Citation: Anandhan, Annadurai, Lei, Shulei, Levytsky, Roman, Pappa, Aglaia, Panagiotidis, Mihalis, Cerny, Ronald, Khalimonchuk, Oleh, Powers, Robert and Franco, Rodrigo (2017) Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions. Molecular Neurobiology, 54 (5). pp. 3825-3842. ISSN 0893-7648

Published by: Springer

URL: http://dx.doi.org/10.1007/s12035-016-9906-2

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/28080/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.)
Glucose metabolism and AMPK signaling regulate dopaminergic cell death induced by gene (α-synuclein)-environment (paraquat) interactions

Annadurai Anandhan 1,2, Shulei Lei 3, Roman Levytskyy 4, Aglaia Pappa 5, Mihalis I Panayiotidis 6, Ronald L. Cerny 3, Oleh, Khalimonchuk 1,4, Robert Powers 1,3, and Rodrigo Franco 1, 2

1 Redox Biology Center, 2 School of Veterinary Medicine and Biomedical Sciences, Departments of 3 Chemistry and 4 Biochemistry. University of Nebraska-Lincoln. Lincoln, NE, 68583. 5 Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece. 6 School of Life Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK.

Rodrigo Franco. Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences. 114 VBS 0905. University of Nebraska-Lincoln, Lincoln, NE. 68583. Tel: 402-472-8547. Fax: 402-472-9690. Email: rfrancocruz2@unl.edu

Robert Powers. Department of Chemistry. 722 Hamilton Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0304. Tel: 402-472-3039. Fax: (402) 472-9402 Email: rpowers3@unl.edu

Running title: Metabolic dysfunction, α-synuclein and paraquat toxicity

Keywords: adenosine monophosphate-activated kinase, glycolysis, autophagy, glucose transporters, pesticides, α-synuclein, metabolomics, Parkinson’s disease
ABSTRACT: While environmental exposures are not the single cause of Parkinson’s disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and the translocation of glucose transporter type 4 (GLUT4) and Na+-glucose transporters isoform 1 (SGLT1) proteins to the plasma membrane, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5) / unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose uptake and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism/transport and the pentose phosphate pathway (6-aminonicotinamide). These results demonstrate that glucose metabolism and AMPK regulate dopaminergic cell death induced by gene (α-synuclein)-environment (PQ) interactions.
INTRODUCTION

Aging, genetic alterations and environmental factors contribute to the etiology of Parkinson’s disease (PD).\(^1\)\(^,\)\(^2\) Mutations in genes such as α-synuclein (SNCA) account for only 10% of PD occurrences.\(^3\) SNCA missense mutations (A30P, A53T, and E46K) cause autosomal dominant PD.\(^4\) Genomic multiplications are also linked to familial PD, where the age of onset and severity of the disease correlate with SNCA copy number.\(^5\) SNCA duplications have been reported in sporadic PD patients as well.\(^6\)\^-\(^8\) Importantly, whether SNCA alterations are found or not, the presence of fibrillar cytoplasmic misfolded aggregates and intermediates in multiple brain regions is considered the pathological hallmark of PD.\(^5\) Exposure to environmental toxicants including pesticides (e.g. paraquat [PQ] and rotenone), are recognized as important PD risk factors.\(^9\) The redox-cycling pesticide PQ is used to study the susceptibility of dopaminergic cells to increase reactive oxygen species (ROS) formation.\(^10\)\(^,\)\(^11\) Importantly, the toxicity of PQ in dopaminergic cells is modulated by PD-related genes. For example, in culture cells, PQ-induced cell death is enhanced by the (over)expression of wild type (WT) or the Ala53Thr (A53T) mutant α-synuclein.\(^12\) Transgenic mice overexpressing the A53T mutant showed an increased sensitivity to the combination of PQ and the fungicide maneb,\(^13\) and to neonatal exposure to iron and PQ.\(^14\) However, the mechanisms by which PQ and α-synuclein interact to induce dopaminergic cell loss are still unclear.

Energy failure and oxidative stress associated with mitochondrial dysfunction are hallmarks of PD. A disruption of the electron transport chain (ETC), tricarboxylic acid (TCA or Krebs) cycle and oxidative phosphorylation (OXPHOS) has been found in PD brains.\(^15\)\(^,\)\(^16\) However, while energy dysfunction and oxidative stress are recognized as major contributors to the pathogenesis of PD,\(^17\) the role of alterations in central carbon metabolism is poorly understood. Glucose is the obligatory energy substrate of the adult brain. A decrease in glucose metabolism and abnormally elevated lactate levels have been reported in PD patients,\(^18\)\^-\(^20\) while an increase
in lactate levels has also been reported to promote α-synuclein accumulation.21 Glucose metabolism in neurons is primarily directed to the generation of reducing equivalents via the pentose phosphate pathway (PPP) to support antioxidant defenses.22 In addition, down-regulation of PPP enzymes and failure to increase the antioxidant reserve are early events in the pathogenesis of sporadic PD.23 Alterations in cellular energy are tightly monitored by the adenosine monophosphate-activated protein kinase (AMPK), a master regulator of metabolism.24 Contradicting results have been reported regarding the role of AMPK in dopaminergic cell death.21, 25-29 AMPK regulates a myriad of processes involved in the cellular response to energy deficiency. Thus, understanding the role of AMPK signaling in dopaminergic cell death requires a more in-depth characterization of the processes regulated downstream of its activation. We have recently demonstrated that alterations in central carbon metabolism (glucose) and upregulation of the PPP contribute to the toxicity of PQ.30 These findings have prompted our interest in determining the role of central carbon metabolism in gene-environment interactions involved in dopaminergic cell death.
MATERIALS AND METHODS

Cell Culture and reagents – The immortalized (SV40) rat dopaminergic mesencephalic cell line N27 was kindly provided by Dr. Michele L. Block (Indiana University School of Medicine). N27 cells were grown in Roswell Park Memorial Institute (RPMI) medium 1640 (Hyclone) supplemented with 10% fetal bovine serum (FBS, Atlanta Biologicals), penicillin (200 U/ml) - streptomycin (200 µg/ml) (Hyclone), 2 mM L-glutamine (Hyclone) and maintained at 37°C in 5% CO2 humidified atmosphere. N27 cells express key features of dopaminergic neurons such as neuron-specific enolase, nestin, tyrosine hydroxylase, dopamine transporter (DAT) and contain homovanillic acid and dopamine.31 Wild type (WT), α1 or α2 knockout (KO, -/-) or double KO AMPK (DKO-AMPK-/-), and ULK1 KO (ULK1-/-) mouse embryonic fibroblasts (MEFs) were kindly provided by Dr. Mondira Kundu (St. Jude Children's Research Hospital) and Dr. Benoit Viollet (Institut Cochin INSERM).32 MEFs were cultured in Dulbecco's Modified Eagle Medium:

Nutrient Mixture F-12 (DMEM/F-12, Hyclone) media supplemented with 10% FBS, penicillin (200 units/ml) - streptomycin (200 µg/ml), 2 mM L-glutamine, and 200 µM β-mercaptoethanol (Thermo Fisher Scientific). Phase contrast images of cells were taken using a Zeiss 20x / 0.3 LD-A-Plan Ph1 objective and a Moticam 580 (5.0 MP) camera. Chloroquine and 1-methyl-4-phenylpyridinium iodide (MPP+) were obtained from SIGMA-Aldrich. PQ, 2-deoxy-d-glucose (2-DG), ascorbic acid (AA) were from Acros Organics. 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and torin 1 were from Cayman Chemical. N-[[3-(aminomethyl)phenyl[methyl]-ethanimidamide, dihydrochloride (1400W) was from AdipoGen. STF-31 (4-[[[4-(1,1-Dimethylethyl)phenyl]sulfonyl]amino]methyl]-N-3-pyridinylbenzamide) was from Tocris Bioscience. Rapamycin was purchased from LC laboratories. 6-aminonicotinamide (6-AN) was obtained from Alfa Aesar. Compound C (CC) was obtained from Enzo Life Sciences, and phlorizin from Selleckchem. Torin 1, rapamycin, STF-31, phlorizin, CC and
1400W were dissolved in DMSO. Control conditions included the appropriate vehicle, which never exceed >0.01% (v/v).

Recombinant Adenoviral vectors - Replication-deficient recombinant adenoviruses (Ad5CMV) encoding wild type (WT) or mutant A53T α-synuclein were kindly provided by Dr. Jean-Christophe Rochet (Purdue University). The adenovirus encoding dominant-negative K130R mutant ATG5 was generously provided by Dr Gökhan S. Hotamisligil (Harvard School of Public Health, Boston, MA). Ad5CMV-MnSOD, Ad5CMV-CuZnSOD, Ad5CMV-catalase and Ad5CMV-mito-catalase (mitochondria-targeted catalase, with a MnSOD mitochondrial signal peptide) were provided by Dr. Matthew C. Zimmerman (University of Nebraska Medical Center). The adenovirus encoding human dominant-negative HA-tagged AMPKα1 with a D159A mutation in the ATP binding domain was purchased from Eton Bioscience. The AMPKα1 mutant lacks the capacity to bind ATP and competes with WT AMPKα1 for binding with the β and γ subunits. Adenovirus containing only the CMV promoter (Ad-Empty) or encoding green fluorescent protein (Ad-GFP) were used as controls. Adenoviruses were amplified and titrated as described previously. Cells were infected with adenoviral vectors at the indicated multiplicity of infection (MOI) for 24 h, washed and subsequently treated under the specified experimental conditions.

Cell death determination (loss of plasma membrane integrity) and oxidative stress - Loss of cell viability was determined using flow cytometry by measuring propidium iodide uptake (PI, 1 μg/ml) (Life Technologies) as a marker for plasma membrane integrity loss. Oxidative stress was simultaneously evaluated by determination of changes in intracellular glutathione (GSH) levels using monochlorobimane (mBCl, 10 μM) (Molecular Probes). Flow cytometry was performed as described previously.
Protein extraction, electrophoresis and western immunoblot – SDS-PAGE electrophoresis and western-immunoblotting (WB) were performed as explained before. Blots were blocked and incubated with the corresponding antibodies as recommended by the manufacturers: phosphorylated (p)-AMPK1α (Thr172, #2535), p-ACC (Ser79, #11818), AMPKα2 (#2757), α-synuclein (carboxy-terminal sequence, #2642), p-mTOR (Ser2448, #5536) and p-ULK1 (Ser55, #5869; Ser317, #6887; Ser 757, #6888) antibodies were from Cell Signaling; AMPKα1 (Ab32047), mTOR (Ab32028) and ULK1 (Ab65050) were obtained from Abcam; and LC3B (L7543) was from SIGMA-Aldrich. When indicated, blots were probed with β-actin (A2228, SIGMA-Aldrich) to verify equal protein loading. Relative densitometry analysis of WBs was done using the ImageJ Program (National Institutes of Health, http://rsb.info.nih.gov/ij).

Immunostaining of glucose transporters - Cells were harvested and washed with phosphate-buffered saline (PBS), then fixed in 4% paraformaldehyde (PFA) at room temperature (RT) in the dark. Cells were centrifuged and washed with staining buffer (PBS, 1% FBS, 0.1% (w/v) NaN₃, pH 7.4). Cells were stained for 1 h with antibodies recognizing the N-terminal extracellular domain of the glucose transporter type 4 (GLUT4) (sc1606, Santa Cruz), or antibodies that recognize amino acids 402-420 in the cytoplasmic region of SGLT1 (07-1417 EMD Millipore). Samples were washed and subsequently stained with secondary anti-goat Alexa fluor 647 or anti-rabbit Alexa fluor 488 (Molecular Probes) antibodies for GLUT4 or SGLT-1 detection, respectively. Following incubation, cells were washed with the staining buffer and analyzed with a 488 nm laser and the emission was detected through a 530/30 emission filter in a FACSort (BD Biosciences / Cytek-DxP-10 upgrade) flow cytometer.

Glucose transport – After treatment, cells were incubated with 50 µM 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG, Cayman Chemical), a fluorescent analogue
of 2-DG, for 1 h prior to analysis by flow cytometry. Subsequently, cells were harvested, washed, and 2-NBDG fluorescence was analyzed by flow cytometry (488 nm ex, 530/30 em).

In vivo mouse model of PQ toxicity - C57BL/6 mice (8–10 weeks old) (Jackson Labs) were chronically treated with PQ as explained before. Animals were analyzed 1 week after the last injection. Mice were decapitated and the brain regions were removed for WB analysis or metabolomics. All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of the University of Nebraska-Lincoln (Project 1025) following NIH guidelines.

Metabolic Phenotyping - Oxygen consumption (OCR, pmol/min) or extracellular acidification rates (ECAR, mpH/min) were determined using XF24 Analyzer (Seahorse Biosciences). After treatment, cells were incubated for 1 h in HCO₃⁻/4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) free medium prior to OCR and ECAR measurements. Measurements were normalized to total protein concentration. ECAR was used as an indirect measurement of glycolysis. Changes in the pH of media sensitive to glycolysis inhibitors (2-DG, 5 mM) are considered to be predominately originated from the excretion of lactatic acid (lactate and H⁺) after its conversion from pyruvate. The glycolytic reserve capacity was evaluated by changes in ECAR in the presence of oligomycin (1 µM), which inhibits ATP synthase in the ETC. OCR was used as an indicator of mitochondrial function.

Metabolomics data collection and analysis - After treatment, cells were washed to remove the remaining media and metabolites were extracted as previously described. Mouse brain tissues were extracted and immediately frozen in liquid N₂. Tissues were homogenized using Lysing Matrix D and Fastprep-24 (MP Biomedicals) in 50% methanol / ddH₂O followed by centrifugation. Metabolites were re-extracted once by the same solvent, combined and normalized to net wet weight. The combined extracts were split for one-dimensional (1D) ¹H
nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. For 2D $^{1}H-^{13}C$ Heteronuclear Single-Quantum Correlation (HSQC) experiment, ^{12}C-glucose in the medium was replaced with ^{13}C-glucose (3.5 g/L) and 500 µM TMSP was used for chemical shift referencing and normalization. The 1D ^{1}H and 2D $^{1}H-^{13}C$ HSQC spectra were collected on a Bruker Avance III-HD700-MHz spectrometer equipped with a quadruple resonance QCI-P cryoprobe (^{1}H, ^{13}C, ^{15}N, ^{31}P) and a SampleJet automated sample changer, and analyzed as previously described.30,44

Metabolome extracts for MS analysis were diluted with 50% methanol / ddH$_2$O for positive mode detection or 50% NH$_4$ acetate / ddH$_2$O for negative mode detection. 20 µM or 50 µM reserpine was used as an internal standard. Direct-infusion electrospray ionization MS (DI-ESI-MS) in both positive and negative mode was performed on a Synapt G2 HDMS quadrupole time-of-flight instrument (Waters Corp., Milford, MA). The detailed operation conditions and spectra processing parameters have been described previously.30

As described previously, metabolites were identified from NMR and MS spectral data by comparing experimental ^{1}H and ^{13}C chemical shifts, and m/z values to reference values in several online metabolomics databases.30 Error tolerances of 0.08 ppm and 0.25 ppm were used for ^{1}H and ^{13}C chemical shifts, respectively. A 20 ppm error tolerance was used for m/z values. The intensities of all the NMR peaks assigned to a metabolite were used to report an average peak intensity (concentration) change between treatment classes.

Pathway analysis was performed using the web-based tool MetPA (Metabolomics Pathway Analysis) (http://www.metaboanalyst.ca). A list of significantly changed metabolites after PQ treatment was generated from analysis of an OPLS-DA model. The metabolite HMDB IDs were submitted to the MetPA website.
Statistical analyses - Experimental replicas were independent and performed on separate days. Collected data were analyzed by using one-way or two-way ANOVA, and the appropriate post-hoc test using the SIGMA-PLOT/STAT package. When ANOVA assumptions were not met (normality [Shapiro–Wilk test] or equal variance) Kruskal-Wallis one-way ANOVA on Ranks or data transformation (two-way ANOVA) were performed on the collected data. Data were plotted as mean ± standard error (SE) using the same package for statistical analysis. Flow cytometry plots and immunoblots presented show the results of representative experiments. Multivariate analysis of the metabolomics datasets was obtained using a multiblock (MB) structure and PCA and PLS modeling functions in our MVAPACK software suite (http://bionmr.unl.edu/mvapack.php).45 The NMR spectra were preprocessed in MVAPACK as previously described.30,46 Mahalanobis distance derived p-values, 95% confidence ellipses, and dendrograms from MB-PLS-DA models were generated using our PCA/Partial Least Squares-Discriminant Analysis (PLS-DA) utilities (http://bionmr.unl.edu/pca-utils.php) implemented in MVAPACK.47,48 The MB-PLS-DA models were validated using CV-ANOVA 49 seven-fold Monte Carlo single cross-validation.50 P-values < 0.05 were considered as a statistically significant difference between comparisons.
RESULTS

Glucose metabolism regulates PQ-induced dopaminergic cell death independent from autophagy

The rat dopaminergic mesencephalic cell line N27 was exposed to PQ in the presence or absence of glucose. Glucose deprivation significantly reduced PQ-induced cell death (Figure 1a-b). Cells grown on medium supplemented with galactose and glutamine are more sensitive to mitochondrial toxins or defects, as galactose slows glucose metabolism, forcing cells to rely on glutaminolysis and OXPHOS phosphorylation for ATP production. Figure 1c demonstrates that N27 cells cultured in glucose deficient or galactose supplemented medium are more sensitive to the mitochondrial complex I inhibitor MPP+. In contrast, galactose exerted a protective effect against PQ toxicity (Figure 1b). An inhibition of glycolysis and a reduction in the glycolytic capacity of N27 cells, determined by changes in the extracellular medium acidification (ECAR), was observed when cells were grown in glucose free or galactose supplemented media (Figure 1d-e), demonstrating that the protective effects of glucose deprivation and galactose supplementation are related to inhibition of glucose metabolism. Co-treatment of N27 cells with the hexokinase inhibitor 2-DG also inhibited PQ-induced cell death (Figure 1f). These results demonstrate that glucose metabolism contributes to PQ-induced cell death.

Inhibition of glucose metabolism induces autophagy. Thus, a role for autophagy in the protective effects of glucose deprivation against PQ toxicity is expected. Autophagy flux was evaluated by determining the levels of the autophagosomal marker LC3-II in the presence of CQ, an inhibitor of the acid-dependent breakdown of autolysosome cargo. Separately, glucose deprivation and PQ increased autophagy flux, but together a decrease in the basal levels of LC3-I or -II was observed (Supplementary Figure 1a). ATG5 is essential for autophagosome
formation.53 We and others have demonstrated that overexpression of a dominant negative form (dn) of ATG5 is an efficient approach to inhibit autophagy.34 dnATG5 inhibited autophagy (\textit{data not shown}) and increased the sensitivity of cells to PQ, but only induced a slight decrease in the protective effect of glucose deprivation (\textit{Supplementary Figure 1b}).

The AMPK / mammalian target of rapamycin (mTOR) / unc-51 like autophagy activating kinase 1 (ULK1 or ATG1) signaling axis regulates autophagy induced by glucose deprivation. mTOR complex 1 (mTORC1) activation inhibits lysosome biogenesis and autophagy.54 Phosphorylation of mTOR (pmTOR) at Ser 2448 correlates with mTOR activity.55 We observed that PQ induced a dose-dependent increase in pmTOR (\textit{Supplementary Figure 1c}). To further determine the effect of pharmacological modulation of autophagy on PQ-induced cell death, we used the mTORC inhibitors rapamycin (mTORC1) and torin 1 (mTORC1 and mTORC2). While rapamycin decreased pmTOR (\textit{Supplementary Figure 1d}) and increased autophagy flux (CQ data in \textit{Supplementary Figure 1e}), it did not counteract the inhibition of autophagy found in PQ treated cells (CQ data in \textit{Supplementary Figure 1e}). Furthermore, neither rapamycin nor torin 1 had an effect on PQ-induced cell death (\textit{Supplementary Figure 1f-g}).

ULK1 is essential for autophagy induction.56 Upon glucose deprivation, AMPK promotes autophagy by activating ULK1 through the phosphorylation of Ser 317, Ser 77732 or Ser 555,57 while under nutrient adequacy mTOR inhibits autophagy by phosphorylation of ULK1 at Ser 757 disrupting its interaction with AMPK.32 PQ was shown to induce a dose-dependent increase in ULK1 Ser 555 and a decrease in Ser 757 phosphorylation, while low PQ doses only induced an increase in pULK1 Ser317 (\textit{Supplementary Figure 1c}). ULK1 knock-out (KO) MEFs were observed to be more sensitive to PQ (\textit{Supplementary Figure 1h}). These results demonstrate that while ATG5/ULK1-dependent autophagy exerts a protective effect against PQ-induced cell death, pharmacological inhibition of mTOR signaling has no effect on cell death progression.
Our findings also demonstrate that the protective effects of reduced glucose metabolism against PQ toxicity are largely independent from the induction of autophagy.

PQ induces an increase in glucose uptake and the translocation of glucose transporters to the plasma membrane

Glucose uptake was evaluated with the fluorescent analog 2-NBDG. PQ treatment was observed to induce an increase in 2-NBDG uptake (Figure 2a). Glucose is transported across the plasma membrane by a saturable transport system involving the Na⁺-independent glucose transporters (GLUT), and the Na⁺-dependent glucose transporters (SGLT). We observed that treatment with PQ induced an increase in the translocation of SGLT1 and GLUT4 transporters to the plasma membrane (Figure 2b-c). Interestingly, inhibition of GLUT-like glucose transport with STF-31 significantly reduced PQ-induced cell death (Figure 2d), while phlorizin, an inhibitor of SGLT1, had only a slight effect on cell death progression (Figure 2e). Ascorbic acid (AA) is structurally similar to glucose and acts as a competitive inhibitor of glucose transport. AA also decreased the toxicity of PQ (Figure 2f). These results demonstrate that glucose transport stimulated by PQ contributes to dopaminergic cell death.

Selective metabolic dysfunction and AMPK activation in the midbrain and striatum of mouse chronically treated with PQ

Using an integrated (NMR/MS) metabolomics approach we evaluated PQ-induced metabolic dysfunction in C57Bl/6 mice chronically treated with PQ. Changes in the metabolome were found to be primarily restricted to the midbrain and striatum, but not the cortex. The 3D MB-PCA score plots in Figure 3a compare the metabolic profiles from different brain regions of control and PQ treated mice. The corresponding p values calculated from the Mahalanobis distances between the classes is evidence that a statistically significant metabolic change was only
observed for the striatum and midbrain regions after PQ treatment. The metabolites contributing
to the class separation in the midbrain and striatum regions were identified from the OPLS-DA
back-scaled loadings (Supplementary Figure 2) and the observed percent fold-changes are
plotted in Figure 3b. The fold-changes were calculated by comparing the peak intensities in the
original 1D ¹H spectral data between controls and PQ treatments. Metabolites within glycolysis
(evidenced by changes in lactate and alanine) and the TCA cycle (glutamate) were significantly
decreased in mice treated with PQ. PQ also induced an accumulation of citrate, which is
ascribed to its inactivating effect on aconitase (Figure 3b).³⁰,⁵⁹ The diagram in Figure 3c
summarizes the metabolites within glucose metabolism significantly changed after PQ treatment
(e.g., glycolysis and TCA cycle), corroborating our previous in vitro findings that PQ impairs
glycolysis (observed as a decrease in lactate and alanine content),³⁰ while increasing the levels
of citrate due to the inactivation of aconitase.⁵⁹ Alterations in cellular metabolism are sensed by
AMPK.²⁴ Interestingly, an increase in pAMPK and its substrate pACC (acetyl-CoA carboxylase)
levels were also observed in the midbrain and striatum regions, but not in the cerebellum or
cortex of PQ treated mice (Figure 4a). These results corroborate our previous in vitro studies³⁰
that demonstrated PQ alters glucose metabolism, and further reveal that the midbrain and
striatum metabolome are more sensitive to a subchronic PQ treatment.

AMPK signaling protects against dopaminergic cell death induced by PQ.

PQ was observed to induce a dose-dependent increase in pAMPK in N27 cells (Figure 4b).
Interestingly, we only observed an increase in pACC at low PQ concentrations (≤ 100 µM),
suggesting that while PQ increases pAMPK, AMPK activity is impaired at toxic concentrations of
PQ (≥100µM) (Figure 4b). Overexpression of a dominant-negative form of AMPKα1 decreased
pACC induced by PQ treatment (Figure 4c,) and stimulated PQ-induced cell death (Figure 4d).
Contradictory results were observed when using pharmacological modulators of AMPK activity.
AICAR, an AMP analog capable of enhancing AMPK activity, augmented PQ toxicity in N27 cells (Supplementary Figures 3a). CC, a pyrazolopyrimidine derivative that inhibits AMPK, had no effect on cell death progression (Supplementary Figure 3b). Nevertheless, recent studies have questioned the specificity of AICAR and CC, in which a wide variety of non-specific effects have been reported. Thus, our results obtained using dnAMPK overexpression seem more reliable and consistent with expectations from AMPK inactivation.

Glucose deprivation and galactose supplementation inhibited glucose metabolism and PQ-induced cell death (Figure 1). Interestingly, the increased sensitivity to PQ toxicity induced by dnAMPK was associated with impaired glycolysis and glycolytic capacity (Figure 4e). However, overexpression of dnAMPK also inhibited OCR/ECAR ratios (Figure 4f) demonstrating that inhibition of AMPK signaling impairs both glycolysis and mitochondrial respiration. Furthermore, the decrease in OCR/ECAR ratio induced by PQ was exacerbated by inhibition of AMPK signaling (Figure 4f). Together, these observations demonstrate that the increase in PQ toxicity induced by inhibition of AMPK signaling is linked to metabolic dysfunction.

We further evaluated if the protective effects of glucose deprivation against PQ toxicity are linked to AMPK signaling. We observed that glucose deprivation or its substitution with galactose had no major effects on pAMPK in the presence or absence of PQ (Figure 4g and Supplementary Figure 3c), which may be related to the length of exposure to glucose deprivation that is reported to increase pAMPK within a time frame <8-12 h. However, both glucose and galactose increased pACC suggesting an overall increase in AMPK activity regardless of an increase of pAMPK levels (Figure 4g and Supplementary Figure 3c). Overexpression of dnAMPK significantly reduced the protective effects of glucose deprivation against PQ-induced cell death (Figure 4h). We also observed that N27 cells express very low levels of the catalytic α2 subunit, which are increased upon PQ exposure (Supplementary
Compensatory effects for AMPK subunits α1 and 2 have been previously reported.α1, but not α2, KO (−/−) MEFs had an increased susceptibility to PQ toxicity (Supplementary Figure 3e-f). However, double KO (DKO) of α1 and α2 additively enhanced PQ-induced cell death (Supplementary Figure 3e and g). In DKO cells, the protective effect of glucose deprivation against PQ toxicity was completely abolished (Supplementary Figure 3h). These results demonstrate that the protective effects of glucose-free conditions against PQ are linked to the activation of AMPK.

PQ-induced AMPK activation is mediated by the inducible nitric oxide synthase

Oxidative stress has been proposed to induce the activation of AMPK by either changes in the nucleotide pool or by direct oxidation of AMPK.63,64 Overexpression of catalase, CuZn superoxide dismutase (SOD), MnSOD or mitochondria-targeted catalase (mito-catalase) did not prevent the increase in pAMPK induced by PQ (Figure 5a-b and Supplementary Figure 4a-c). PQ induced toxicity has also been suggested to involve either the generation of nitric oxide (NO*) or the uncoupling of NO* synthase (NOS) to generate O2•-.65,66 PQ-induced AMPK activation was reduced by inhibition of the inducible NOS (iNOS) with 1400W (Figure 5c). No major additive protective effects where observed when combining both glucose deprivation and 1400W (Figure 5d). These results suggest that PQ-induced AMPK signaling is mediated by iNOS.

Overexpression of α-synuclein potentiates metabolic dysfunction, AMPK activation and dopaminergic cell death induced by PQ

Overexpression of WT or A53T α-synuclein for 72 h had no effect on high molecular weight aggregate formation (Figure 6a) or cell viability (Figure 6b and Supplementary Figure 5a-b). However, when cells overexpressing WT or A53T α-synuclein where exposed to PQ, a
synergistic toxicity was observed (Figure 6b and Supplementary Figure 5a-b). Importantly, the enhancement in PQ toxicity was selective for α-synuclein since it was not mimicked by overexpression of GFP (Supplementary Figure 5c).

We next determined the alterations in central carbon metabolism induced by PQ and the associated effect of α-synuclein overexpression. We first looked at changes in the overall metabolome of cells using an integrated NMR/MS metabolomics approach. 3D MB-PCA plots show that exposure of cells to non-toxic PQ concentrations (25 µM), or overexpression of α-synuclein, induced a significant change in the metabolome of N27 cells (Figure 6c-d and Supplementary Figure 5d). We observed no significant difference between the metabolome of cells overexpressing either WT or A53T α-synuclein (Supplementary Figure 5d). Overexpression of either WT or A53T α-synuclein and exposure of cells to PQ elicited the most significant change in the metabolome as evidenced by the large separation between control + PQ, and WT or A53T α-synuclein + PQ experimental groups. This is corroborated by the p values listed in the associated dendrograms and matrix table generated from the MB-PCA scores plot (Figure 6d and Supplementary Figure 5d). Again, no significant difference was observed when comparing the metabolomes of cells overexpressing WT or A53T α-synuclein after treatment with PQ (Supplementary Figure 5d). To identify the exact alterations in glucose metabolism induced by PQ and α-synuclein, we performed a metabolomics analysis using 2D 1H--13C HSQC NMR with 13C-glucose as a substrate. Overexpression of α-synuclein and exposure of cells to non-toxic PQ concentrations (25 µM) enhanced glucose accumulation suggesting an impairment in glucose flux (Figure 6e). Similar to inhibition of AMPK signaling (Figure 4e-f), overexpression of α-synuclein impaired both glycolysis and reduced the glycolytic capacity of N27 cells as well as mitochondrial respiration (OCR/ECAR ratio) (Figure 6f-g). These results suggest that α-synuclein impairs glucose metabolism. α-synuclein overexpression
also stimulated the activation of AMPK induced by PQ (Figure 6h and Supplementary Figure 5e). These results reveal that the stimulation of PQ toxicity induced by inhibition of AMPK signaling or overexpression of \(\alpha \)-synuclein is mediated by metabolic dysfunction (i.e. an impairment of both glycolysis and mitochondrial respiration required to meet energy demands).

Finally, we determined whether glucose metabolism contributes to the synergistic toxicity between PQ and \(\alpha \)-synuclein overexpression. Accordingly, glucose deprivation (Figure 7a and Supplementary Figure 5f), inhibition of glucose transport with STF-31 (Figure 7b), and inhibition of the PPP using 6-AN (Figure 7c and Supplementary Figure 5g) abolished the stimulatory effect of either WT or A53T \(\alpha \)-synuclein overexpression on PQ toxicity. Similarly, this toxic gene-environment interaction was significantly reduced by AA (Figure 7d and Supplementary Figure 5h). These results demonstrate that the toxic synergism of PQ and \(\alpha \)-synuclein overexpression (gene-environment interaction) involves alterations in glucose metabolism and signaling.

It is important to note that no significant difference was observed between the effect of overexpressing WT and A53T \(\alpha \)-synuclein on PQ-induced metabolic changes or cell death (Figures 6b and Supplementary Figure 5d), which suggests that the synergistic toxicity induced by A53T overexpression is only related to the overexpression of \(\alpha \)-synuclein, but not to its mutation. Interestingly, protein sequence alignment of rat (N27 cells are rat-derived cells), mouse and human \(\alpha \)-synuclein showed that Thr instead of Ala is already in place at position 53 in both mouse and rat \(\alpha \)-synuclein (Supplementary Figure 6), which might explain the lack of difference between the synergistic toxicity induced by WT and the A53T mutant.

Overall, our results demonstrate that glucose metabolism and AMPK regulate dopaminergic cell death induced by PQ and by its toxic interaction with \(\alpha \)-synuclein. Importantly \(\alpha \)-synuclein and
inhibition of AMPK signaling potentiate PQ toxicity by impairing energy metabolism (glycolysis and mitochondrial respiration).
DISCUSSION

In this work, we demonstrate that glucose metabolism and AMPK signaling regulate PQ toxicity and the synergism between PQ and α-synuclein. More specifically, we have demonstrated that PQ-induced dopaminergic cell death is directly linked to glucose metabolism and that the metabolic master regulator AMPK exerts a protective effect against PQ toxicity. Interestingly, PQ exposure induced changes in the cellular metabolome and an increased activation of AMPK, which were restricted to the midbrain and striatum regions of mice chronically treated with PQ. Furthermore, we also reported that while autophagy protects against PQ, the protective effect of glucose deprivation is largely independent of autophagy. Finally, we also demonstrated that the toxic gene-environment interaction involving α-synuclein and PQ is linked to metabolic dysfunction and is also regulated by glucose metabolism (Figure 8). These findings reveal for the first time the mechanisms by which central carbon metabolism and AMPK signaling regulate gene-environment interactions involved in PD.

We previously demonstrated that PQ hijacks the PPP to use NADPH as an electron donor for its redox cycling and ROS generation (Figure 8a). In this work, we now demonstrate that PQ also increases glucose uptake and that inhibition of glucose metabolism with either glucose deprivation, 2-DG or galactose supplementation exerts a protective effect (Figure 8b). Furthermore, we present evidence that the protective effect of inhibiting glucose metabolism on PQ-induced cell death is related to a decrease in the PPP and activation of AMPK. This is supported by the following observations: 1) inhibition of the PPP also reduces PQ toxicity, 2) glucose deprivation stimulates the activity of AMPK; and 3) the protective effect of glucose deprivation against PQ is hampered by inhibition of AMPK signaling. Interestingly, our results also suggest that the survival of cells under glucose deprivation might also depend on glutaminolysis and increased OXPHOS. Neurons rely on OXPHOS for ATP synthesis, while
glucose metabolism seems to be primarily directed to the generation of NADPH via the PPP to support antioxidant defenses.22 Interestingly, neurons have been reported to use lactate and glutamine as alternative carbon sources for energy production via OXPHOS. As such, neurons can survive under glucose deprivation conditions when supplemented with lactate or glutamine.67, 68 Galactose prompts cells to rely on glutaminolysis and OXPHOS for ATP production, and we found that galactose supplementation actually exerted a stronger protective effect against PQ toxicity compared to glucose deprivation alone.52 Accordingly, the toxicity of the mitochondria complex I inhibitor MPP+ was found to be stimulated by galactose and glucose deprivation (Figure 8c-d), while PQ toxicity was also stimulated by MPP+ (data not shown). It is important to mention that the N27 rat dopaminergic neuronal cell line is mitotically active with an intrinsic glucose metabolism that is likely to be distinct from that of post-mitotic dopaminergic neurons. Thus, the results reported here must be taken with caution. However, as mentioned above, because neurons metabolize glucose primarily to the PPP,22 our results are expected to be replicated in dopaminergic neurons. Furthermore, astrocytes, which are highly glycolytic might actually be similarly affected by paraquat and \(\alpha\)-synuclein, as some studies have also reported the accumulation of \(\alpha\)-synuclein in astrocytes in PD and dementia with Lewy bodies (DLB).69

We and others have reported on the protective role of autophagy against PQ-induced cell death.39, 70 Herein, we confirmed that ULK1/ATG5-dependent autophagy exerted a protective effect against PQ toxicity. However, no additional protective effects were found when inhibiting mTOR pathway with either rapamycin or torin1, which would be expected to stimulate autophagy. While it has been reported that inhibition of glucose metabolism induces autophagy,32 we found that glucose deprivation stimulated autophagy flux, but autophagy was found impaired in PQ treated cells cultured in glucose free medium. Previous reports have also shown that inhibition of glucose metabolism blocks autophagy flux induced by additional
Thus, the protective effects of glucose deprivation seem to be largely independent of autophagy.

Glucose transporters GLUT1 (SLC2A1), GLUT3 (SLC2A3), GLUT4 (SLC2A4) and GLUT8 (SLC2A8), as well as SGLT1 and SGLT6 have been found expressed in different brain regions, but their role in neuronal function is still unclear. We observed that PQ stimulated glucose transport and the translocation of GLUT4 and SGLT1 glucose transporters to the plasma membrane. Furthermore, inhibition of GLUT-like transporters with STF-31 or AA (a competitive inhibitor for GLUT-like transport of glucose) also protected against PQ toxicity (Figure 8b). It has also been reported that upregulation of GLUT3 protects against MPP⁺-induced toxicity, which agrees with our observation that while inhibition of glucose metabolism significantly reduces PQ toxicity, it stimulates dopaminergic cell death induced by MPP⁺. SGLT6 and GLUT8 (and possibly GLUT4) seem to be the glucose transporters primarily found in the substantia nigra. An exploratory analysis of gene-environment interactions has also suggested a possible role for the GLUT family transporter member HMIT (SLC2A1) in PD. Another recent study reported that Ca²⁺ overload and oxidative stress induced by PINK1 deficiency inhibit glucose transport. All these findings highlight the importance of glucose transport and metabolism in dopaminergic cell death and PD.

In this work, we also found that PQ-induced a selective metabolic dysfunction in the midbrain and striatum, which correlated with AMPK activation. We also found that AMPK exerts a protective effect against cell death progression (Figure 8f). In particular, overexpression of a dominant negative form of AMPKα1 sensitized cells to PQ toxicity. Accordingly, a protective role for AMPK against mitochondrial dysfunction and toxicity induced by parkin-, LRRK2-mutations, α-synuclein and MPTP/MPP⁺ has been previously reported. In contrast, other reports have shown that AMPK mediates dopaminergic cell death induced by rotenone and 6-
hydroxydopamine (6-OHDA).28, 29 As a central regulator of cellular metabolism, AMPK modulates a myriad of processes. Thus, differences between the roles of AMPK in dopaminergic cell death induced by different PD-related insults might be related to differences in the processes regulated by AMPK, or the metabolic cues involved in cell death or survival. This is evident in our results demonstrating opposite effects of glucose metabolism in dopaminergic cell death induced by MPP+ or PQ (i.e while an increase in OXPHOS and less reliance on glucose metabolisms protects against PQ [Figure 8b-c], increased glucose metabolism and reduced OXPHOS dependency protects against MPP+). Importantly, regardless of the different metabolic requirements for PQ and MPP+-induced toxicity, both insults activate AMPK (data not shown) suggesting that the regulatory role of AMPK on cell death progression might be complex. AMPK activation has been demonstrated to upregulate glucose transport, glycolysis and the PPP,79-81 but inhibition of these processes reduces rather than augments PQ toxicity. Interestingly, a recent report demonstrated that AMPK inhibits glycolysis.82 AMPK can also promote mitochondrial biogenesis and glutaminolysis.83, 84 We found that inhibition of AMPK signaling hampers mitochondrial respiration and glycolysis, which suggests that AMPK signaling is required for cells to cope with metabolic failure induced by PQ, likely by regulating energy production, but confirmation of this hypothesis requires additional work.

AMPK activity is regulated by two inter-related processes, binding of AMP or ADP, and phosphorylation.85 An increase in the AMP (ADP)/ATP ratio is the primary trigger for AMPK phosphorylation and activation by liver kinase B1 (LKB1 or STK11).85 Oxidative stress has also been proposed to induce the activation of AMPK by either energy depletion, direct oxidative modification, or indirectly by LKB1 activation.63, 64, 86, 87 NOS have been proposed to mediate oxidative stress induced by PQ, and reactive nitrogen species (RNS) are reported to activate AMPK as well.65, 66 The iNOS inhibitor 1400W, significantly reduced AMPK activity suggesting that its activation by PQ requires iNOS activity. However, we cannot discard that energy
depletion and/or Ca2+-dependent signaling might also be involved in AMPK activation by PQ and α-synuclein (Figure 8e).

Importantly, while activation of AMPK by PQ was observed in dopaminergic and non-dopaminergic MEFs, in vivo AMPK activation was localized primarily to the midbrain and striatum in mice subchronically treated with PQ. The reasons for these observations are unclear, but we found that AMPK activation correlated with metabolic dysfunction induced by PQ, which was also found to be more severe in the midbrain and striatum. These results suggest that these brain regions might be more sensitive to the metabolic dysfunction induced by PQ. Previous studies have proposed that dopaminergic neurons in the substantia nigra pars compacta (SNpc) consume a significant amount of energy during their pacemaking activity88 for action potential generation and for the repolarization of the plasma membrane potential across the massive arborization of its unmyelinated axon89, 90. Together, these observations suggest that dopaminergic neurons in the substantia nigra are more sensitive to energy failure.

The mechanisms by which α-synuclein interacts with environmental exposures to induce dopaminergic cell loss are unclear. A major finding in our study is that metabolic dysfunction and AMPK activation are synergistically induced by PQ and α-synuclein and more importantly that glucose metabolism / transport and the PPP contribute to the toxic synergism of this gene-environment interaction (Figure 8g). Contradictory results have been reported regarding the role of AMPK in α-synuclein aggregation and toxicity21, 27. PQ has been reported to accelerate the rate of formation of α-synuclein fibrils in vitro91 and to upregulate α-synuclein expression levels and aggregation in vivo92. We have not observed such effects for a relatively short period of treatment with PQ (72 h) of cells overexpressing α-synuclein. While the exact mechanisms by which α-synuclein and PQ interact are unclear, our metabolomics analysis demonstrated that PQ and α-synuclein increased glucose transport/content. α-synuclein has been reported to
impair mitochondria respiration. PQ toxicity could be enhanced by α-synuclein-induced dysfunction in OXPHOS, which our results suggest exerts a protective effect against PQ (as evidenced by the inhibitory effect of galactose supplementation). Accordingly, similar to the effect of overexpressing dnAMPK, overexpression of α-synuclein led to a dysfunction in glycolysis and mitochondrial respiration. These results demonstrate that such metabolic dysfunction (induced by either inhibition of AMPK signaling or overexpression of α-synuclein) is the mechanisms by which PQ toxicity is enhanced.

Of note, no difference was observed between the synergism induced by the overexpression of WT α-synuclein compared to the overexpression of the PD-related mutation A53T, which is considered to be more toxic and pathogenic. Interestingly, we found that murine (rat or mouse) α-synuclein already has an Ala at amino acid position 53. We were unable to find any previous reference to this observation in the literature, but it might suggest that mice have intrinsic mechanisms protecting against the deleterious effects of A53T α-synuclein (or multiplications) and may explain why mouse overexpressing A53T α-synuclein (or other α-synuclein variants) show no major degeneration of dopaminergic cells.

Overall our results demonstrate for the first time that glucose metabolism and AMPK contribute to dopaminergic cell death induced by PQ and α-synuclein interactions. These results reveal the importance of central carbon metabolism and metabolic dysfunction / signaling in dopaminergic cell death induced by gene-environment interactions.

ACKNOWLEDGEMENTS

This work was supported by the National Institutes of Health Grants P20RR17675 Centers of Biomedical Research Excellence (COBRE), R01GM108975 (O.K.), the Scientist Development Grant of the American Heart Association (12SDG12090015, R.F.), and the Office of Research.
of the University of Nebraska-Lincoln. Part of this research was performed in facilities renovated with support from the NIH under Grant RR015468-01. We would like to thank the Flow Cytometry Core Facility at the Nebraska Center for Virology for the access to flow cytometry instrumentation (NIGMS grant number P30 GM103509).
REFERENCES

FIGURE LEGENDS

Figure 1. Inhibition of glucose metabolism protects against PQ toxicity independent from autophagy. Rat dopaminergic N27 cells were grown in culture media with or without glucose, or in glucose free medium supplemented with galactose. When indicated, cells were treated with PQ or MPP⁺ (2.5 mM) for 48 h in the presence or absence of 2-DG. (a) Phase contrast images of representative experiments. Scale white bar = 50 μm. Cell survival (b-c and e-f) was determined by the simultaneous analysis of plasma membrane integrity (PI uptake) and intracellular GSH content (mBChl fluorescence). Bar graphs represent %s of viable cells (cell survival) and data are means ± SE of at least n = 3 independent experiments. In d-e, glycolysis rates (grey region in d) and glycolytic reserve capacity of cells (dark grey region in d) were evaluated by changes in the ECAR sensitive to 2-DG. Glycolysis is observed as an increase in ECAR when switching cells from a glucose free environment (NG) to a medium containing 10
mM glucose (+G). Glycolytic reserve capacity is determined by addition of oligomycin (+O). Bar graphs in e represent the area under the curve of data in d. Data in d and e are means ± SE of at least n = 3 independent experiments and are represented with respect to control (+ glucose). Two-way ANOVA Holm-Sidak post hoc test: a, p<0.05 vs no PQ or MPP+ within the corresponding category of ± glucose, galactose or 2-DG; b, p<0.05, vs + glucose (b-c) or vs control (f), within the corresponding toxicant treatment. t-test: *, p<0.05, vs + glucose.

Figure 2. PQ increases glucose transport and the translocation of glucose transporters. Cells were treated with PQ for 48 h. In a, glucose transport was evaluated by the uptake 2-NBDG. In b-c, the expression levels of the glucose transporters were assessed by flow cytometry (immunofluorescence). Histograms represent changes in the mean fluorescence value for the immunostaining of SGLT1 or GLUT4. Inset bar graphs represent the fold change in mean fluorescence with respect to control (+). Negative control (-, secondary antibody only) is included for comparison. The survival of cells treated with PQ in the presence or absence of STF-31 (d), phlorizin (e) or AA (f) was determined as explained in Figure 1. Bar graph represents %s of viable cells (cell survival). Data in all graphs are means ± SE of at least n = 3 independent experiments. One-way ANOVA Holm-Sidak post hoc test: a, p<0.05 vs no PQ. ANOVA on Ranks Student-Newman-Keuls post hoc test: b, p<0.05 vs control +. Two-way ANOVA Holm-Sidak post hoc test: c, p<0.05 vs no PQ within the corresponding ± STF-31 or phlorizin category; d, p<0.05 vs control (no glucose transport inhibitor) within the corresponding PQ concentration.

Figure 3. Paraquat treatment induces metabolome alterations in the brain regions of midbrain and striatum. C57Bl/6J mice were exposed chronically to PQ. One week after the final injection of PQ or PBS, animals were euthanized to isolate metabolites from the midbrain, striatum and cortex regions. Integrated positive and negative-ion DI-ESI-MS and 1D 1H NMR
was used to characterize the alterations in the metabolic profiles of midbrain, striatum and cortex regions from control and PQ treated mice. In a, metabolomics profiles are represented in 3D MB-PCA scores plots. The p values in the MB-PCA scores plots indicate the significance of metabolome changes after PQ treatment, with p<0.05 values considered significant (n = 6). The ellipsoids correspond to the 95% confidence limits from a normal distribution for each cluster. In b, the percent fold-change for metabolites contributing to class separation in (a) as identified from OPLS-DA back-scaled loadings plots (Supplemental Figure 2) are plotted. The percent fold changes are all significant (p < 0.05) based on a paired t-test. The green colored bars indicate metabolites with a fold-increase after PQ treatment; whereas, red colored bars indicate a metabolite decreased after PQ treatment. In c, a simplified metabolic network is shown that summarizes metabolite alterations (from b) within glucose metabolism (e.g., glycolysis and the TCA cycle) after PQ treatment. Metabolites colored red decreased after PQ treatment, while metabolites colored green increased after PQ treatment.

Figure 4. AMPK signaling protects against PQ toxicity. In a, C57Bl/6J mice were exposed chronically to PQ. Mice were subsequently euthanized to isolate the midbrain (SN), striatum, cerebellum and cortex regions. N27 dopaminergic cells were treated with the indicated concentrations of PQ for 48 h (except for experiments in e-f where cells were treated with 25 µM PQ for 12 h). When indicated, cells were transduced with adenoviral particles encoding a dnAMPKα1 (1 MOI, unless otherwise indicated) 24 h prior to PQ treatment (c), or treated with PQ in media ± glucose with or without galactose supplementation. Adenoviruses containing only the CMV promoter (Empty) were used as control. Changes in the levels of phosphorylated (p) AMPKα1 and its substrate ACC (a-c and g) induced by PQ were evaluated by WB. Numbers in italics represent the relative densitometry quantification of pAMPKα1 or pACC normalized to total AMPKα1 or β-actin, respectively, and expressed with respect to control (underlined). Bar graphs in a and c represent the densitometry analysis of the corresponding WBs from 3
in independent replicas. Data is represented as fold change vs the indicated control (dotted line).

In d and h, the effect of the overexpression of dAMPKα1 on PQ-induced cell death in media ± glucose was evaluated as explained in Figure 1. Data in graphs represent percentage of viable cells (cell survival) and data are means ± SE of at least n = 3 independent experiments. In e, glycolysis rates (grey region) and glycolytic reserve capacity (dark grey region) were determined as explained in Figure 1d. In f, basal OCR and ECAR rates were determined after 1 hr of incubation of cells with fresh medium. Data in e-f represent means ± SE of at least n = 3 independent experiments. Two-way ANOVA Holm-Sidak post hoc test: a, p<0.05 vs no PQ within the corresponding category of Empty or dAMPKα1; b, p<0.05, dAMPKα1 vs Empty within the corresponding concentration of PQ. Two-way ANOVA Holm-Sidak post hoc test for ± dAMPKα1 ± glucose data for each PQ concentration: c, p<0.05, dAMPKα1 vs Empty, within the corresponding category of ± glucose; d, p<0.05, vs + glucose, within the corresponding category of Empty or dAMPKα1.

Figure 5. AMPK activation by PQ is mediated by iNOS. N27 cells were treated with PQ for 48 h. When indicated, cells were transduced with adenoviral particles (1.5 MOI) encoding catalase (a) or CuZnSOD (b) for 24 h prior to PQ treatment, or treated in the presence of the iNOS inhibitor 1400W. Adenoviral vectors containing only the CMV promoter (Empty) were used as control. In c, cells were treated with PQ in the presence or absence of 1400W (100 µM) (c).

Changes in the levels of phosphorylated (p) AMPKα1 (a-c), catalase (a) or CuZnSOD (b) were evaluated by WB. Numbers in italics represent the relative densitometry quantification of pAMPKα1 normalized to total AMPK α1 and expressed with respect to control (underlined). Bar graph in c represents the densitometry analysis from 3 independent replicas. Data is represented as fold change. Two-way ANOVA Holm-Sidak post hoc test: a, p<0.05 vs no PQ within the corresponding category of ± 1400W; b, p<0.05, vs - 1400W within the corresponding
concentration of PQ. In d, the effect of 1400W on PQ-induced cell death in media ± glucose was evaluated as explained in Figure 1. Data in graphs represent percentage of viable cells (cell survival) and data are means ± SE of at least n = 3 independent experiments. Two-way ANOVA Holm-Sidak post hoc test for ± 1400W ± glucose data for each PQ concentration: c, p<0.05, -glucose vs + glucose, within the corresponding category of ± 1400W; d, p<0.05, vs - 1400W, within the corresponding category of ± glucose.

Figure 6. α-synuclein potentiates the metabolic dysfunction, AMPK activation and toxicity induced by PQ. N27 dopaminergic cells were transduced for 24 h with Empty adenoviruses or adenoviruses encoding either WT or mutant A53T α-synuclein (6 MOI). In a, WB analysis of the levels of α-synuclein protein monomers and high molecular weight (HMW) aggregates evaluated 48 h after transduction. In b, cell survival after exposure to PQ for 48 h was determined as explained in Figure 1. Bar graph represents percentage of viable cells (cell survival) and data are means ± SE of at least n = 3 independent experiments. In c-e, cells were treated with 25 µM PQ for 24 h. Metabolites were extracted for NMR/MS metabolomics. 3D MB-PCA scores plot shows the changes in the metabolome based on distances between groups (c). The statistical significance of the Mahalanobis distance between groups within the MB-PCA scores plot (i.e. differences in the metabolome) are illustrated by the p values in the table and the corresponding dendrogram (d). The ellipsoids correspond to the 95% confidence limits from a normal distribution for each cluster. Six independent samples of metabolic extract were used for the MB-PCA multivariate analysis. In e, 2D 1H−13C HSQC NMR spectra from 13C glucose labeling experiments were used to evaluate the intracellular metabolic changes shown by the MB-PCA multivariate analysis. Data represent the mean of 3 independent replicates. In f-g, cells were treated with 25 µM PQ for 12 h. In f, glycolysis rates (grey region) and glycolytic reserve capacity (dark grey region) were determined as explained in Figure 1d. In g, basal OCR
and ECAR rates were determined as explained in Figure 4f. Data in f-g represent means ± SE of at least n = 3 independent experiments. Two-way ANOVA Holm-Sidak post hoc test: a, p<0.05 vs no PQ within the corresponding ± Empty or α-synuclein category; b, p<0.05 vs Empty within the corresponding PQ concentration. In h, changes in the levels of phosphorylated AMPKα1 (pAMPKα1) in cells exposed to PQ for 48 h were evaluated by WB. Numbers in italics represent the relative densitometry quantification of pAMPKα1 normalized to total AMPKα1, and expressed with respect to control (underlined).

Figure 7. Glucose metabolism and the PPP regulate the toxic synergism of α-synuclein and PQ. N27 dopaminergic cells were transduced for 24 h with Empty viral particles or adenoviruses encoding either WT or mutant A53Tα-synuclein (6 MOI). After transduction, cells were treated with PQ (50 µM in b) for 48 h in the presence or absence of glucose (a), STF-31 (b, 0.5 µM), 6-AN (c, 1 mM), or AA (d, 100 µM). Cell survival was determined as explained in Figure 1. Bar graphs represent %s of viable cells (cell survival) and data are means ± S.E.M. of at least n = 3 independent experiments. Two-way ANOVA Holm-Sidak post hoc test was done for each PQ concentration independently: a, p<0.05, vs Empty, within the corresponding category of ± glucose (a), ± STF31 (b), ± 6-AN (c), or ± AA (d); b, p<0.05, vs + glucose (a), - STF31 (b), - 6-AN (c), or - AA (d), within the corresponding category of Empty or α-synuclein.

Figure 8. Glucose metabolism and AMPK signaling regulate the toxicity of PQ + α-synuclein. We have previously demonstrated that PQ hijacks the PPP to use NADPH electrons to redox cycle and induce cell death (a). In this work, we have now revealed that glucose metabolism/transport contributes to PQ-induced dopaminergic cell death as evidenced by the protective effects of STF-31, AA (GLUT-like transport inhibitors) and 2-DG (glucose metabolism inhibitor) (b). Furthermore, we present evidence that stimulation of glutamine metabolism via the TCA cycle by galactose supplementation also protects against PQ (c). In contrast, glucose
metabolism protected against the mitochondrial complex I inhibitor MPP⁺ while sole reliance on glutamine metabolism induced by galactose supplementation sensitized cells to MPP⁺-induced cell death (d). PQ-induced AMPK signaling is dependent on iNOS (e). AMPK signaling activated in response to PQ or glucose deprivation exerted a protective effect against PQ (f). Overexpression of α-synuclein stimulated PQ toxicity (gene-environment interaction), metabolic dysfunction and AMPK activation (g).
Figure 5

(a)

<table>
<thead>
<tr>
<th>PQ [μM]</th>
<th>Empty</th>
<th>+</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalase</th>
<th>pAMPK T172</th>
<th>AMPKα1</th>
<th>vs Cont</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1.1</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>45</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>47</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>95</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>β-actin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>PQ [μM]</th>
<th>Empty</th>
<th>+</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CuZnSOD</th>
<th>pAMPK T172</th>
<th>AMPKα1</th>
<th>vs Cont</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2.3</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>6.9</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>27</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CuZnSOD</th>
<th>β-actin</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

(c)

<table>
<thead>
<tr>
<th>PQ [μM]</th>
<th>1400W [100 μM]</th>
<th>-</th>
<th>25</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1400W</th>
<th>pAMPK T172</th>
<th>AMPKα1</th>
<th>vs Cont</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400W</td>
<td>+</td>
<td>+</td>
<td>0.5</td>
</tr>
<tr>
<td>1400W</td>
<td>+</td>
<td>+</td>
<td>0.7</td>
</tr>
<tr>
<td>1400W</td>
<td>+</td>
<td>+</td>
<td>12</td>
</tr>
<tr>
<td>1400W</td>
<td>+</td>
<td>+</td>
<td>30</td>
</tr>
<tr>
<td>1400W</td>
<td>+</td>
<td>+</td>
<td>102</td>
</tr>
<tr>
<td>1400W</td>
<td>+</td>
<td>+</td>
<td>27</td>
</tr>
</tbody>
</table>

(d)

<table>
<thead>
<tr>
<th>PQ [μM]</th>
<th>- Glucose</th>
<th>+ Glucose</th>
<th>- Glucose + 1400W</th>
<th>+ Glucose + 1400W</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Glucose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Glucose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Glucose</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

PQ [μM]: 0, 25, 50, 100, 1400W

<table>
<thead>
<tr>
<th>Fold change vs PQ-1400W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>80</td>
</tr>
</tbody>
</table>

Figure Anandhan et al. 2016 Mol Neurobiol Revised Figure 5.jpg
Figure 8

Click here to download Figure Anandhan et al 2016 Mol Neurobiol Revised Figure 8.jpg