An experimental study on the influence of composite materials used to reinforce masonry ring beams

Romina SISTI
Department of Engineering, University of Perugia
Via Duranti, 93 06125 Perugia, Italy

Marco CORRADI
Corresponding author,
Mechanical and Construction Engineering Department, Northumbria University
Wynne-Jones Building, NE1 8ST, Newcastle upon Tyne, United Kingdom and Department of Engineering, University of Perugia, Via Duranti, 93 06125 Perugia, Italy
email marco.corradi@northumbria.ac.uk
Tel. +44 (0) 191 243 7649, Fax. +44 (0) 191 227 4561

Antonio BORRI
Department of Engineering, University of Perugia
Via Duranti, 93 06125 Perugia, Italy

HIGHLIGHTS
We carried out bending tests on 10 full-scale composite-reinforced masonry ring-beams.
Ring beams were reinforced with different composite materials embedded into an inorganic matrix.
GFRP grids, glassfibre nets and PBO cords have been used to reinforce the masonry beams.

Reinforced ring beams presented enhanced behavior and increased mechanical properties.

Keywords: masonry, mechanical testing, composite materials, earthquake engineering

ABSTRACT: For historic masonry constructions the out-of-plane wall behavior is critical to seismic performance. Because the main cause of out-of-plane collapses is the wall-to-wall level of connection, the application of a Reinforced Concrete (RC) ring beam at the eaves level of historic masonry buildings is an effective method to prevent an out-of-plane mechanism of a wall panel. However this effective reinforcing method presents some drawbacks. In order to address this, this paper describes the problems associated with this “traditional” reinforcing method and introduces a new retrofitting technique for historic masonry buildings by realizing a new type of ring beam made of recycled old stones or bricks reinforced at the bed joints with glass-fibre sheets, GFRP (Glass Fiber Reinforced Polymer) grids or/and PBO (polybenzoxazole: poly-p-phenylene benzobisoxazole) cords. An experimental investigation has been carried out on 10 full-scale rubble-stone or brickwork masonry ring beams. The testing included the use of composite materials inserted into the mortar joints during the fabrication phase of the beams and pinned end conditions (four-point bending configuration). Beams were reinforced with different composite layouts.

INTRODUCCION

The estimation of the strength of a masonry construction is based on the analysis of the modes of failure and several theories have been developed which are able to predict the type, direction and magnitude of loading which will produce the failure in that mode.
Masonry constructions tend to lack connections between walls and between walls and floors.

Most traditional typologies of historic construction have roof and floors which span only one way and in case of a seismic event the transfer of the horizontal loads from these horizontal structural elements into the walls is often critical.

In order to achieve unitary behaviour of the structure against earthquakes, these constructions must be upgraded so that they avoid local collapse and have integrating structural elements.

Because of the wall-to-roof connection is often considered as the principal critical element, several solutions have been proposed in the past. For example, improvement has been achieved by tie rods or ring beams. In old buildings, it is often possible to find wooden/metal ties and connectors inside masonry [1-2]. In the 70s and 80s of last century, wood beam floors have been replaced with RC ring beams (Fig. 1) [3-5] or with heavy two-ways RC roofs and floors. Stiff diaphragm-like floors are desirable structurally but require the dismantling of old two-ways spanning wooden floors.

During 1998 to 2011 a series of experiments were carried out at several laboratories in Italy, France, Greece, Portugal and Slovenia to assess a range of different reinforcing methods for historic masonry. A growing awareness amongst researchers and engineers of the importance of the mechanical properties of FRP (Fiber Reinforced Polymer) have produced interesting structural solutions for the rehabilitation of existing masonry constructions.

Recent earthquakes have shown the limitations of new and more conventional techniques. For example the installation of RC ring beams has proved to be ineffective or to increase the seismic vulnerability of the construction when inadequately designed, not well connected to the existing masonry, when used on a poor masonry or in combination with heavy RC floors.

It has been recognized by now that the greater stiffness of the RC ring beam compared to the stiffness of the masonry, produces a different response in these two materials during earthquakes and causes the load to be unevenly spread. In order to prevent out-of-plane collapse...
mechanisms, the action of vertical static loads may contribute to stabilize wall panels, but the
application of stiff RC ring beam may cause the re-distribution of vertical compressive stress-
es and some portions of masonry could results unloaded and, during earthquakes, be prone to
become unstable (Fig. 2) [6-8].

Nowadays, it’s usual to apply steel-profiles or masonry ring beams (Figs. 3-4). However,
when a building is faced with stone, ring beams are made thinner than the wall so that they are
screened and remain invisible on the façade. This kind of reinforcement is impossible when
the thickness of the wall is small and it introduces an element which is extraneous to the exist-
ing structure.

Recently researchers have focused their interest on the use of composite materials coupled
with non-polymeric matrixes [9-14], like lime-based mortars [15-18] with the aim at increasing
the durability [19-20]. The aim is to avoid the use of epoxy or other polymeric resins, due
to their critical long-term behavior. In this area, the new reinforced masonry ring beam pro-
posed in this paper is based on the aspiration to use existing materials (stones or bricks), with
a composite reinforcement embedded into the mortar bed joints. This retrofitting method re-
quires the demolition of a small portion of the walls. These are then reconstructed, using re-
covered stones and hydraulic mortar reinforced with composite materials. The use of compo-
site materials with non-organic matrices has been recently investigated [21-24].

It is known that the tensile strength of brick-masonry or perfectly-cut stonemasonry, character-
ized by horizontal mortar bed joints and staggered vertical joints, is governed by the friction
coefficient between blocks and mortar (Fig. 5), whereas for random rubble stone masonry this
relies only on the mortar tensile strength [25]. In the past, with the aim at increasing the ma-
sonry tensile strength, random rubble stonemasonry was often reinforced with wooden beams
embedded into the walls during the construction, as reported by Giuffrè [25]. The resistance of
these elements to sliding is due to the winding shape of the beams rather than the adhesion be-
Between wood and mortar, and for this reason the resistance is nondependent of the compression stress in the masonry.

The retrofitting method proposed in this paper is inspired by the technique mentioned above: the wooden beams are replaced with composite nets or grids (Fig. 6). The authors have already investigated in the past a similar solution, applied only to brick masonry, using fiberglass sheets or steel cords [26-27] embedded into a cementitious grout. In this paper this retrofitting method has been adapted to random rubble stone masonry, using also non-cement based mortars.

EXPERIMENTAL WORK

Description of specimens

Ten masonry beams were constructed and subjected to bending test, eight from stones and two from solid clay bricks. Specimens have a letter designation (P and L for stone and clay beams, respectively) followed by an identification number from 1 to 10. The tests were not designed to simulate exactly an earthquake dynamic loading but to generate a set of internal forces in the ring beam similar to those which would be induced by both the vertical and horizontal action of the seismic loading. Masonry ring beams were loaded statically to failure. These specimens were tested by applying the bending load perpendicularly and parallel to the mortar bend joints and reinforcement sheet/grid (Fig. 7) in order to simulate an in-plane vertical and out-of-plane horizontal seismic action, respectively.

Stonemasonry specimens were based upon a 5 m length and a cross-section of 0.5 x 0.5 m. Beams were formed by 3 layers of stones and 4 layers of composite reinforcement. The ready-to-use hydraulic CM lime-mortar was used for the construction of these panels (Tab. 1).

Brick masonry specimens had the dimensions of 0.4 x 0.33 x 5 m (width x height x length) and were constituted by 4 and 5 layers of bricks and composite reinforcement, respectively (Fig. 12).
Different composite materials were used as reinforcement. Two stonemasonry beams (P1 and P2) were strengthened with 4 glass fiber mesh sheets (5.0 x 0.5 m) and 8 twisted PBO (1,4-benzene dicarboxylic acid, polymer with 4,6-diamino-1, 3- benzenediol dihydrochloride) cords (Figs. 9-10a). For each layer of composite reinforcement, 1 mesh sheet and 2 PBO cords were used. PBO cords were passed through and interwoven in the glass-fibre mesh at a distance of approx. 5 cm from the lateral beam sides.

Two further specimens (P3 and P4) were reinforced using the same glass-fibre mesh sheet, but a different type of PBO cords. In this case ropes were constituted of an unidirectional PBO fiber core and a protection cover of PET (polyethylene terephthalate) (Fig. 10b). For these specimens the reinforcement arrangement is similar to the one previously used (4 glass sheets and 8 PBO cords).

Ring beams P5, P6, P7 and P8 were reinforced using 4 GFRP grids (grid dimension 0.5 x 5 m), made of AR (Alkali-Resistant) glass and of thermosetting epoxy vinyl ester resin. GFRP grids have different mesh size: rigid square meshes sized 33x33 mm were used in samples P5 and P6, whereas a mesh size of 66x66 mm has been applied for P7 and P8 samples (Fig. 11). The remaining two samples were made of brickwork masonry. These ring beams had the same length (5 m) but different cross-section (0.40 x 0.33 m). Brickwork beams were made of 4 courses of hollow bricks and 5 layers of composite reinforcement (Fig. 12). The grout used for the beam construction was the ready-to-use cement-based MI mortar (Tab. 1).

Each bending test is identified with a designation of three indices, the first indicates the masonry material (P and L, for stone- and brick-masonry, respectively) and the beam’s identification number (for example P4 indicates the stonemasonry ring beam No. 4), the second the type of strengthening (T = fiberglass sheet and PBO cord with twisted configuration, U = fiberglass mesh and PBO cord with unidirectional core, G33 = GFRP grid with a mesh size of 33 x 33 mm; G66 = GFRP grid with a mesh size of 66 x 66 mm) and the last one the direction of the
bending loads with regard to the mortar bed-joints (V or H for bending loads parallel or perpendicular to the mortar bed joints, respectively).

During the construction, the specimens were confined using wooden scaffoldings which were removed before the bending tests. Tests were conducted over a span of 4 m and the beam’s ends rested on two 0.5x0.5x0.25 m concrete blocks.

Characterization of materials

Mortars

Two types of mortar have been used to construct the masonry beams. The strength of the two mortars was determined by compression tests on cylindrical samples approx. 95 mm in diameter and 190 mm in height according to UNI EN 12390-3 [28]. During the construction of the ring-beams, two or three mortar specimens have been casted for each beam. Test results are reported in Table 1. The letter designations CM and MI were used to identify the mortars. Mortar CM is a lime-based mortar while MI is cement-based. Stone- and brick-masonry beams were assembled using CM and MI type, respectively. 23 compression tests were conducted on the mortars: the mean value of the compressive strength was 5.99 (Coefficient of Variation (CoV) 9.56%) and 10.61 MPa (CoV = 6.32%), for mortar CM and MI, respectively.

Stones and bricks

Compression tests using a 1000 kN Metrocom Engineering press were also conducted on 6 prismatic stone specimens (dimensions 50 x 50 x 70 mm). The specimens were made of a white-colored calcareous stones with a weight density of 2520 kg/m³, obtained from an old building seriously damaged during the 2009 L’Aquila earthquake. UNI EN 1926 [29] standard was adopted for test conditions. Compressive strength was 24.42 MPa and the coefficients of
variation for both weight density and strength were very limited (3.68 and 8.94%, respective-
ly).

L9 and L10 beams were assembled using hollow clay bricks (dimensions: 55 x 120 x 250
mm) with a 36% of void area. Compression tests on five bricks in the direction parallel to the
holes gave a strength of 46.33 MPa; while this was 11.53 MPa in the perpendicular to the hole
direction.

PBO cords

The cords used to reinforce the first four samples were made of PBO fibers, commercially
known as Zylon. This material was selected for its high Young’s modulus and tensile strength.
It also presents good creep resistance.

Two kinds of cord have been used as reinforcement: types T, with a twisted configuration, and
U, with a unidirectional fiber core. Table 2 summarizes the results obtained from tensile tests
carried out in accordance with ASTM D2256 [30] standard.

The tensile strengths of the two types of cord are similar whereas the Young’s modulus of U
cord is higher than the T one. Elongation at failure is 1.07% for U cord and 3.22% for T cord,
respectively.

GFRP sheet

The glass prepreg fiber sheet is made of a square mesh with nominal dimensions of 12x12
mm. In both directions there are 0.48 mm²/cm of fiberglass and the failure load is 70 kN/m.
The roving is an AR-glass (Alkali-Resistant). Table 3 gives the GFRP mechanical properties.

GFRP grids
The GFRP is made up of continuous fiber filaments embedded in thermosetting epoxy vinyl ester resin matrix. Two mesh sizes were used in the investigation: 66 x 66 and 33 x 33 mm. Specimens of multiple twisted warp and weft direction were extracted and mechanical characteristics were analyzed via tensile tests. Test results are shown in Table 4.

Test procedure

The beams were simply supported at the ends over a span of 4 m. Bending load was uniformly distributed along 2 m (Fig. 13). Linear Variable Differential Transducers (LVDTs) were placed at ¼, ½ and ¾ of beam’s span to measure vertical deflections. When cracks appeared just for the weight of the beam itself, the displacements were measured manually with a millimetric sensitivity of measurements.

Figure 14 shows the testing arrangement for a brickwork beam for both loading conditions (perpendicular and parallel to the mortar joints). In order to bend the beams in their horizontal plane and simulate the seismic action, some specimens were confined with wooden planks and webbings clamped with ratchets and then were rotated 90°. After this rotation the load was spread on the upper surface.

The bending load was applied to the beams using concrete blocks and/or cement bags. The possibility of the beam twisting has been taken into account by applying LVDTs on both sides of the beams. Small differences in LVTDs readings demonstrate that there was negligible twisting.

Test results and analysis

Because historic masonry has high compressive strength but has also very low tensile strength unless reinforced, it was not possible to construct unreinforced specimens to compare results. Taking the beam self-weight into consideration, this can easily generate a stress on the beam’s
tension side much higher than the masonry tensile strength. A masonry beam with the dimensions used in this investigation cannot stand alone over a span of 4 m, especially when it is made using a weak lime-based mortar.

When stressed with bending and shear loads, historic masonry behaviour is often dominated by the mechanical properties of the lime-based mortar and mainly by its tensile strength. This is in the range 0.002-0.05 MPa [31-32]. Also considering the upper bound value, for a 0.5x0.5x5 m beam tested in 3-point bending over a span of 4 m, this corresponds to a bending load of 10.4 kN (1020 kg) compared to an approximate self-weight of 2375 kg for a stonemasonry beam with these dimensions.

Table 5 shows the cross sectional areas of composite material used to reinforce both stone- and brickmasonry beams. Results of all tests are presented in Table 6. In this table maximum mid-span bending moments produced by both self-weight (M_w) and by external loads (M_{Load}) are listed. The bending moment produced by the self-weight has been obtained from the masonry weight density. This was 2140 and 1464 kg/m3 for stone- and brick-masonry beams, respectively.

With regard to the specimens reinforced using PBO cords and fiberglass sheets, the P1-T-V sample was bended perpendicularly to the bed joints plane and the load was applied in increasing steps of 0.1 kN, stacking cement bags. When the bending load reached the value of 16 kN, suddenly two vertical cracks formed in the mortar joints, 1.97 m from the nearest support, and the specimen leaned on the ground. The total mid-span bending moment was 22.47 kNm.

For P2-T-H, P3-U-V and P4-U-H specimens, initial cracking appeared from the beginning near beam mid-span as result of self-weight loads when the wooden scaffoldings were dismantled. However the beam did not collapse and it was possible to apply a further bending load. This initial cracking was caused by a progressive tensile failure of the fiberglass sheet,
whereas the PBO cords were not damaged (Fig. 15a). The variation in bending stiffness indicated a shift from an elastic behavior (in which all the materials act as one) to a plastic one (in which only the PBO cords provide the needed tensile strength to the beam). By increasing the bending load, the deflection of the beams increased considerably until failure; it is noteworthy to mention that the tensile failure of PBO cords was never reached (Fig. 15b). Debonding of the composite reinforcement (glass-fiber sheet and PBO cords) and mortar cracking were the main cause of the ring-beam’s collapse.

The different PBO cords used to reinforce P1 and P3 stonemasonry beams (both loaded parallel to the mortar bed joints with a similar reinforcement arrangement) did not significantly affect the beam bending capacity (Tab. 1). In terms of maximum mid-span bending moment the difference between the results is smaller than 6%. For P1-T-V sample twisted PBO cords were used while unidirectional ones were adopted for P3-U-V. The different type of the PBO cords did not affect the response: the rougher surface of the twisted cords used in P1-T-V test did not facilitate the adhesion with the inorganic matrix (the mortar).

With regard to the specimens reinforced using GFRP grids (P5, P6, P7, P8, P9 and P10), the overall capacity of the ring-beams was significantly higher compare the one measured for specimens reinforced with PBO cords and fiberglass sheets. The maximum mid-span bending moment increased to 48.35 kNm from 21.44 kNm measured for beams previously tested. The 6 simply-supported specimens that had failure initiating at mid-span had similar longitudinal and transverse strain gradients prior to failure. For a load of 21 kN, specimen P5-G33-V exhibited vertical cracks on both the lateral vertical surfaces. By increasing the load magnitude, the ring beam underwent a progressive degradation: the number of vertical cracks amplified and horizontal crack at the bed joints opened near the beam’s ends (Fig. 16). At beam’s mid-span, diagonal cracks also opened and composite partially separated from the mortar. The capacity of the beam was 56.8 kN.
Test P8-G66-H exhibits vertical cracks at mid-span for a load of 10.5 kN. The maximum load applied on this ring-beam was 43.1 kN. For this load level many vertical cracks opened at beam intrados (Fig. 17). However it was not possible to take the specimen to failure for the difficulty in the application of the external load.

With regard to test L9-G33-V, for a load level of 14.6 kN, several vertical cracks opened at mid-span. By increasing the magnitude of the vertical load, cracks spread toward beam extrados. Again, composite detached from its matrix (the mortar) at the joint between the first/second and second/third course of bricks.

For L10-G33-H test, the maximum external load applied was 38.3 kN. Test was stopped at this level of load without having reached the failure of the masonry beam.

For all bending tests, diagrams of vertical deflections vs. position have been plotted in such a way that it is possible to appreciate the deformed configuration of the masonry beam. Figure 18 shows this curves at different load levels for test L10-G33-H.

Figure 19 shows the moment-curvature response for all bending tests. In this graph, the calculation of the bending moments was made by considering the applied external load and neglecting the contribution of the self-weight. The curvature is given in terms of beam rotation at the end supports. Figure 19 only shows the last cycle of loading: tests No. L10-G33-H and P6-G66-H present a residual deformation produced during the previous loading phase.

Following the flexure test, an undamaged beam’s portion was tested in compression in order to find the masonry compressive strength and Young’s modulus. The load was generated by means of two 1000 kN hydraulic jacks, distributed to an area of 0.5 x 0.5 m using a 14 mm-thick steel plate. The eight of the masonry specimens was approx. 0.5 m. Three LVDTs were applied to measure the vertical displacements in compression. Failure occurred at the stone-mortar interface (typically shear and tensile modes) with limited or no damage on the stones. The behavior of the masonry material was highly dominated by the mortar’s mechanical prop-
erties. Results show an average stonemasonry compressive strength and a Young’s modulus of
3.63 and 4458 MPa, respectively. The stonemasonry Young’s modulus was calculated from
the slope of the load-deformation curve (using the compressive stress at 10% and 40% of the
masonry strength). Figure 20 shows the compressive load –deflection plot. Masonry response
can be approximated to an ideal elastic-plastic model with an ultimate deformation of 3.5‰.

COMPARISON BETWEEN ANALYTICAL PREDICTIONS AND TESTS RESULTS

A simplified method, based on the beam’s theory, was used to calculate the mid-span (maxi-
mum) bending moment at failure. The ultimate bending moment of each beam was calculated
on the basis of the following assumptions: linear strain diagram (plane cross section remaining
plane); perfect bond between masonry and reinforcing composite materials; negligible tensile
strength of masonry, reinforcing materials being non-reactive in compression (Fig. 21).

The stress-strain relationship of stone masonry is assumed to be similar to the bilinear curve
obtained from the compression test (Fig. 20); while a brickmasonry compressive strength and
Young’s modulus (equal to 11 MPa and 11.04 GPa, respectively) were evaluated using the
Italian building code [33].

Maximum mid-span moments were calculated using the analytical method and compared with
experimental values. Results are summarized for all the beam tests in Table 7. A good agree-
ment can be noted between the analytical calculation and experimental results in terms of
maximum bending moment. However for the first four tests (from P1 to P4), results signif-
icantly diverged: this is probably due to the fact that the beam’s self-weight caused the failure
of the fibreglass net and the bonding between the fibre and the mortar. This highly reduced the
beam bending capacity. By increasing the bending loads, only the PBO cords effectively acted
to resist, while analytical values have been calculated by considering both fibreglass net and
PBO cord contribution and this leaded to an overestimation of the beam capacity.
CONCLUSIONS

This research has demonstrated that it is possible to use composite materials coupled with inorganic cement-based matrices to construct masonry ring beams. This could be an interesting alternative to the use of traditional heavy and stiff reinforced concrete beams for restoration and upgrading interventions on historic masonry structures. The reinforcing method consists in the construction of a stone- or brick-masonry ring beam at the roof level using recycled or new stones/bricks. This is also of interest when fair-faced masonry is a particular requirement for a historic building. The reinforcement method allows to keep the masonry fair faced appearance and composite reinforcement is completely embedded into the horizontal mortar bed joints.

A series of flexure tests were experimentally examined to help develop estimates of their flexural capacity in both planes parallel and perpendicular to the mortar bed-joints. Two different materials (stones and bricks) and three types of composites (fiberglass sheets, GFRP grids and PBO cords) were studied and used as reinforcement. All specimens were tested in four point bend with simply-supported end conditions.

Mid-span maximum moments at failure were estimated using linear methods based on basic beam theory. Examining the calculated moment magnitudes, findings from the study indicated that:

1) Four tests have been carried out on stonemasonry beams reinforced using GFRP grids and PBO cords. Results demonstrated that the reinforced beams are able to resist high bending loads only after the initial cracking in the mortar.

2) During the bending tests, the PBO cords never failed in tension, but by increasing the bending load, beam’s vertical deflections and crack widths in the mortar bed-joints became very large. The bonding between the PBO cord and its matrix (the mortar) was weak and this par-
tially prejudiced the resisting action of the PBO cords. Only when the ring-beam’s vertical de-
 reflections reached high levels, the contribution of PBO cords was activated.

349 3) Reinforcement was more effective when GFRP grids were used (tests P5, P8, L9 and L10).

350 Results of the last four tests evidenced high values in terms of capacity loads and bonding
 characteristics between GFRP and mortar. For these tests, the analytical calculations of the
 maximum bending moment was in good agreement with experimental findings.

353 4) For beams reinforced with GFRP grids, the bending capacity was very high for all tests per-
354 formed in both planes parallel and perpendicular to the mortar bed-joints.

355
356 ACKNOWLEDGEMENTS

357 The authors express their gratitude to Tecnoclima Group s.r.l. for manufacturing facilities
 provided. This project was sponsored by the Italian Ministry of Education [ReLUIIS (2014)
 Linea di ricerca WP1 e WP2]. The authors acknowledge Fibre Net S.r.l. for providing the
 composite materials. The authors also thank Alessio Molinari, Mattia Procacci, Ilenia Rinchi
 and Alessio Di Mauro.

363 REFERENCES

364 [1] Spence R, Coburn A. Strengthening buildings of stone masonry to resist earthquakes. In

367 masonry buildings in Italy, Proceedings of New Zealand Conference for Earthquake Engi-
368 neering, March, 10-12, 2006.

370 ic masonry buildings in seismic areas. Proceeding of International congress, more than two
371 thousand years in the history of architecture, Bethlehem, Palestine, September 10-12, 2001.

Figure 1. Example of a RC ring-beam.

Figure 2. Example of an out-of-plane collapse due to poor connection between the RC ring beam and the underlying masonry.

Figure 3. Example of a brickwork steel-reinforced ring-beam.

Figure 4. Example of a steel-profile ring-beam.

Figure 5. The response of a wall with regular horizontal bed mortar joints to horizontal tensile loading [32].

Figure 6. Application of a GFRP grid/glass fiber sheet inside the horizontal mortar joint.

Figure 7. Ring beams were tested both parallel and perpendicular to the reinforcement.

Figure 8. Construction methods of a reinforced masonry ring beam: a-b) taking down the upper part of the wall; c) laying out the first mortar bed reinforced with the composite; d) laying the stones; e) spreading the second layer of reinforced mortar; f) repeating the phases d-e) until reaching the required height.

Figure 9. Construction of stone ring-beam strengthened with glass fiber sheets and PBO cords: a) axonometric view, b) beam’s cross section.

Figure 10. The cords used to reinforce the samples: a) twisted PBO cord, b) PBO cord with unidirectional core.

Figure 11. Construction of stone ring-beam strengthened with GFRP grids: a) lateral view, b) beam’s cross section.

Figure 12. Construction of brickwork ring-beam using a GFRP grid: a) axonometric view, b) beam’s cross section.

Figure 13. Arrangement of bending test of stonemasonry ring beams (dimensions in mm).

Figure 14. Arrangement of bending test of brickmasonry ring beams: a) bending load applied perpendicularly to the mortar bed joints, b) bending load applied parallel to the mortar bed joints (dimensions in mm).

Figure 15. (a) Crack pattern produced by gravity self-weight load. (b) Ring-beam No. P3-U-V after testing.
Figure 16. Ring beam No. P5-G33-V.

Figure 17. Test No. P8-G66-H.

Figure 18. Deflection vs. position for different load values (L10-G33-H).

Figure 19. Moment vs. curvature response.

Figure 20. Behavior of stone masonry obtained from compressive tests.

Figure 21. Stress and strain distribution on the stonemasonry cross-section.

Table 1. Results of compression tests on mortar samples.

Table 2. Mechanical properties of PBO cords.

Table 3. Mechanical properties of welded fiberglass mesh (from producer data sheet).

Table 4. Mechanical properties of GFRP grid.

Table 5. Results of bending tests.

Table 6. Beam capacity in terms of bending strength: experimental vs. numerical.
Figure 1. Example of a RC ring-beam.
Figure 2. Examples of an out-of-plane collapse due to poor connection between the RC ring beam and the underlying masonry.
Figure 3. Example of a brickwork steel-reinforced ring-beam.
Figure 4. Example of a steel-profile ring-beam.
Figure 5. The response of a wall with regular horizontal bed mortar joints to horizontal tensile loading [32].
Figure 6. Application of a GFRP grid/glass fiber sheet inside the horizontal mortar joint.
Figure 7. Ring beams were tested both parallel and perpendicular to the reinforcement.
Figure 8. Construction methods of a reinforced masonry ring beam: a-b) taking down the upper part of the wall; c) laying out the first mortar bed reinforced with the composite; d) laying the stones; e) spreading the second layer of reinforced mortar; f) repeating the phases d)-e) until reaching the required height.
Figure 9. Construction of stone ring-beam strengthened with glass fiber sheets and PBO cords: a) axonometric view, b) beam’s cross section.
Figure 10. The cords used to reinforce the samples: a) twisted PBO cord, b) PBO cord with unidirectional core.
Figure 11. Construction of stone ring-beam strengthened with GFRP grids: a) lateral view, b) beam’s cross section.
Figure 12. Construction of brickwork ring-beam using a GFRP grid: a) axonometric view, b) beam’s cross section.
Figure 13. Arrangement of bending test of stonemasonry ring beams (dimensions in mm).
Figure 14. Arrangement of bending test of brickmasonry ring beams: a) bending load applied perpendicularly to the mortar bed joints, b) bending load applied parallel to the mortar bed joints (dimensions in mm).
Figure 15. a) Crack pattern produced by self-weight; b) Ring-beam No. P3-U-V after testing.
Figure 16. Ring beam No. P5-G33-V: a) under loading, b) detail of the cracks.
Figure 17. Test No. P8-G66-H.
Figure 18. Deflection vs. position for different load values (L10-G33-H).
Figure 19. Moment vs. curvature response (for GFRP reinforced beams).
Figure 20. Behavior of stone masonry obtained from compressive tests.
Figure 21. Stress and strain distribution on the stonemasonry cross-section.
Table 1. Results of compression tests on mortar samples.

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Weight density [kN/m3]</th>
<th>Compressive strength Mean [MPa]</th>
<th>CoV [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>18</td>
<td>18.85</td>
<td>5.99</td>
</tr>
<tr>
<td>MI</td>
<td>6</td>
<td>20.16</td>
<td>10.61</td>
</tr>
</tbody>
</table>

CoV=Coefficient of Variation
Table 2. Mechanical properties of PBO cords.

<table>
<thead>
<tr>
<th></th>
<th>T cords</th>
<th>U cords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>twisted</td>
<td>unidirectional</td>
</tr>
<tr>
<td>Failure tensile load (mean)</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Nominal diameter</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Tensile strength (mean)</td>
<td>2923</td>
<td>2661</td>
</tr>
<tr>
<td>Young’s modulus (mean)</td>
<td>91</td>
<td>250</td>
</tr>
</tbody>
</table>
Table 3. Mechanical properties of welded fiberglass mesh (from producer Data Sheet).

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh size</td>
<td>[mm]</td>
<td>12x12</td>
</tr>
<tr>
<td>Mesh weight density</td>
<td>[kg/m²]</td>
<td>0.2</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>[MPa]</td>
<td>634</td>
</tr>
<tr>
<td>Cross section area</td>
<td>[mm²/cm]</td>
<td>0.48</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>[kN/m]</td>
<td>70</td>
</tr>
<tr>
<td>Young modulus</td>
<td>[GPa]</td>
<td>73</td>
</tr>
</tbody>
</table>
Table 4. Mechanical properties of GFRP grid.

<table>
<thead>
<tr>
<th></th>
<th>Warp</th>
<th>Weft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength [MPa]</td>
<td>634</td>
<td>558</td>
</tr>
<tr>
<td>Sample size [-]</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Cross section [mm2]</td>
<td>7.13</td>
<td>8.52</td>
</tr>
<tr>
<td>Elongation at failure [%]</td>
<td>1.60</td>
<td>1.56</td>
</tr>
<tr>
<td>Young modulus [GPa]</td>
<td>39.63</td>
<td>35.72</td>
</tr>
</tbody>
</table>
Table 5. Reinforcement’s cross sectional areas.

<table>
<thead>
<tr>
<th>Beam cross-section</th>
<th>Fiberglass mesh*</th>
<th>PBO cords</th>
<th>GFRP** grid 33x33mm</th>
<th>GFRP** grid 66x66 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[cm²]</td>
<td>[mm²]</td>
<td>[mm²]</td>
<td>[mm²]</td>
</tr>
<tr>
<td>Stonemasonry beam</td>
<td>2500</td>
<td>96</td>
<td>100.4</td>
<td>171.1</td>
</tr>
<tr>
<td>Brickmasonry beam</td>
<td>1320</td>
<td>-</td>
<td>-</td>
<td>213.9</td>
</tr>
</tbody>
</table>

* one direction only, ** only warp direction
Table 6. Results of bending tests.

<table>
<thead>
<tr>
<th>Bending moment*</th>
<th>Max Load</th>
<th>Bending moment** M_load</th>
<th>Total bending moment M_TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_w [kNm]</td>
<td>[kN]</td>
<td>[kNm]</td>
<td></td>
</tr>
<tr>
<td>P1-T-V</td>
<td>10.7</td>
<td>16.0</td>
<td>12.00</td>
</tr>
<tr>
<td>P2-T-H</td>
<td>10.7</td>
<td>9.0</td>
<td>6.75</td>
</tr>
<tr>
<td>P3-U-V</td>
<td>10.7</td>
<td>18.0</td>
<td>13.50</td>
</tr>
<tr>
<td>P4-U-H</td>
<td>10.7</td>
<td>16.0</td>
<td>12.00</td>
</tr>
<tr>
<td>P5-G33-V</td>
<td>10.7</td>
<td>56.8</td>
<td>39.75</td>
</tr>
<tr>
<td>P6-G33-H</td>
<td>10.7</td>
<td>56.6</td>
<td>39.62</td>
</tr>
<tr>
<td>P7-G66-V</td>
<td>10.7</td>
<td>62.9</td>
<td>44.03*</td>
</tr>
<tr>
<td>P8-G66-H</td>
<td>10.7</td>
<td>43.1</td>
<td>30.14*</td>
</tr>
<tr>
<td>L9-G33-V</td>
<td>3.86</td>
<td>51.2</td>
<td>35.87</td>
</tr>
<tr>
<td>L10-G33-H</td>
<td>3.86</td>
<td>38.3*</td>
<td>26.80*</td>
</tr>
</tbody>
</table>

* produced by the self-weight, ** produced by applied bending loads, * beam failure not reached.

CoV in ()
Table 7. Beam capacity in terms of bending moments: experimental (M_{TOT}) vs. analytical (M_{cal}).

<table>
<thead>
<tr>
<th></th>
<th>M_{cal} [kNm]</th>
<th>M_{TOT} [kNm]</th>
<th>$(M_{cal}-M_{TOT})/M_{TOT}$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1-T-V</td>
<td>41.49</td>
<td>22.70</td>
<td>+82.8</td>
</tr>
<tr>
<td>P2-T-H</td>
<td>36.27</td>
<td>17.45</td>
<td>+107.9</td>
</tr>
<tr>
<td>P3-U-V</td>
<td>43.57</td>
<td>24.20</td>
<td>+80.0</td>
</tr>
<tr>
<td>P4-U-H</td>
<td>32.42</td>
<td>22.70</td>
<td>+42.8</td>
</tr>
<tr>
<td>P5-G33-V</td>
<td>46.14</td>
<td>50.45</td>
<td>-8.5</td>
</tr>
<tr>
<td>P6-G33-H</td>
<td>38.75</td>
<td>50.32</td>
<td>-23.0</td>
</tr>
<tr>
<td>P7-G66-V</td>
<td>46.14</td>
<td>54.73</td>
<td>-15.7</td>
</tr>
<tr>
<td>P8-G66-H</td>
<td>38.75</td>
<td>40.84</td>
<td>-5.1</td>
</tr>
<tr>
<td>L9-G33-V</td>
<td>49.31</td>
<td>39.73</td>
<td>-24.1</td>
</tr>
<tr>
<td>L10-G33-H</td>
<td>43.36</td>
<td>30.66</td>
<td>+41.4</td>
</tr>
</tbody>
</table>

* beam failure not reached