
Published by: Optical Society of America

URL: http://dx.doi.org/10.1364/AO.55.009396

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/28778/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.)
Investigation on iterative multiuser detection physical layer network coding in two-way relay free-space optical links with turbulences and pointing errors

ZINA ABU-ALMAALIE,1, * ZABIH GHASSEMLOOY, 1 MANAV R. BHATNAGAR,2 HOA LE-MINH,1 NAUMAN ASLAM,3 SHIEN-KUEI LIAW,4 AND IT EE LEE 5

1 Optical Communications Research Group, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, UK
2 Department of Electrical Engineering Indian Institute of Technology-Delhi, New Delhi, India
3 Computational Intelligence Research Group, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, UK
4 Department of Electronic and Computer Engineering National Taiwan University of Science and Technology, Taipei 106, Taiwan
5 Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Malaysia

Received 4 August 2016; revised 11 October 2016; accepted 13 October 2016; posted 14 October 2016 (Doc. ID 273079); published 0 MONTH 0000

Physical layer network coding (PNC) improves the throughput in wireless networks by enabling two nodes to exchange information using a minimum number of time slots. The PNC technique is proposed for two-way relay channel free space optical (TWR-FSO) communications with the aim of maximizing the utilization of network resources. The multipair TWR-FSO is considered in this paper, where a single antenna on each pair seeks to communicate via a common receiver aperture at the relay. Therefore, chip-interleaving is adopted as a technique to separate the different transmitted signals at the relay node to perform PNC mapping. Accordingly, this scheme relies on the iterative multiuser technique for detection of users at the receiver. The bit error rate (BER) performance of the proposed system is examined under the combined influences of atmospheric loss, turbulence-induced channel fading and the pointing errors (PEs). By adopting the joint PNC mapping with interleaving and multiuser detection techniques, the BER results show that the proposed scheme can achieve a significant performance improvement against the degrading effects of turbulences and PEs. It is also demonstrated that a larger number of simultaneous users can be supported with this new scheme in establishing a communication link between multiple pairs of nodes in two time slots, thereby improving the channel capacity.

OCIS codes: (010.3310) Atmospheric turbulence; (060.2605) Free-space optical communication; (060.4255) Networks, multicast; (200.3050) Information processing.

http://dx.doi.org/10.1364/AO.99.099999

1. INTRODUCTION

Free space optical (FSO) communications is a promising complementary alternative over the conventional radio frequency (RF) technology, which has attracted attention within the research community due to their secure transmission, large bandwidth, small component sizes with low cost, and immunity to the electromagnetic interference [1]. However, optical signal propagation in free space is significantly affected by the atmospheric channel conditions such as the turbulence and pointing errors (PEs), thereby increasing the bit error rate (BER) and severely degrading the overall link performance. For a link range from a few meters to longer than 1 km, turbulence-induced signal fading becomes a major performance limiting factor in FSO systems. To combat such fading effect and maintain acceptable performance levels, several mitigation techniques have been proposed for FSO systems, which include the forward error correction (FEC), spatial diversity techniques, and cooperative diversity. Recently, research in FSO has focused on performance evaluation of multihop communication systems under the atmospheric turbulence condition, where the source node communicates with the destination node via a number of relay nodes (RNs) in a serial configuration. Multihop transmission is a promising technique to achieve broader coverage and mitigate wireless channels impairment, and it has a number of advantages including increased capacity, avoiding the use of cables, low cost and minimizing the need for a fixed infrastructure [2-4]. In particular, the relay-assisted FSO system has drawn significant attention as an efficient technique to extend the coverage area and improve the system performance in the presence of non-line-of-sight path between two FSO nodes in the network [5,6]. Thus, the relay-assisted FSO transmission can take advantage of the resulting shorter and multiple-hop links between the transmitter
(Tx) and the receiver (Rx) in order to improve the system performance and increase the link reliability.

In recent years, network coding (NC) has been introduced in wireless networks to establish a new form of cooperative relay technology, mainly due to its capability to increase the system throughput and combat link failures by distributing the traffic over a larger number of communication paths [7]. NC allows intermediate network nodes to perform arbitrary mathematical operations to combine the data received from different links, thus offering numerous advantages over the traditional routing schemes [8]. This has been extensively studied in the context of optical multicast networks [9,10]. To mitigate the strong turbulence-induced fading, a cooperative relaying aided FSO transmission network based on NC and using an iterative multiple source detection scheme in conjunction with a chip-level soft network decoding at the relay and the destination node was proposed in [11]. The simulation results demonstrated that the proposed method was capable of approaching the single user bound for transmission over the gamma–gamma turbulence channel. Additionally, this technology has been adopted as a widely accepted solution for combating turbulence-induced fading in two-way relay channel (TWR) FSO systems [12–14]. Furthermore, the concept of NC can also be applied to the physical layer that deals with signal reception and modulation, and is known as the physical layer NC (PNC) [15]. PNC leads to further improvement of the wireless transmission throughput through the effective use and exploitation of wireless resources. Recently, many researchers, due to the need for higher data rates and faster connection speeds in wireless networks, have adopted this technique. The PNC system was first considered for a TWR where two users transmitted their information simultaneously with the aid of RN.

However, a substantial number of analytical and simulation studies of the two-way relay FSO (TWR-FSO) system have considered only the amplifier-and-forward (AF) and decoder-and-forward (DF) schemes or have adopted the linear NC at the RNs. Therefore, inspired by the advantage of the PNC technique, which offers a higher data rate and faster connection speed in wireless networks, it was proposed for the TWR-FSO communications where there is no direct path between the two FSO communication nodes [16]. The model was referred to as TWR-PSO PNC, where the authors explored the advantage of PNC technique for full utilization of network resources.

Despite a significant amount of research being carried out in TWR for PNC, increasing the number of users which can simultaneously be transmitted to the RN is still considered as the main constraint in such systems. This is mainly because the PNC mapping can only support two users for exchanging their information at the same time over TWR. Therefore, very little work has been reported on the impact of increasing the number of communication pairs on the performance of the PNC system assuming different strategies [17–19]. Recently, multiple access techniques referred to as interference division multiple access (IDMA) technique was suggested in [20,21].

In this paper, to allow multiple pairs of users to swap their database between them within a single RN over FSO link, the effectiveness of iterative multuser (I-MUD) detection based PNC is embraced. It is assumed that the pair of users cannot receive each other's signals directly, and hence the RN is the enabler of communication. Therefore, the chip-interleaving approach for user separation, in order to perform PNC demapping at the intermediate node, is adopted. This scheme referred to as I-MUD TWR-PSO PNC, which offers a bi-directional half-duplex relaying network that consists from K user communicate with each other via a single RN, as shown in Fig. 1. The performance of the system in terms of BER is examined by considering link impairments imposed by the atmospheric attenuation because of beam extinction and channel fading caused by turbulence (ranging from weak to strong turbulence) and the PEs. The simulation results reveal the ability of the proposed scheme to establish communication between the multiple nodes with a minimum number of transmission phases, even when the number of simultaneous users is increased.

The rest of the paper is organized as follows: Section 2 describes the system model. Section 3 defines the atmospheric channel, while Section 4 describes the error rate analysis considered in this study. Next, simulation results and discussions are presented in Section 5. Finally, conclusions are drawn in Section 6.

2. SYSTEM MODEL

In an I-MUD FSO PNC model, each pair of users P exchanges their information using the RN in two transmission phases. The first phase is dedicated to the entire user transmit the information in multiple access (MA) channel to the RN. The second phase is broadcasting the RN information to the destination in broadcast channel (BC), as shown in Fig. 1. Assuming all nodes operate over a half-duplex link and full transmissions synchronization between the nodes with the same transmits power for all nodes. We assume intensity modulation with direct detection (IM/DD) for all the source nodes and the RN. Also, the noise is modelled as additive white Gaussian noise (AWGN) with zero mean and variance $\sigma^2 = N_0/2$, where $N_0/2$ is the two-sided noise power spectral density. In traditional FSO systems, on-off keying (OOK) is commonly used because of its simplicity and low-cost despite the difficulty of adaptively adjusting the threshold. On the other hand, pulse-position modulation (PPM) signalling has excellent power efficiency with no requirement for adaptive threshold compared to OOK; however, it has poor bandwidth efficiency due to the use of shorter pulses [22]. To overcome the limitations of OOK and PPM, the binary phase shift keying (BPSK) is embraced in our proposed system. The following sub-sections outline in detail the operation of the Tx, RN and Rx for the system under consideration.

A. Transmitter

The basic Tx structure for the I-MUD TWR-PSO PNC model is shown in Fig. 2. The input binary data sequence $d_k \in \{0,1\}$, where $k = (1, \ldots, K)$ represents the number of users, is encoded using the convolutional encoder module (ENC) with a rate R_c. The coded bit stream $c_k \in \{0,1\}$ is further encoded using a simple spreading code module (SP) with a rate R_s to produce s_k. The same spreading sequence is used for all nodes. The coded sequence is then permuted by the same chip-level interleaver Π_p for each P, thus producing an interleave sequence $s^*_k \in \{0,1\}$ [23]. These interleaves can be generated independently and randomly for each P, which scrambles the error burst of the code sequence prior to the transmission. The
interleaver sequence is then used for modulating an RF signal using BPSK modulation, which is presented as
\[m_k = \sum g(t - T) \cos(w_r + \theta), \]
where \(g(t) \) is a rectangular shaping pulse function, \(T \) is bit duration, \(w_r \) is a carrier frequency, and \(\theta \) is phase angular equal to 0 or \(\pi \) depending if a binary one or a binary zero is transmitted. To ensure the modulated signals are all positive, a direct current (DC) level bias \(h_b \) is introduced prior to IM of the light source [24]. The output optical signal at the laser diode can be expressed as
\[y_{\text{Fx}} = P_{\text{Tx}} \left(1 + \gamma m_k \right), \]
where \(P_{\text{Tx}} \) is the average transmitted optical power, and \(\gamma \) is the modulation index satisfying the condition \(-1 \leq \gamma m_k \leq 1\) to avoid dipping due to over-modulation [24].

B. Relay node
In the MA phase, all users are simultaneously transmitting to the RN, where each \(P \) swap their information using single RN. We assume that each user node is equipped with single aperture antenna directed to the corresponding aperture at RN, whereas the RN consists of two directional antennas each having \(K \) antenna aperture directed to the corresponding user's nodes. The received optical beam at the RN is detected by a photodetector (PD) with optical-to-electrical efficiency denoted by \(R \), then is amplified using a trans-impedance amplifier (TIA) as shown in Fig. 3. The signal at the output of the PD from all users are collected and sent to the deinterleaved process. The channel state of the FSO link is modelled as a stochastic process denoted by \(h_k \), which represents the normalized irradiance accounted for the intensity fluctuations due to the atmospheric loss, turbulence and PEs (as explained in detail later on). However, the channel coefficients are assumed to be the same for both transmissions phases. Thus, the received electrical signal for the MA phase can be represented as
\[y_r = R \sum_{k=1}^{K} h_k x_k + w_r, \]
where \(h_k \) is the FSO channel fading coefficient from the \(k \)th users to the RN. The term \(w_r \) denotes the AWGN arising from various sources, which include the shot noise due to the signal itself, ambient light, dark current noise, and electrical thermal noise. Following down conversion, the deinterleaving procedure \(\Pi_p \) is applied to the superimposed signal for each \(P \), which places the received code bits back in the proper order, \(I_{k-1,k} \). Through PNC demapping detection at the RN, the received signal can be mapped to the module-2 addition of the digital bit stream so that the interference becomes part of the arithmetic operation in the NC [15]. The minimum distance estimation is used to map the superimposed symbol to a network-coded symbols for each pair and, for \(P = 1 \), can be written as
\[x_1 \oplus x_2 = \arg \min_{x_1, x_2 \in \{1, -1\}} \left| I_{1,2} - (h_1 x_1 + h_2 x_2) \right|. \]

In order to successfully distinguish every network coded symbols for its target users, they are distinguished again by user specific interleave. Following BPSK modulation \(x_p^r \) and DC level bias, all signals are summed up for transmission over their corresponding FSO link [25]. A Tx telescope is used to collect, collimate, and direct the optical radiation toward the Rx telescope at the other end of the channel.

C. Receiver
The performance of the I-MUD FSO PNC model is expected to deteriorate due to MA interference (MAI) from other active users as well as the scintillation effect. Inspired by the success of the turbo code, I-MUD detection has been widely used owing to its ability to improve the system performance at a relatively low computational cost. Note that the complexity of the decoder is independent of \(K \) [23]. Therefore, the I-MUD technique is adopted to improve the system performance by eliminating the negative effect of each user on each other by iteratively exchanging the extrinsic information between the MUD and channel decoders (DECs).

The block diagram for the Rx structure is shown in Fig. 4. As in the RN, the telescope collects the incoming light and focuses it onto the PD, the output of which is amplified and processed. The electrical signal at the input to the MUD can be expressed as
\[y_{xp} = R P_{\text{Tx}} h_k x_{pr}^r + w_k. \]

The iterative Rx comprises of a MUD, deinterleaver/interleaver pairs, despreaders/spreading pairs and soft-in-soft-out (SISO) decoders [26]. The posteriori log-likelihood ratio (LLR) of a transmitted code bit based on the MA constraint is given by [26]
\[L_{\text{dem}}(x_p^r) = \log \left(\frac{P_r(y_{xp} | x_p^r = 1)}{P_r(y_{xp} | x_p^r = -1)} \right). \]
where \(p_r \) is the conditional probability distribution of the observed channel. In the case of first pairs, Equation (5) can be rewritten as

\[
y_{s1} = R \, P_1 \, h_1 \, x_1^r + \sum_{p=1, p \neq p}^{p} h_p \, x_p^r ,
\]

where

\[
\xi_1 = \sum_{p=1, p \neq p}^{p} h_p \, x_p^r + w_k ,
\]

is the sum of the MAI and the noise in terms of \(y_{s1} \) relative to \(x_1^r \). Assume that \(x_1^r \) is independent and identically distributed random variable, the conditional probability \(p_r \left[y_{s1} \mid x_1^r = 1, 0 \right] \) can be characterized by the Gaussian probability density function (PDF) as given by

\[
p_r \left(y_{s1} \mid x_1^r = 1, 0 \right) = \exp \left[\frac{\left(y_{s1} - (\pm h_1 + E(\xi_1)) \right)^2}{2 \text{Var}(\xi_1)} \right] \sqrt{2 \pi \text{Var}(\xi_1)} ,
\]

where \(E(\cdot) \) and \(\text{Var}(\cdot) \) are the total mean and variance of distortion, respectively, and can be defined as [23]

\[
E(\xi_1) = \sum_{p=1, p \neq p}^{p} h_p \, E(x_p^r) ,
\]

\[
\text{Var}(\xi_1) = \sum_{p=1, p \neq p}^{p} h_p^2 \, \text{Var}(x_p^r) + \sigma^2 .
\]

Correspondingly, Equation (6) can be rewritten as

\[
L_{\text{dem}} \left(x_1^r \right) = \log \left[\frac{\exp \left[\frac{\left(y_{s1} - h_1 R - E(\xi_1) \right)^2}{2 \text{Var}(\xi_1)} \right]}{-\log \left[\frac{\exp \left[\frac{\left(y_{s1} + h_1 R - E(\xi_1) \right)^2}{2 \text{Var}(\xi_1)} \right]}{\text{Var}(\xi_1)} \right]} \right] = 2 h_1 R \left(\frac{y_{s1} - E(\xi_1)}{\text{Var}(\xi_1)} \right) .
\]

To restore the original ordering of the sequences in the symbol, the permutation of the received signal will be deinterleaver \(L_{\text{dem}} \left(x_1^r \left(L_1^r \right) \right) \). Prior to delivering the signal to the DECs, the signal is passed through the despreading (DSP) module. Each group of deinterleaver chips within one-bit duration is summed up by means of the despreading operation. A posteriori LLR for coded bits can be determined as

\[
L_{\text{dec}} \left(c_a \right) = \sum_{j=1}^{s_f} \log \left[\frac{p_r \left(s_a \left(j \right) = 1 \right) \left(y_{s1} \left(j \right) \right)}{p_r \left(s_a \left(j \right) = 0 \right) \left(y_{s1} \left(j \right) \right)} \right] ,
\]

where \(s_f \) is the spreading factor and \(j = 1, \ldots, s_f \), and \(c_a, s_a \) represent the XOR-ed coded and spreading sequence \(\left(c_1 \oplus c_2 \right), \left(s_1 \oplus s_2 \right) \), respectively. The output of the DSP module is used as a priori information to DECs module of the convolutional code, which performs the standard a posteriori probability (APP) decoding [26]. The APP algorithm is used to generate the information on the data bitstream as well as the extrinsic information on the coded bits. The final a posteriori LLR of the coded bits is given by:

\[
L_{\text{dec}} \left(c_a \right) = \log \left[\frac{p_r \left(s_a \left(j \right) = 1 \right) \left(L_{\text{dec}} \left(c_a \right) \right)}{p_r \left(s_a \left(j \right) = 0 \right) \left(L_{\text{dec}} \left(c_a \right) \right)} \right] .
\]

The output of DEC is then applied to the SP. To compute the chip-level extrinsic LLR information of the corresponding coded bits, the following equation is used:

\[
L_e \left(s_a \right) = L_{\text{dec}} \left(c_a \right) - L_{\text{dem}} \left(x_1^r \left(L_1^r \right) \right) .
\]

The LLR are further interleaved to produce the extrinsic LLR, \(L_{\text{map}} \left(x_1^r \right) \), of chips \(x_1^r \). This extrinsic LLR is feedback to the MUD to update a priori LLR by determining new values for the mean and variance for the next iteration, respectively, and can be expressed as [24]:

\[
E(x_1^r) = \tanh \left(L_{\text{map}} \left(x_1^r \right) / 2 \right) , \quad \text{Var}(x_1^r) = 1 - E(x_1^r)^2 .
\]

Finally, the SISO channel decoder computes a posteriori LLR for every information bit \(L_{\text{pp}} \), which is used to make a hard decision on the decoded bits at the last iteration to obtain \(D_p \). The final process performs an XOR operation between the original information bits of each users and the output of the decoder to determine the desired information for each user sent by their partner and can be described as

\[
\tilde{d}_k = D_p \oplus d_{k-1} , \quad d_{k-1} = D_p \oplus d_k .
\]

3. ATMOSPHERIC CHANNEL MODEL

The channel state \(h_k \) models the optical intensity fluctuations for the TWR-FSO link resulting from the atmospheric loss, turbulence and misalignment-induced channel fading, which can be described as

\[
h_k = h_t \, h_v \, h_E ,
\]

where \(h_t \) is the channel loss coefficient, \(h_v \) is a random variable representing the intensity fluctuation due to atmospheric turbulence, and \(h_E \) is the misalignment fading due to the PE loss. The following subsections describe the mathematical expression for each of these.

A. Atmospheric Loss

The atmospheric channel attenuates the signal traversing it as a result of absorption and scattering processes and is described by the exponential Beers-Lambert Law as [27]:

\[
h_t = \exp \left(- \delta L \right) ,
\]

where \(L \) is the transmission distance, and \(\delta \) is the weather attenuation coefficient and it can be determined from the visibility data through Kim’s model as

\[
\delta = (3.91/V)(\lambda/550)^{-q} ,
\]

where \(V \) is the visibility, \(\lambda \) is the wavelength, and \(q \) is the power law exponent.
where \(V \) is the visibility, \(\lambda \) is the wavelength, and \(q \) being the particle size distribution coefficient [27].

B. Atmospheric Turbulence-Induced Fading

Turbulence fading is one of the main impairments affecting the operation of FSO communication systems. Classical studies on optical wave propagation have been classified in two major categories, either the weak or strong fluctuations theory. To describe the atmospheric turbulence and its effects on the optical beam propagation, theoretical and experimental studies have been carried out within the research community in order to develop tractable and reliable mathematical models for the irradiance PDF.

1. Log-Normal Turbulence Model

The log-normal distribution is commonly used to model the weak turbulence condition and has been embraced in many calculations for the turbulence channel [28,29]. The distribution of the light intensity fading induced by weak turbulence can be described by log-normal distribution as

\[
p(h_i) = \frac{1}{\sqrt{2\pi \sigma_i^2 h_i}} \exp\left(\frac{-\ln(h_i) + \sigma_i^2 / 2 h_i^2}{2 \sigma_i^2}\right),
\]

(20)

where \(\sigma_i^2 \) is the scintillation index and for a weak turbulence regime is found to be proportional to Rytov variance \(\sigma_R^2 \), which can be calculated as

\[
\sigma_R^2 = h C_n^2 \left(2\pi / \lambda\right)^{7/6} L^{11/6},
\]

(21)

where \(C_n^2 \) is the refractive index structure parameter, and \(h \) is a constant given by

\[
h = \begin{cases}
1.23 & \text{for plane wave} \\
0.5 & \text{for spherical wave}
\end{cases}
\]

(22)

A plane wave model is used for starlight and other exo-atmospheric sources while spherical wave model is used for a small-aperture source within or near the turbulent atmosphere.

2. Gamma-Gamma Turbulence Model

The gamma-gamma distribution is a more recent fading model [30], which has evolved from an assumed modulation process, in order to address the large- and small-scale scintillations under moderate-to-strong scenarios. The gamma-gamma PDF is given by

\[
p(h_i) = \frac{2(\alpha \beta)^{(\alpha+\beta)/2}}{\Gamma(\alpha)\Gamma(\beta)} h_i^{(\alpha+\beta)/2-1} K_{\alpha-\beta}\left(2\sqrt{\beta} \alpha h_i\right),
\]

(23)

where \(\Gamma(\cdot) \) is the Gamma function and \(K_{\alpha-\beta}(\cdot) \) denotes the modified Bessel function of the second kind of order \(\alpha-\beta \). Parameters \(\alpha \) and \(\beta \) represent the effective number of large-scale and small-scale turbulence eddies, respectively, and their values can be calculated according to the expressions provided in [31].

C. Pointing Errors

The misalignment-fading model derived in [32] offers a tractable PDF for describing the behaviour of the PE loss, which takes into account the detector size, beam width and jitter variance. The model assumes a circular detection aperture of radius \(a \), and a Gaussian spatial intensity profile of beam waist radius \(w_\text{z} \) on the Rx plane at distance \(L \). The pointing loss is given by [33,34]

\[
h_i = A_o \exp\left(-2r^2/w_\text{eq}^2\right),
\]

(24)

where \(r \) is the radial displacement between beam centre and centre of the detector, and

\[
A_o = (\text{erf}(v_p))^{-2},
\]

(25)

where \(A_o \) is the fraction of the received power at a zero radial distance, \(\text{erf}(\cdot) \) denotes the error function and \(w_\text{z}/a \) identifies the beam waist normalized by the radius of the receiver aperture. \(w_\text{eq}^2 \) represents the equivalent beam waist and can be determined as

\[
w_\text{eq}^2 = w_\text{z}^2 \sqrt{\pi \text{erf}(v_p)} / 2v_p \exp\left(-v_p^2/2\right)
\]

(26)

4. BIT-ERROR RATE

For a BPSK IM/DD FSO communication link, the BER defines as \(P_e = p(0)p(e(0)) + p(1)p(e(1)) \), where \(p(0) \) and \(p(1) \) represent the probabilities of transmitting 0 and 1 bits, respectively, while \(p(0) \) and \(p(1) \) resemble the conditional bit error probabilities when the transmitted bit is 0 or 1, respectively. Assuming that the transmitter is sending 1s and 0s with equal probability, each has a probability equalled to 0.5, it is easy to show that BER conditioned on \(h \)

\[
P_e(h) = \frac{P_{\text{Rh}_h}}{\sigma^2},
\]

(27)

where \(Q(\cdot) \) is the Gaussian Q-function. However, the average BER can be determined by averaging the conditional bit error probabilities over PDF of \(h \), which is expressed as [35]

\[
P_e = \int_0^\infty P_e(h) h dh.
\]

(28)

For log-normal distribution, substituting Eq. (20) into Eq. (28) and using a Gauss–Hermit quadrature integration, the average BER can be determined as [36]

\[
P_e = \frac{1}{\sqrt{\pi}} \sum_i w_i Q\left(\exp\left(\sqrt{2}\sigma_R x_i - \sigma_R^2 / 2\right)\right),
\]

(29)

where \(w_i \) and \(x_i \) are weight factors and the zeros of an \(n \)th order Hermit polynomial, respectively [36]. The channel state distribution for strong turbulence regime is given by [37]

\[
p(h) = \frac{2\zeta^2(\alpha \beta)^{(\alpha+\beta)/2}}{\Gamma(\alpha)\Gamma(\beta)} h^{-2}\left(\frac{\beta}{\alpha}\right)^{1/2} \frac{\Gamma(\alpha)}{\Gamma(\beta)} K_{\alpha-\beta}\left(2\sqrt{\beta} \alpha h\right) dh.
\]

(30)

where \(\zeta = w_\text{eq} / 2\sigma_R \) is the ratio between the equivalent beam width at the Rx and the PEIs standard deviation. For the gamma-gamma distribution model, Eq.(30) can be simplified using Meijer G-function [38]

\[
p(h) = \frac{(\alpha \beta)^{\alpha/2}}{\beta^{\alpha/2} a_{\beta h}^\alpha} G_{\alpha,\beta}^{\alpha,0}(\alpha \beta a_{\beta h}^{\alpha/2}) \left(\frac{\sigma_R}{\beta} - 1, \alpha - 1, \beta - 1\right).
\]

(31)

Therefore, the average BER can be realized by substituting Eq. (31) into Eq. (28), which gives [22]
5. NUMERICAL RESULTS AND DISCUSSION

In this section, the performance of the three system models, namely, FSO/IDMA, TWR-FSO PNC and 1-MUD FSO PNC, have been evaluated in terms of the BER against the energy-to-noise ratio \(E_b/N_0 \), where \(E_b \) is the bit energy, under the influence of the channel impairments such as path loss, atmospheric turbulence and PEs. The strength of the irradiance fluctuation can be determined through the value of Rytov variance \(\sigma_R^2 \). This value assumed to vary between 0.1 ≤ \(\sigma_R^2 \) ≤ 1 for weak turbulence and \(\sigma_R^2 >> 1 \) for moderate-to-strong turbulence regimes. We considered a TWR-FSO link with \(\lambda = 850 \) nm, path loss = 0.8 under the clear weather condition at \(V = 10 \) km with the standard deviation (jitter) of PE displacement \(\sigma_s = 0.3 \) m, normalized beam width \(w/L/a = 25 \) and normalized jitter \(\sigma_j/a = 3 \) [31, 32].

A. FSO/IDMA Model

In communication networks, MA is essential, and several techniques have been widely adopted, which permit multiple users to transmit and receive information at the same time to the base station in a given bandwidth with a given link reliability. Recently, IDMA as a special case of the code-division MA system has gained significant research attention, and it can be considered one of the most promising candidates for the uplink in future wireless communication systems. Moreover, MA techniques were also proposed in FSO based communication networks, and their performance was investigated under the weak, and strong atmospheric turbulence regimes [39,40]. In this paper, this technique is applied for the FSO communication link to allow multiple users to simultaneously share the same resource of atmospheric channels. In this scheme, the \(K \) users transmitted to their perspective destinations without the help of the RN.

\[
P_e = \frac{2(\alpha + \beta - 4)\xi^2}{\sqrt{\pi^2 \Gamma (\alpha) \Gamma (\beta)}} \times G_{R,\alpha}^{2.6} \left(\frac{\theta_s^2}{\alpha^2} \right)^{1 - \xi^2} \frac{1 - \xi^2}{2}
\]

(32)

\[
0 \leq \xi^2 \leq 1, \quad 0 \leq \delta \leq 2, \quad \frac{\sigma_R^2}{\sigma_s^2} \leq 1
\]

Fig. 5. Simulated BER performance again \(E_b/N_0 \) for FSO/IDMA system under weak turbulence conditions at \(L = 1 \) km under clear weather condition at \(V = 10 \) km and \(K = 2,3,6 \).

However, investigation of the performance FSO/IDMA system is simulated for different number of simultaneous user \(K \) = 2, 3 and 6 with the convolutional code at a rate \(R_c = 1/2 \) and the spreading code at a rate \(R_s = 1/8 \). The simulated BER performances of the system against \(E_b/N_0 \) over log-normal and gamma-gamma channels are shown in Figs. 5 and 6, respectively. The corresponding single user bound BER performance is also included for reference. In weak turbulence condition, we observed a degradation in the BER performance with respect to \(E_b/N_0 \) when \(K \) increases from 2 to 6 users. For instance, to achieve a BER of \(10^{-6} \), the \(E_b/N_0 \) gains are 5.5 and 13.2 dB for \(K = 2 \) and 6, respectively, under the influence of the atmospheric turbulence channel characterized by \(\sigma_R^2 \). The \(E_b/N_0 \) penalty is 8.1 dB for \(K = 2 \) compared to that of \(K = 6 \) under the strong turbulence condition. These results indicate that the system performance is highly sensitive to the atmospheric turbulence, which requires higher received optical power to overcome the BER degradation. Moreover, the simulated results reveal that the

Fig. 6. Simulated BER performance against \(E_b/N_0 \) for FSO/IDMA system under gamma-gamma distribution with \(K = 2,3,6 \), \(R_s = 1/2 \), \(R_s = 1/8 \), \(\lambda = 850 \) nm and \(L = 1 \) km under clear weather condition at \(V = 10 \) km.

Fig. 7. Simulated BER performance against \(E_b/N_0 \) of the FSO/IDMA system for different numbers of normalized beam width \(w/\alpha \) with fixed normalized jitter at \(\sigma_j/\alpha = 3 \) applying log-normal distribution.
Figure 8. Simulated BER performance against E_b/N_0 for FSO/IDMA system for different numbers of normalized beam width w_l/a with fixed normalized jitter at $\sigma_j/a = 3$ under strong turbulence.

BER performance is limited mainly by the MAI, which arises when there are number of users in the system. Additionally, scintillation affects the laser beam propagation and ultimately causes fluctuation of the received signal. Thus, the information encoded in the intensity of the carrier signal is much more prone to these impairments. Accordingly, for higher values of K, E_b/N_0 penalties are higher for weak and strong turbulence regimes. Subsequently, the system is unable to guarantee a reliable communication service for the entire turbulence strength regimes. Therefore, for $K = 2$ the simulated BER performance of the FSO/IDMA system is closer to the single user bound performance. To illustrate the effect of PEs on the performance of FSO/IDMA system, the influence of the beam width and jitter are considered. Figures 7 and 8 depict the simulated BER performance against E_b/N_0 under weak and strong turbulence regimes for a range of normalized beam width $w_l/a = 2, 4, 6$ and 10 with a fixed normalized jitter $\sigma_j/a = 3$, respectively.

Figure 9 displays the simulated BER performance against E_b/N_0 under weak and strong turbulence condition for a range of normalized jitter $\sigma_j/a = 2, 4$ and 6 with a fixed normalized beam width $w_l/a = 10$. The figures reveal that in FSO/IDMA widening the beam width can mitigate the effect of PEs, thus resulting in the BER performance approaching that of the single user bound. Meanwhile, narrowing the beam width will contribute to the problem of misalignment and beam wandering. As observed also, the system performance decreases when σ_j/a decreases. Therefore, the transceiver design with an optimum value of the beam width for higher values of normalized jitter in order to increase the robustness of the link in the presence of PEs was considered [35].

B. TWR-FSO PNC model

As the only essential requirement for an FSO system is the need for the line-of-sight (LOS) path between Tx and Rx, the relay-assisted FSO solution can be effectively used to establish communications between FSO nodes located over longer link distances. However, an FSO link severely suffers from strong turbulence and is far away from satisfying the typical BER targets for FSO applications within the practical ranges of E_b/N_0. Therefore, to combat fading and maintain acceptable performance levels, the relay-FSO technique is used by taking advantage of a shorter link or multiple hops between Tx and Rx. However, the TWR-FSO PNC scheme is adopted here to broaden the signal coverage for a given limited transmit power and mitigate fading over long transmission span (i.e., > 1 km). This model allows the two FSO nodes to exchange their information through a single RN with minimum transmission phases (MA and BC). This results in improved spectral efficiency, which in turn boosts the network throughput. The performance of the TWR-FSO PNC system for two users (i.e., $K = 2$) is evaluated by means of simulation for atmospheric turbulence with log-normal and gamma-gamma distributions. The simulations are run under the clear weather condition for $V = 10$ km, $L = 2$ km and $\lambda = 850$ nm.

Figure 10 presents the predicted BER performance for a FSO link between Tx and Rx using Eqs. (29) and (32) for weak and strong turbulence conditions, respectively, and the simulated BER performance of TWR-FSO PNC in terms of E_b/N_0 for a range of Rytov variance. In this model, the end-to-end link in TWR-FSO PNC was considered, where the RN performed PNC demapping on the superimposed received signal, which reduces the system complexity but at the cost of performance degradation at the destination nodes due to un-corrected errors at the RN. However, it was observed from the preliminary results that at higher E_b/N_0 (i.e., ≥ 8 dB) the performance of the TWR-FSO PNC model had a slightly worse BER performance than the predicted BER for higher turbulence levels. For example, at a BER of 10^{-4} and for $\sigma_0^2 = 0.5$ an additional E_b/N_0 of ~7dB is required compared to the case with $\sigma_0^2 = 0.2$. Moreover, it is worth stating that an end-to-end BER of TWR-FSO PNC was evaluated for two transmission phases in which the system will experience channel fading. This is caused by fluctuation of the signal strength while propagating over a communication channel that had a significant effect on performance of the system. Whereas the LOS FSO system consists of a single hop transmission phase. For example, to achieve a BER of 10^{-4} with a fading strength of $\sigma_0^2 = 0.5$, a E_b/N_0 gain of about 29 dB is required for the predict FSO system, whereas, to obtain the same BER for TWR-FSO PNC, 30 dB of E_b/N_0 gain is required.

The severity of the small-scale fading in the optical wireless channel is distance-dependent; therefore, in TWR-FSO to combat
However, the advantage of the TWR-FSO PNC is to reduce the complexity at the RN by performing a specialist detected-and-forward scheme in order to map the signal at the RN. This is in contrast to other traditional relay-assisted FSO system, which employs AF and DF strategies to process the signal at the intermediate node. In addition, TWR-FSO PNC increases the network throughput by reducing the transmission phases that are required to complete data exchange between two users.

C. I-MUD FSO Based PNC

A MUD technique is necessary to separate different users’ signals that share the same propagation media and improve the performance by jointly processing signals from all users. Thus, numerous suboptimal MUDs have been considered to mitigate interference with respect to the system performance, complexity, and the requirements with regard to the channel state information. In turbo processor, each decoder handles the data for a certain user only and disregards the others. Therefore, complexity of the decoder is independent of K. Hence, TWR-FSO PNC model is extended to allow multiple users exchanging information via a single RN over the FSO link when there is a direct link between them, as shown in Fig. 1. In this section, the performance of I-MUD TWR-FSO PNC model is investigated. The simulated BER performance for the proposed system in terms of E_b/N_0 for a given number of users $K = 4, 12$ and 20 under the weak atmospheric turbulence regime, and considering the path loss and PEs at $\lambda = 850$ nm under the clear weather condition at $V = 10$ km and $L = 2$ km (where the distance between a user and relay is 1 km) is presented in Fig. 12. The simulation result shows that there is an improvement in the BER performance for the I-MUD FSO PNC model compared to TWR-FSO PNC despite the increased number of simultaneous users. For instance, at a BER of 10^{-4}, the E_b/N_0 gains are $\sim 14, 10$ and 7 dB for I-MUD FSO PNC with respect to TWR-FSO PNC. Furthermore, the simulated BER performance for the system under consideration in terms of E_b/N_0 is evaluated under strong turbulence for $\lambda = 850$ nm and $L = 2$ km under the clear condition at $V = 10$ km for a number of users $K = 4, 8$ and 14, as shown in Fig. 13. Although the number of the concurrent users is increasing, the proposed
system offers improved BER performance. For example, at a BER of 10^{-4}, the E_b/N_0 gains are 28, 25, and 22 dB with respect to TWR-FSO PNC. It can be explained that by iteratively updating the transmitted symbol pair probabilities, the MUD produces more accurate a priori probabilities of the XOR-ed coded bits for the DECs, which can enhance the system performance. Additionally, an alternative mitigation scheme known as aperture averaging can be adopted to achieve improvement in the BER performance under turbulence-induced scintillation and PE conditions.

6. CONCLUSIONS

Physical layer network coding is a promising technique that has great potential for improving the achievable data rates of end-to-end flows through higher data transmission rates, thereby increasing the overall network throughput. We studied the performance of the TWR-FSO PNC transmission technique for FSO wireless networks when there is no direct path between the two communication nodes. The system was simulated for attainable BER performance by transmitting BPSK symbols over the weak and strong atmospheric turbulence fading channels, taking into account the other physical layer impairments including atmospheric attenuation and PE. In this paper, to allow multiple users to simultaneously share the same resources of FSO link, an IDMA technique was applied. We investigated the BER performance of the FSO/IDMA system over log-normal and gamma-gamma models. The result showed that there was E_b/N_0 penalty of -9 dB at a BER of 10^{-4} under strong turbulence for $K = 6$ with respect to single user bound resulting from the MAI and scintillation effects. Consequently, the simulation for the I-MUD FSO based PNC model was carried out, where multiple nodes could exchange information through a single relay over a FSO link when there is no direct link between them. The TWR-FSO technique was adopted to alleviate the influence of the scintillation by reducing the transmission range and increasing spectral efficiency. Additionally, the effect of I-MUD algorithm and chip-interleaving was considered to mitigate MAI. Simulation results showed an improved BER performance even for higher number of simultaneous users. For instance, new model offered -8 and 22 dB of E_b/N_0 gains to achieve a BER of 10^{-4} for $K = 20$, 14 with respect to TWR-FSO PNC under weak and strong turbulence regimes, respectively.

REFERENCES

