flux meters installed on the surface of the 58 

sample (Thermal Flux Meter Method, TFM).  In this case the thermal conductivity of the panel will 59 

be calculated as the (thermal flux/surface temperature difference) ratio. The flux meter 60 

methodology is also considered in the UNI EN 1934:2000 [15]. At the University of Perugia 61 

(Department of Engineering), a Calibrated Hot Box was built in 2008, according to UNI EN ISO 62 

8990 [13,16]. It is composed of two chambers (dimensions 2.5 x 1.2 x 3.2 m height), the cold and 63 

the hot one [16,17,18,19,20].  64 

Considering homogeneous materials, other experimental apparatus could be used: the 65 

guarded hot plate or heat flow meter method (EN ISO 12667 and ASTM C518–10 [21,22]). The 66 

heat flow meter apparatus is a comparative device and requires a reference material with known 67 

thermal properties for calibration. The heat flow meter apparatus establishes steady state one-68 

dimensional heat flux through a test specimen between two parallel plates at constant but different 69 

temperatures [23].  70 

In this context, in the present study measurements with a new experimental apparatus, 71 

named Small Hot-Box, were carried out. The experimental system has been designed and built at 72 

the Laboratory of Thermal Science, University of Perugia. The apparatus allows the evaluation of 73 

the thermal conductivity of homogeneous materials, but the operating principle arises from the Hot-74 

Box method. The advantage of the apparatus with respect to Hot-Box is the possibility of testing 75 

homogeneous materials with smaller samples (300 x 300 mm); with respect to the Hot Plate 76 

apparatus, it can provide a thermal transmittance value measured in conditions similar to the in-situ 77 

ones.  78 

Fibre reinforced insulating coatings were characterized with the innovative apparatus. The 79 

mechanical properties of the same samples were also evaluated, in order to show the influence of 80 

the fibres on the mechanical resistance.  81 



Retrofitting techniques for masonry constructions are extensively found in the existing 82 

literature. FRP (Fibre-Reinforced Polymer) systems are increasingly used to strengthen masonry 83 

structures: reinforcement is frequently bonded to the surface of existing walls, where it provides 84 

tensile strength and prevents the opening of cracks [24,25,26,27].  85 

The use of FRPs without epoxy adhesives is less well established [28,29]. Only recently the use of 86 

non-organic matrixes has been the subject of research, and it could be a valid alternative to the 87 

use of epoxy matrixes. Mechanical tests were conducted in laboratory on 1.2 x 1.2 x 0.24 m 88 

brickwork panels. All wall panels were subjected to shear strength  and test results were used to 89 

evaluate the shear strength of the masonry before and after the application of the strengthening 90 

made of a G-FRP (Glass Fibre-Reinforced Polymer) reinforced insulation coating applied on both 91 

panel sides. 92 

Insulation coatings can be used in many applications, such as refurbishment of old buildings, 93 

on internal as well as external surfaces, and they should offer a non-invasive method for reinforce 94 

historic buildings and saving energy without altering their forms. Fibre-Reinforced Polymers (FRP) 95 

are composed of high-strength fibres (such as glass) embedded in a polymer resin (such as 96 

polyester), durable (thanks to the resin), and lightweight. Glass fibre reinforced concrete is a 97 

composite material made of components with different mechanical properties: cement mortar and 98 

G-FRP  in place of metal grids. Cement avoids buckling of glass fibres when compressing them, 99 

glass fibres improve the tensile strength and ductility. This solution is very diffused in order to 100 

improve the shearing strength of the walls [30,31]. Thermal insulation plasters, as the samples 101 

investigated in the present study, consisting in innovative reinforced coatings made of mortar and 102 

G-FRP, try to combine good mechanical and thermal properties for building refurbishment. 103 

Innovative coating solutions are therefore in development, such as aerogel-based high 104 

performance insulating plasters, but a limited number of studies exists in this field, probably due to 105 

the high costs of the innovative system [32].  106 

 107 

2. Materials and methods 108 

2.1 Description of the samples  109 



Four mortars with different chemical compositions were investigated, each one with and 110 

without G-FRP, for eight samples in total. The G-FRP grid is characterized by a 66 mm square 111 

mesh inserted into the matrix. It is produced by Fibre Net (Udine, Italy) and is fabricated  with an 112 

AR (Alkali Resistant) fibre glass (Fig.1 and Tab.1). 113 

Samples for thermal measurements were realized by using a layer of plasterboard as 114 

support base. Nine square samples were therefore realized, (including the only plasterboard 115 

(PL), 13 mm thickness), with external dimensions 30 × 30 cm (total area of 0.09 m2), according 116 

to the dimensions of the opening for the lodge of the samples. The thicknesses of the 117 

specimens and the description of the coatings for thermal measurements are reported in Tab.2. 118 

Cylindrical samples approximately 94 mm in diameter and approximately 180 mm in 119 

height were realized for compression tests;10 square walls 1.2 m x 1.2 m were assembled in 120 

laboratory for shear tests.  121 

 122 

2.2 Thermal characterization 123 

The new experimental apparatus was built at the Laboratory of Thermal Science - the 124 

University of Perugia - for thermal conductivity measurements. A general view of the apparatus 125 

is represented in Fig. 2. It is composed of one box (external dimensions 0.94 x 0.94 x 0.50 m) 126 

that behaves as hot chamber: the outer walls of the chamber are made of very thick insulation 127 

(200 mm of foam polyurethane + 20 mm of wood), in order to minimize the thermal losses and 128 

the heat flux through the walls. The thermal conductivity  of the expanded polyurethane is 129 

0.0245 W/m K and the thermal transmittance of the walls is 0.114 W/m2K. The second part of 130 

the experimental system is the closure side of the box (dimensions 0.94 x 0.94 x 0.20 m thick): 131 

it is a sandwich wall composed of two panels of wood (20 mm each) with a central layer of 132 

expanded polyurethane (200 mm). In the central part of it there is an opening for the placement 133 

of the sample, with 0.30 x 0.30 m dimensions. The contact zones between the support panel 134 

and the sample are covered with insulation rubber in the perimeter joints, which are also sealed 135 

with silicone during the test.  136 



The cold side of the system is the laboratory room (internal dimensions 3.39 m x 4.22 m x 137 

2.97 m high), completely insulated from the outside. The small Hot-Box is positioned inside this 138 

room, where it is not possible to set the temperature but it was monitored during a long period 139 

before the construction of the apparatus and it was observed that the daily temperatures are 140 

very steady (maximum difference about 0.8°C). During the test, the temperatures inside the hot 141 

room are maintained constant by means of a heating source made of a 3 m long (50 W) S-142 

shaped heating wire. In order to avoid direct radiation effects, a screen (baffle) made of poplar 143 

wood (emissivity 0.90) is placed between the heating system and the support panel. The 144 

heating wire is switch on and off automatically thanks to a PID (Proportional-Integral-Derivative) 145 

control system. Inside the hot chamber, 9 thermoresistances are installed in order to control the 146 

surface temperatures of the sample (4 probes), of the support panel (4 probes), and the air 147 

temperature (1 probe). In the laboratory cold side, 8 probes are fixed to the surface of the 148 

specimen and of the support panel, and one is placed in the room for air temperature 149 

measurement. Finally a thermal flux meter is placed in the central area of the sample, in order 150 

to measure the heat flux from the hot side to the cold one. The apparatus diagram with the 151 

sensors’ position are represented in Fig.3. All the monitored data are transferred to a PC: it is 152 

possible to select the time step for the data acquisition, and it is also possible to visualize and 153 

save the acquired data. In order to avoid the air stratification, two fans (each one with an electric 154 

current equal to 0.11 A) were installed inside. A convective equilibrium was achieved thanks to 155 

this ventilation system and a maximum difference of about 0.6°C on the hot face was achieved 156 

after the fans’ installation.  157 

A switchboard was finally assembled: it is composed of a master switch, a PID controller, 158 

an electrical energy meter, and a speed variator for the regulation of the fans’ velocity. 159 

Considering the evaluation of the heat flow supplied to the hot chamber in order to keep the 160 

steady-state conditions, an ammeter was also installed in order to evaluate the current passing 161 

through the hot wire. The heat power released by the resistance during a test could be 162 

evaluated as the product of the hot wire thermal resistance (measured in Ohm) and the square 163 

current through the hot wire (in ampere). On the contrary the electric energy meter measures 164 



directly the energy entering the hot side, but it has a low accuracy and it was used only as a 165 

control instrument.  166 

The Hot Box method could be used for calculating the thermal conductivity of the 167 

samples, by evaluating the heat flux through the sample as the difference between the input 168 

power (Pi in W) in the hot chamber and the heat losses through the walls and the thermal 169 

bridges (Pw in W). The incoming power Pi can be measured considering two contributes: the 170 

heat flux released by the resistance during the test (Pr in W) and the contribute of the fans (Pf in 171 

W). The contribution of the losses Pw is evaluated by means of calibration measurements and it 172 

shall be plotted vs. the air temperature difference between the hot and the cold side.  173 

 𝑃𝑠 = 𝑃𝑖 − 𝑃𝑤     [𝑊] (1) 174 

where: 175 

- Ps is the power coming out through the tested specimen (W); 176 

- Pi is the entering power in the hot chamber, measured by a power meter (W); 177 

- PW is the power loss through the walls and the thermal bridges, evaluated by the 178 

calibration curve equation (6) (W). 179 

The thermal conductivity of the specimen is then calculated by dividing the product of the 180 

power through the specimen (Ps in W) and its thickness by the area of the specimen As (m2) and 181 

the surface temperature difference between its two sides: 182 

  =
𝑃𝑠∙𝑠

𝐴𝑠∙(𝑇𝑆𝐻−𝑇𝑆𝐶)
 [𝑊/(𝑚 ∙ 𝐾)] (2) 183 

Specific calibration panels (foam polyurethane, expanded polystyrene, plasterboard, and 184 

wood) were assembled for the calibration tests and many measurements were carried out by 185 

considering different set-point temperatures of the hot chamber (the air temperature difference 186 

between hot and cold side was maintained higher than 20°C for all the tests). Generally it was 187 

observed that the mean error of the apparatus decreases by decreasing the set point 188 

temperature of the hot side. A mean value of 50°C for the hot chamber was considered. 189 

The thermal flux meter method is based on a thermal flux meter probe placed in the 190 

central part of the sample, as shown in Fig. 3. The probe (model HP01 - Hukuseflux) is a 191 

thermopile operating in the -2000 ÷ +2000 W/m2 power range and in the -30 ÷ +70°C 192 



temperature range. It measures the differential temperature across the ceramics-plastic 193 

composite body and generates a small output voltage proportional to the local heat flux. In order 194 

to calculate the thermal conductivity, 8 termoresistances are installed on the surface of the 195 

sample, with four sensors each side (Fig. 3). The thermal resistance Rt could be calculated as 196 

follows (Progressive Average Methodology) [33,34]:  197 

 𝑅𝑡 =
∑ (𝑇𝑆𝐻𝑗−𝑇𝑆𝐶𝑗)𝑛

𝑗=1

∑ 𝑞𝑗
𝑛
𝑗=1

     [(𝑚2 ∙ 𝐾)/𝑊]  (3) 198 

where the index j is related to each acquisition time, TsH is the mean value of the panel 199 

surface temperature of the Hot side, TsC is the mean value of the panel surface temperature in 200 

the Cold side, and q is the heat flux through the sample (W/m2). The average values of the 201 

temperatures of the four sensors installed in each side of the sample and the mean thermal 202 

heat flux were used for the calculation. 203 

The value of the thermal conductivity can be calculated by the mean value of the thermal 204 

resistance Rt during the selected period (about 2 – 3 h) and the thickness of the specimen (s in 205 

m):  206 

  = 𝑠/𝑅𝑡    [𝑊/(𝑚 ∙ 𝐾)] (4) 207 

 208 

2.3 Mechanical characterization 209 

The strengthening technique is very similar of the traditional steel jacketing for masonry 210 

wall panels. Both G-FRP and thermal insulating mortars underwent a mechanical 211 

characterization. The  mechanical properties of the mortars were evaluated by compression 212 

tests in compliance with EN 12390-2 2009 [35]. Compressive strength of mortar at 30 days 213 

after casting has been measured.   214 

In order to study the shear behaviour of the wall panels reinforced with thermal insulating 215 

plaster, 10 wall panels were tested in diagonal tension [36,37], as reported in Fig.4.  216 

Using the Turnšek and Cacovic [38] formulation, the shear strength is: 217 

 𝜏 =
𝑓𝑡

1.5
=

𝑝

3∙𝐴𝑛
   (5) 218 



in which p is the diagonal load and An is the cross-section area of the wall panel. For both 219 

unreinforced and reinforced wall panels, brickwork pattern was made from all headers (header 220 

bond pattern) on each course. Panels were assembled by using a lime-based mortar for 221 

construction in laboratory.  222 

 223 

3. Results 224 

3.1 Thermal properties 225 

By applying the Hot-Box method data was calculated with a calibration curve based on 226 

materials with a known thermal conductivity higher than 0.06 W/mK (for the calibration curve 227 

construction a wood panel (λ = 0.12 W/mK), a plasterboard panel (λ = 0.20 W/mK) and an 228 

insulating panel with wood fibres and cement (λ = 0.065 W/mK) were used). The following 229 

calibration curve was used: 230 

 𝑃𝑊 = 0.2487 ∙ ∆𝑇𝑎 + 1.4567   [𝑊] (6) 231 

where: 232 

- PW is the power loss through the walls and the thermal bridges (W); 233 

- ΔTa is the air temperature difference between the hot and the cold side (°C). 234 

By measuring Pi in eq. (1), Ps and λ of the sample could be calculated by applying 235 

equations (1) and (2). λ of the coating should then be calculated knowing λ and s of the 236 

plasterboard panel used as support base, by applying the following: 237 

 𝜆𝑐𝑜𝑎𝑡𝑖𝑛𝑔 =
𝑠𝑐𝑜𝑎𝑡𝑖𝑛𝑔

𝑠𝑡𝑜𝑡𝑎𝑙
𝜆𝑡𝑜𝑡𝑎𝑙

−
𝑠𝑝𝑙𝑎𝑠𝑡𝑒𝑟𝑏𝑜𝑎𝑟𝑑

𝜆𝑝𝑙𝑎𝑠𝑡𝑒𝑟𝑏𝑜𝑎𝑟𝑑

     [𝑊/(𝑚𝐾)] (7) 238 

 239 

Results are showed in Table 3. 240 

It can be observed that the R-FRP and R2-FRP have the best thermal insulation 241 

behaviour, the C type has the highest thermal conductivity (0.275 W/mK without G-FRP and 242 

0.189 W/mK with G-FRP grid). The same data was obtained by using the thermal flux meter 243 

methodology. The thermal conductivity of the plasterboard is 0.19 W/mK (with a difference of 244 

only 5% in respect to the value declared from the company, equal to 0.2 W/mK).  245 



Table 4 shows the thermal conductivity values obtained for the different specimens, with 246 

and without reinforced grid system: the comparison between the results is represented in the 247 

table considering both the methodologies. 248 

All the coatings have good thermal properties, even if they were developed as structural 249 

mortars; generally the thermal conductivities are lower than the ones of traditional coatings 250 

(values in 0.5-1.0 W/mK range).  251 

The thermal conductivity values of the samples with G-FRP vary between 0.089 and 252 

0.210 W/mK. The best mortar is R2-FRP type, the worst is C-FRP (0.210 W/mK), but it is the 253 

best coating considering the mechanical resistance of the samples (see paragraph 3.2). The 254 

thermal conductivity of the samples with G-FRP decreases of about 11-15 % with respect to 255 

samples without G-FRP, except for R: in this case it is possible to observe an increasing of 256 

about 8% probably due to a flaw of the mortar grout during the laying of the samples (Fig.5); the 257 

improvement in terms of reduction of the thermal conductivity (about 11-15%) is probably due to 258 

air included in the mixture. 259 

Furthermore it is important to observe that the thermal conductivities of the samples with 260 

and without G-FRP are not so different from the error value of the apparatus (about 10%), and 261 

therefore they are not so different in terms of thermal performance: minimum changes of the 262 

final thermal conductivity values are attributed especially to differences in the laying of the 263 

samples.  264 

Considering the comparison between the two methodologies (Hot Box and Thermal Flux 265 

Meter, see Tab.4) it can be observed that the differences vary in 9 - 23% range: the thermal 266 

conductivities obtained with the Hot-Box Method are in general higher than the ones obtained 267 

by the Thermal Flux Meter Method for almost all the samples. Nevertheless the Thermal Flux 268 

Meter Method seems more reliable, because the considered calibration curve used for the Hot-269 

Box method is preliminary and much more materials with λ in 0.05 – 0.50 W/(mK) range should 270 

be used for the improvement  of that curve (6). 271 

 272 

3.2 Mechanical resistance 273 



The technical developments of the last years have enabled to produce new mortars with 274 

specific properties, such as a low salt content and size of the aggregate in function of the 275 

masonry characteristics in order to achieve the highest possible compatibility with existing 276 

masonry. Sixteen 94 mm diameter cylindrical samples (four for each mortar type) have been 277 

tested in compression. Mortar cylinders were approx. 180 mm in height. The average 278 

compression strength of the cylindrical samples at 30 days after casting was 0.66, 0.72, 0.87, 279 

and 2.70 MPa respectively for mortars D-, R-, R2-, and C-type (Tab.5). These values are 280 

similar both in terms of compressive strength and Young’s modulus with the mortar’s 281 

mechanical properties of historic stone multi-leaf masonry walls [39]. 282 

 283 

Un-reinforced panels 284 

When subjected to shear tests in diagonal tension, all un-reinforced panels exhibited a 285 

failure along the compressed panel diagonal. If the diagonal compression force is strong 286 

enough to exceed the lateral strength capacity of the wall panel, diagonal cracking opened 287 

slowly in the mortar joints and in the bricks starting from the central part of the wall panel and 288 

producing a tensile failure of the walls and an abrupt loss of lateral stiffness (shear modulus).  289 

Two unreinforced brickwork panels have been tested (test n. 5 and 6) and the average lateral 290 

capacity and shear strength τ were respectively 201.1 kN and 0.230 MPa, while the shear 291 

modulus G was 4078 MPa. Results are summarized in Table 6. 292 

 293 

Reinforced panels 294 

Eight reinforced masonry panels were subjected to the diagonal tension test and a single 295 

test was performed on each wall panel. In-plane resistance of unreinforced masonry wall panels 296 

is mainly based on the thermal insulating mortar strength.  Table 6 gives the results in terms of 297 

diagonal compression capacity, shear strength and modulus for each test.  298 

For panels reinforced with D-type mortar, as expected, the wall panels reinforced with this 299 

technique did not resulted very stiff (shear modulus G=4054 MPa). Lateral capacity was 247.5 300 

kN. The stress-strain curve shows a quasi-elastic behaviour with a weak yield plateau.  The 301 



failure mode involved  a sudden loss of collaboration between the reinforcement (lime mortar) 302 

and the substrate (masonry), with some cracks along the compressed diagonal observed on 303 

mortar surface. 304 

The results of the shear tests did not show a significant high increases both in terms of 305 

shear strength and stiffness when mortar type R has been applied. The lateral capacity and 306 

stiffness (shear modulus) values became, respectively, 215.6 kN and 4829 MPa, with a limited 307 

increment of 7 and 18.4% when compared to the values measured for the same panels before 308 

reinforcement. The failure modes observed for these panels are characterized by a very similar 309 

cracking pattern as those of the un-reinforced (Fig.6). 310 

For wall panels reinforced using thermal insulating mortars R2 and C-type, a significant 311 

enhancement of the shear strength was detected: an increase of 114.8 and 109.1% was 312 

measured for R2 and C-type mortar, respectively. 313 

From these test results, a clear tendency is evident: the reinforcing technique can cause 314 

an increase of the shear stiffness only if a thermal insulating mortar with good mechanical 315 

properties is used (type R2 or C). For reinforced panels shear stress versus angular strain 316 

responses, such as those shown in Fig. 7, a two-stage behaviour has been detected: for small 317 

values of the angular strain (approx. up 0.5‰) the behaviour is almost linear elastic while it 318 

becomes highly inelastic for larger values of the deformation. The elastic phase of the 319 

reinforced panels curves is characterized by a similar slope as those of the un-reinforced. Thus, 320 

a first consequence of the reinforcement is the increase of the strength of the wall while leaving 321 

unchanged the in-plane stiffness measured in the elastic phase.  322 

 323 

4. Conclusions 324 

The present paper is focused on the importance of combining thermal and mechanical 325 

properties in buildings refurbishment. The use of construction materials with good thermal 326 

properties is in fact the first condition for greatly reducing the thermal heat losses of the final 327 

products. The study is focused on glass fibre reinforced insulating mortars: they combine good 328 

mechanical and thermal properties for building refurbishment.  329 



The insulating behaviour of the coatings was investigated by an original experimental 330 

apparatus named Small Hot-Box. It is an effective alternative system used instead of the Hot-Plate 331 

apparatus for the experimental evaluation of the thermal resistance of homogeneous materials. 332 

The tested samples are installed in a support panel between the hot and the cold sides; an air 333 

temperature difference is maintained during the test. A heat flux pass through the sample during 334 

the test: the thermal conductivity can be evaluated by measuring the heat flux and the surface 335 

temperatures of the specimen. Two different methodologies are presented: the thermal flux meter 336 

method and the Hot-Box one. The first method takes into account the heat flux measured by the 337 

thermal flux meter installed on the sample, the second one evaluates the heat flux through the 338 

specimen as the difference between the input heat flux and the heat losses through the walls. 339 

Considering the thermal flux meter method, all the coatings have good thermal properties 340 

(thermal conductivities variable in 0.09 – 0.23 W/(mK) range) and the best thermal behaviour can 341 

be attributed to R and R2 mortars. Also considering the Hot-Box method, the lowest thermal 342 

conductivities were found for R and R2 mortars. Even if both the results are aligned, considering 343 

the two methodologies, the thermal flux meter method results should be considered more reliable 344 

because the calibration curve used for the Hot-Box method is just preliminary and it should be 345 

improved. The best thermal performance were obtained for the samples D, R, and R2 (λ = 0.09 – 346 

0.105 W/mK), while for C a value of 0.19 – 0.27 W/mK was found. 347 

Generally, with the glass fibre reinforced grid the thermal conductivity of the samples 348 

decreases of about 11-15 % except for mortar type R but this behaviour is probably due to the 349 

small dimensions of the specimens; anyway it is expected that the thermal resistance of the 350 

mortars in situ would not significantly modified by the G-FRP insertion.  351 

The externally applied G-FRP mesh to masonry panels resulted in a stronger system, as 352 

compared to the un-reinforced configuration. The addition of a G-FRP reinforced coating resulted 353 

in an increase in in-plane load capacity between 7 and 115%. However the reinforcement can 354 

produce an increase of the in-plane load-capacity only if a thermal insulating mortar with good 355 

mechanical properties is used; large increases in shear capacity were only found for wall panels 356 

reinforced with thermal mortars R2 and C: it demonstrates that the G-FRP grid upgrade with a 357 



lime-based thermal insulating mortar is promising, but less effective compared to the reinforcement 358 

with epoxy resins or concrete coatings. Mechanical shear tests have demonstrated that the 359 

adhesion between the masonry panels and the coating used as a base for reinforcement (G-FRP 360 

mesh) was the critical element in the reinforcing system. Failure of reinforced panels resulted from 361 

the separation of the layer of thermal insulating mortar from the masonry panels and from the 362 

opening of diagonal cracks along the compressed panel’s diagonal.  363 

Finally, by combining results of thermal and mechanical characterization, the samples with 364 

the R2 mortar seem the more promising for building refurbishment, being the best compromise 365 

between thermal and mechanical performance. 366 

 367 

Nomenclature 368 

A = panel surface (m2) 369 

e = error (%) 370 

ft = tensile strength (MPa) 371 

G = shear modulus (MPa) 372 

λ = thermal conductivity (W/mK) 373 

P = power (W) 374 

p = diagonal compression load (N) 375 

q = heat flux (W/m2) 376 

Rt = thermal resistance (m2K/W) 377 

s = thickness (m) 378 

T = temperature (°C) 379 

 380 

Subscirpts 381 

a = air  382 

C = Cold side 383 

f = fans 384 

H = Hot side 385 

HB = Hot Box method 386 

i = input  387 

m = mean 388 

p = panel 389 

r = resistance of the hot side 390 

s= specimen 391 



S = surface 392 

tfm = thermal flux meter method 393 

w = walls 394 

  395 
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