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Abstract: In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and 
tested in a stepwise 3D reconstruction method, including localized minimizing standard deviation of angles(L-MSDA), localized 
minimizing standard deviation of segment magnitudes(L-MSDSM), localized minimum standard deviation of areas of child faces 
(L-MSDAF), localized minimum sum of segment magnitudes of common edges (L-MSSM), and localized minimum sum of areas of 
child face (L-MSAF). Based on their effectiveness measurements in terms of form and size distortions, it is found that when two local 
regularities: L-MSDA and L-MSDSM are combined together, they can produce better performance. In addition, the best weightings for 
them to work together are identified as 10% for L-MSDSM and 90% for L-MSDA. The test results show that the combined usage of 
L-MSDA and L-MSDSM with identified weightings has a potential to be applied in other optimization based 3D recognition methods to 
improve their efficacy and robustness.  
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1  Introduction∗ 
 

 Toward a future manufacturing environment 
underpinned by Industry 4.0 technologies, object 
recognition is a precursor to many other important robotic 
tasks, including grasping, manipulation, inspection and 
assembly. 

3D object recognition from a 2D line drawing is a 
research topic related to machine intelligence and computer 
vision[1–2] and sketch-based interface and modeling[3]. 

A line drawing can be converted from freehand sketches 
involving sketch tidy-up processing[4–5]. It can also be 
derived from image segmentation or edge detection[6]. 
Another source for line drawing is from CAD packages 
such as AutoCAD®.  

Popular methods of 3D object recognition from 2D line 
drawing are optimization based inflation methods. Most of 
them assume that the face topology of a line drawing is 
known in advance. 

In general, optimization-based inflation methods 
iteratively change depths to vertices and test interim results 
with a set of compliance functions involving various 
regularities.  These methods treat the 3D object 
recognition from a 2D line drawing as a global 
optimization problem involving a large number of variables 
and a good number of image regularities with different 
weightings. Thus, the main problem with these methods is 
that they are computationally heavy and with no guarantee 
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for a good result when dealing with a complex drawing.  
In addition, various regularities are applied globally and 
guides for setting up weightings for regularity are unclear 
due to the lack of knowledge about their relative 
importance. 

The strategic solution to the problem has twofold. First, 
adopt a divide-and-conquer strategy to divide a whole task 
into multiple smaller and easy-to-solve ones at local level. 
Second, use most influential local regularities with 
effective weightings to reduce the problem complexity in 
optimization.      

 In Ref. [7], a divide-and-conquer strategy is applied to 
decompose a complex line drawing into component 
drawings or simpler ones and each simpler drawing can be 
recognized easily and locally. In Ref. [8], a level-by-level 
3D reconstruction method is explored to divide a global 
optimization-based 3D reconstruction from a complex 
drawing into multiple local reconstructions from a subset of 
the drawing, based on its face/surface connection graph. 

However, there is very little work on the development of 
local regularities and identification of their usages in terms 
of what regularities should be used together and how to set 
up their weightings. 

In this paper, a stepwise 3D reconstruction method is 
used for exploring local regularities for recognizing a 3D 
polyhedral object from its 2D axonometric drawing. As a 
result, it is found that two local regularities: L-MSDA and 
L-MSDSM need to be used together as a combined 
regularity and their weightings are 10% for L-MSDSM and 
90% for L-MSDA respectively. This combined local 
regularity has a potential to be applied in various 
optimization-based inflation methods in order to have 



 

 

better efficacy and robustness.  A prototype platform on 
Matlab® has been developed for case studies and evaluation. 
The evaluation results demonstrate that the proposed 
method is a good way to explore various regularities for 
objects with resolvable representations[9]. The contributions 
of this paper include: 

(1) Exploration and development of the localized 
regularities: L-MSDA, L-MSDSM, L-MSDAF, L-MSSM 
and L-MSAF and the development of a method to study 
their relative importance; 

(2) Identification of the usage for combining L-MSDA 
and L-MSDSM together; 

(3) Test cases from AutoCAD drawings. 
The paper structure is as the following. The related work 

and the utilized stepwise reconstruction method are 
presented in sections 2 and 3 respectively. In section 4, the 
exploration and identification of key local regularities and 
their usages are followed up before case evaluations in 
section 5. Finally, conclusions are drawn in section 6. 

 
2  Related work 

 
Early work on 3D recognition of an object from a line 

drawing is focused on line labelling[10–11], attempting to 
evaluate whether the drawing represents a valid solid object. 
An optimization-based inflation process has been then 
developed to reconstruct 3D objects. 

MARILL[12] observed that human minds prefer a simple 
interpretation over a complex one. But, how to measure the 
simplicity of a recognized object is not clearly and well 
defined. In Ref. [12], the simplicity is measured by 
minimizing the differences among angles created between 
lines at junctions across the reconstructed object. It is 
termed as the minimizing the standard deviation of angles 
(MSDA). LECLERE and FISCHLER[13] added face 
planarity, and LIPSON and SHPITALNI[14] added more 
image regularities into an optimization process, and 
demonstrated the ability to recognize a wide range of 
objects. ERIC and BROWN[15] replaced the MSDA with 
minimizing the standard deviation of segment magnitudes 
(MSDSM) and produced better results for some cases 
compared with MSDA. This research suggested searching 
for alternative regularities to reflect the simplicity 
measurement, which inspired our work here. 

VARLEY and MARTIN[16] found that the cubic corner 
property was particularly useful. A cubic corner is a 
junction where three mutually orthogonal planes meet, 
which can is derived and understood from MSDA. The 
relationship between a cubic corner in 3D and its 2D 
projection was established by PERKINS[17]. 

YONG and FANG[18] studied a direct 3D recognition 
method from a 2D drawing, requiring two sets of 
information from the drawing: a list of faces and a cubic 
corner. This research demonstrated that the use of face 
connections to trace down a reconstruction process could 
be an effective and accurate way to solve a 3D 

reconstruction problem. 
For reducing the complexity of a 3D reconstruction, LIU, 

et al[19], considered MSDA and face planarity as two most 
important constraints. SUN, et al[20], reviewed the usages of 
various regularities in literature and recommended a set of 
key regularities for general 3D reconstruction based on the 
automatic relevance determination method. It is believed 
that the regularities are not equally informative in the 
simplicity measuring and some may deal with mainly to 
noise.  

It is clear that many regularities have been used in 
previous research but their relative relationships are not 
known. This study demonstrates a way of studying their 
relationships or relative importance, exploring possible 
regularities further and identifying their usages. 

 
3  Stepwise 3D reconstruction Method 

 
3.1  Principles of the stepwise 3D reconstruction 
     method 

An engineering object can be represented by an isometric 
drawing or oblique drawing with or without hidden lines 
(Fig. 1). The understanding of a 2D drawing into a 3D 
object can be a component-based method grounded on a 
theory of human image understanding[21] or a global 
optimization based method[13]. Interpreting a 3D object 
from a oblique drawing can be found in[22–24] .  

 

 
(a) Isometric drawing 

 
(b) Oblique drawing 

Fig. 1.  Axonometric projection 
 

A component based method solves a problem in a 
stepwise fashion and might be quick and reliable because it 
finds solutions step-by-step and at each step, the problem is 
less complicated for solving. Thus, in this study we utilized 
a stepwise 3D reconstruction method. 

This stepwise 3D reconstruction method is based on the 
theory of axonometric projection. Under an axonometric 
projection, a 3D point (X, Y, Z) will produce a 2D 

 



 

 

projection point (x, y). Their relation is 
 

[ ] [ ]0 1 1x y X Y Z= ⋅T ,       (1) 
 
where  
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T1 and T2 represent two rotation transformation matrices 
while T3 describes an orthographic projection. Under this 
transformation in Eq. (1), every 3D vertex V(X, Y, Z, 1) in 
the 3D object has a corresponding 2D point in the drawing 
represented as a vertex v(x, y, 0,1) from v=VT. 

T is not reversible. But when a constraint is introduced in 
each step, in a stepwise reconstruction process, saying that 
a point to be reconstructed is on a planar face (face 
regularity is applied explicitly here), T is then converted 
into a reversible matrix and it can be used to support 3D 
reconstruction by a reverse transformation. 

In generality, a planar face in 3D can be represented by 
Eq. (3), where (a, b, c) is the face normal and d is the 
distance to the origin: 

 
0aX bY cZ d+ + + = .            (3) 

 
Now, if this face is used as the constraint, T matrix can 

be updated as a reversible matrix R. 
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R .       (4) 

 
With R, for any known 2D point (x, y) on the drawing, its 

corresponding 3D point V can be obtained by Eq. (5), that 
is 

 
'=V vR .                  (5) 

 
3.2  Stepwise 3D reconstruction scheme with local  

optimization 
Based on the above ideas, our stepwise 3D 

reconstruction method was scheduled in the following 
steps: 

Step 1: Find faces[25–29] in the drawing and establish a 
face connection graph based on a resolvable 
representation[9] during the data preparation process. In a 
connection graph, a parent face connects to each child face 
via a connecting edge. Fig. 2(a) shows faces of an exemplar 
drawing and Fig. 2(b) gives its face connection graph. For 
example, connecting edges e1 and e2 with the parent face F1 
have two child faces F2 and F3 respectively. 

 

F1

F2
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F4
F5

e1
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(a) Faces within a 2D drawing 

F1

F2 F3

F4 F5

e1 e2

e5 e6

Level 0

Level 1

Level 2
 

(b) Face connection graph (FCG) 
Fig. 2.  Faces in a 2D drawing and their connection graph 

 
Step 2: Set the first reference face (the parent face) for 

3D reconstruction. The first face is selected from the root 
face in the FCG connection graph. Normally, it is parallel 
to one of datum planes and its orientation can be 
interactively specified so that the normal information 
regarding to parameters: a, b and c for the reference plane 
equation can be obtained and the fourth parameter d can be 
computed for Eq. (4). Let the face pass through the 
origin(d=0) and its normal vector (a, b, c) will be easily 
decided as (1, 0, 0), or (0, 1, 0), or (0, 0, 1).  For a given 
isometric projection, It is known that the project 
transformation parameters such as: α=45° and β=35.26° as 
used in AutoCAD and thus R can be formed from Eq. (4). 
This enables all vertices on the reference face to be 
reconstructed. 

Step 3: Reconstruct its child faces level-by-level (or 
step-by-step). Once a parent face is known in 3D and its 
connecting edges are known in 3D too. Their connections 
to child faces can be traced from the face connection graph.  
When reconstructing child faces, a local optimization-based 
strategy is applied for reducing the complexity of global 
optimization and having better efficacy. At each step, 
rotating the parent face in 3D about one of its 3D 
connecting edges, new possible child faces with proper 
connections to each other can be obtained. Therefore, after 
each rotation, local regularities in Eq. (11) (detailed in 
section 4) can be evaluated, and if the regularities are not 
met, the process will continue to search for a new rotation 
angle until a satisfied solution is found so that local 
regularities are met. 

Step 4: Move to the next level on the face connection 
graph and repeat Step 3 until all faces are reconstructed. 

Next section details how to explore best regularities and 



 

 

their usages for local optimization in our study. 
 

4  Establishment of local regularities for local 
optimization 
 

4.1  Searching localized regularities for optimization 
The face planarity was explicitly used in our study 

because face connections was used in the face 
reconstruction. 

We first explored the following localized regularities: 
L-MSDA, L-MSDSM, localized minimum standard 
deviation of areas of child faces(L-MSDAF), localized 
minimum sum of segment magnitudes of common edges 
(L-MSSM), and localized minimum sum of areas of child 
face(L-MSAF). They are described as follows. 

4.1.1  Localized MSDA regularity(L-MSDA) 
MSDA[12] is regarded as a global regularity[30]. Based on 

the concept of MSDA, we developed a localized MSDA 
(L-MSDA) regularity, that is, all evaluable angles at the 
current reconstruction level must be similar or with the 
minimum standard deviation. 

 

          
(a) L-MSDSM 

A

B C

D

L1

L2 L3

L4
e1

e2
e3

Fc
ϕ2 ϕ3 ϕ4

ϕ5

ϕ6ϕ1

 
(b) L-MSDA 

Fig. 3 Localized MSDA and MSDSM 
 
At the current level as shown in Fig. 3(b), the parent face 

P has three child faces connected to edges AB, BC and CD. 
The corresponding edge lengths are e1, e2 and e3. There are 
four vertices A, B, C and D connecting with unknown 
angles ϕ1 to ϕ6 and unknown edge segments L1 to L4.  
Therefore, six angles ϕ1 to ϕ6 and four line segments L1 to 
L4 on child faces are evaluable at the current level. While 
rotating the child face Fc, all these unknown variables 
change. 

For generality, suppose there are k vertices forming (k–1) 
edges which are linked to child faces. The known angles at 
k vertices are ßi (i=1, 2, …, k). The (k–1) edges have known 
edge lengths ej (j=1, 2, …, k–1). For unknown variables, 
there are N angles ϕu (u=1, 2, …, N) and M line segments 
Lv (v=1, 2, …, M). 

The localized standard deviation of (evaluable) angles is 
given by 
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1

1 ( )
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δ ϕ ϕ
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where ϕm is the average of the angles, i.e., 
1

/
N

u
u

Nφ
=
∑ . 

 

4.1.2  Localized MSDSM regularity(L-MSDSMA) 
Similarly, we adapted the concept of the global regularity 

MSDSM as in Ref. [15], and developed a localized one: 
L-MSDSM, that is, all edges meeting at junctions 
associated with the parent faces must be similar or with the 
minimum standard deviation. 

At current reconstruction level, only the common edges 
are taken into consideration. That is, if there exist M 
common edges, as shown in Fig. 3(a), the standard 
deviation of segment magnitudes is represented as 
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1

1 ( )
M

v m
v

L L
M

σ
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= −∑ ,             (7) 

 
where Lv is the length of the vth common edge, and Lm is 

the average length of all common edges, i.e., 
1

/
M

v
v

L M
=
∑ . 

 

4.1.3  Localized minimum standard deviation 
of areas of child faces (L-MSDAF) 

Fig. 4(a) demonstrates multiple candidates for a child 
face C associated to its parent face P. Inspired from the 
regularities such as MSDA and MSDSM, and knowing that 
a triangle area is related to the triangle’s two adjacent edges 
and their interior angle, in terms of a·b·sin(ψ), as shown in 
Fig. 4(b), we developed the minimum standard deviation of 
areas of child faces as a regularity and hoped it could have 
a coupled effect of MSDA and MSDSM. 

 

 
(a)  

 



 

 

(b)  
Fig. 4.  Multiple candidates for a child face 

 
Let the parent face P has G child faces to be 

reconstructed at current level.  The areas of child faces are 
Ai (i=1,…,G), the standard deviation of areas of child faces 
ξ is: 

 

2

1

1 ( )
G

i m
i

A A
G

ξ
=

= −∑ ,              (8) 

 
where Am is the average area of all connected child faces, 

i.e., 
1

/
G

i
i

A G
=
∑ . 

 

4.1.4  Localized minimum sum of segment magnitudes 
of common edges (L-MSSM) 

As a general principle, humans tend to interpret a 3D 
object as simple or compact as possible from a 2D image. 
From this principle, we designed another local regularity 
attempting to make the reconstructed object simple. It is the 
minimum sum of segment magnitudes of common edges 
(L-MSSM).  

 

1

M

v
v

Min L
=
∑ ,               (9) 

 

4.1.5  Localized minimum sum of areas of child 
face (L-MSAF) 

Similar to L-MSSM, we developed the minimum sum of 

areas of child faces. The localized minimum sum of areas 
of child face (L-MSAF) is represented as 

 

1

G

i
i

Min A
=
∑ .              (10) 

 
4.2  Evaluating effectiveness of regularities 

After developing the five localized regularities, in order 
to identify key regularities, we conducted an effectiveness 
evaluation. 

A non-regular pentagonal prism and its variations were 
used in our tests. The test prism is shown in Fig. 5 and its 
height is 70.  Nine variations were created by keeping its 
top section and the height unchanged meanwhile scaling 
the bottom section about its center with scaling factors 
(SF= 3, 2.5, 2, 1.5, 1, 0.8, 0.5, 0.3 and 0.1 respectively).  
Some variations are shown in Fig. 6. 

 

 

Fig. 5 test prism 
 

        SF=3                                                         SF=2.5                              SF=1.5                                                       SF=1.2

        SF=0.8                                                        SF=0.5                              SF=0.3                                                       SF=0.1
 

Fig. 6.  variations of the original prism for testing 
 

During the test, for each case, we used the top face as the 
parent face to construct its child faces.  During a 
reconstructing, the parent face was rotated about a 
connecting edge and its child faces were then constructed 

and evaluated with single regularity.  Note that the child 
faces were sharing a common edge between two of them, 
therefore, all child faces were constructed in one go after 
each rotation. 



 

 

After receiving a reconstructed result, the effectiveness 
of the corresponding regularity was examined to see how 
the reconstructed was close to the original one. The 
effectiveness was measured by two factors: form and size 
distortions. The former was calculated as a relative angle 
error Δβ.  For each test case, the ground truth value of the 

angle β, as shown in Fig. 5, was known, giving Δβ= abs (α 
– β)/β as a measure. The latter was similarly calculated as a 
relative area error Δa between the true surface area(a0) and 
the reconstructed surface area(ac), that is, Δa = abs (ac – 
a0)/a0. The test results are shown in Table 1. 

 
Table 1. Effectiveness test results of the designated regularities 

Operation  
index 

Test Cases 

Ground True 
values 

L-MSDSM L-MSDA L-MSDAF L-MSSM L-MSAF 

Angle 
β 

Area 
a0 

Angle 
α 

Area 
ac 

angle 
α 

Area 
ac 

angle 
α 

Area 
ac 

angle 
α 

Area 
ac 

angle 
α 

Area 
ac 

1 SF=3.0 
Calculated  49 57369 45 55623 82 80394 46 56047 19 46636 5 43527 

errors/% 
 

–8 -3 67 40 -6 -2 -61 -18 -90 -24 

2 SF=2.5 
Calculated 57 43961 54 42753 79 56338 55 43147 25 34025 10 31760 

errors/% 
 

–5 -3 39 28 -4 -2 -56 -23 -82 -28 

3 SF=2 
Calculated 67 33465 64 32344 77 38002 67 33465 34 24774 16 23061 

errors/% 
 

-4 -3 15 14 0 0 -49 -26 -76 -31 

4 SF=1.5 
Calculated 78 25403 77 25047 80 26156 80 26156 48 18740 27 17446 

errors/% 
 

-1 -1 2 3 2 3 -38 -26 -65 -31 

5 SF=1.2 
Calculated 85 21645 85 21645 85 21645 86 21999 57 16116 37 15170 

errors/% 
 

0 0 0 0 1 2 -33 -26 -56 -30 

6 SF=1 
Calculated 90 19595 3 18160 90 19595 82 17379 64 14752 43 13926 

errors/% 
 

-97 -7 0 0 -9 -11 -29 -25 -52 -29 

7 SF=0.8 
Calculated 95 17771 95 17771 96 18114 86 15467 70 13468 50 12814 

errors/% 
 

0 0 1 2 -9 -13 -26 -24 -47 -28 

8 SF=0.5 
Calculated 102 15191 103 15520 105 16262 99 14349 80 11790 60 11260 

errors/% 
 

1 2 3 7 -3 -6 -22 -22 -41 -26 

9 SF=0.3 
Calculated 107 13708 108 14042 110 14817 105 13129 87 10710 66 10213 

errors/% 
 

1 2 3 8 -2 -4 -19 -22 -38 -25 

10 SF=0.1 
Calculated 111 11951 112 12265 116 13985 111 11951 93 9519.7 72 9098.2 

errors/%   1 3 5 17 0 0 -16 -20 -35 -24  

 

 

 
Fig. 7.  Radar chart of the form distorsions 

The relationship between the ground true angles and 
corresponding reconstructed angles for each regularity is 
shown in Fig. 7 as a Radar chart. From Fig. 7, the following 

points are clearly indicated. First, two regularities of 
L-MSSM and L-MSAF always produce a big angular (or 
form) distortion, thus, they are not good enough to be a 
candidate as a key regularity. For L-MSDAF, its angular 
errors are negative for most of cases and worst around 90 
degrees, thus, it is still not an ideal choice. Now looking at 
L-MSDA and L-MSDSM, for some cases they are similar 
and quite close to the true value, and for the others, their 
errors are complemented to each other, i.e., when 
L-MSDSM produces positive errors such as for index 6 and 
index 1, L-MSDA produces negative errors for the same 
cases. This phenomenon is also observed from the area 
errors in Fig 8. This suggests that it would be better to use 
both of them as a combination. 

 



 

 

 
Fig. 8.  Ground true areas against reconstructed areas 
 

4.3  Identifying weights for establishing the local  
regularities 

From the above observations, we decided to test a 
combined regularity: 

 
Min( ) Min( )a bτ σ δ= ⋅ + ⋅ ,        (11) 

 
a and b are weightings for L-MSDSM and L-MSDA 
respectively. We constrained the weightings a and b with 
a+b=1 and a, b>0. 

In order to identify weightings for the combined usage of 
L-MSDA and L-MSDSM, different weighting schemes 
were tested as a varying from 0%, 10%, ..., to 100%. The 
test results are shown in Table 2. 

 
Table 2.  Form distortions against different weighting schemes 

 
True Angle 

 β 
weighting a 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

SF=3.0 
Calculated  49 82 49 47 46 46 45 45 45 45 45 45 
errors/% 

 
67 0 –4 –6 –6 –8 -8 -8 -8 -8 -8 

SF=2.5 
Calculated 57 79 57 55 55 54 54 54 54 54 54 54 
errors/% 

 
38.6 0 -3.5 -3.5 -5 -5 -5 -5 -5 -5 -5 

SF=2 
Calculated 67 77 67 66 65 65 65 65 65 65 64 64 
errors/% 

 
15 0 -1.5 -3 -3 -3 -3 -3 -3 -4.5 -4.5 

SF=1.5 
Calculated 78 80 78 77 77 77 77 77 77 77 77 77 
errors/% 

 
2.6 0 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 

SF=1.2 
Calculated 85 85 85 85 85 85 85 85 85 85 85 85 
errors/% 

 
0 0 0 0 0 0 0 0 0 0 0 

SF=1 
Calculated 90 90 90 90 90 90 90 90 90 90 90 3 
errors/% 

 
0 0 0 0 0 0 0 0 0 0 -97 

SF=0.8 
Calculated 95 96 95 95 95 95 95 95 95 95 95 95 
errors/% 

 
1 0 0 0 0 0 0 0 0 0 0 

SF=0.5 
Calculated 102 105 103 103 103 103 103 103 103 103 103 103 
errors/% 

 
3 1 1 1 1 1 1 1 1 1 1 

SF=0.3 
Calculated 107 110 108 108 108 108 108 108 108 108 108 108 
errors/% 

 
3 1 1 1 1 1 1 1 1 1 1 

SF=0.1 
Calculated 111 116 113 113 112 112 112 112 112 112 112 112 
errors/% 

 
4.5 2 2 1 1 1 1 1 1 1 1 

 

 
From Table 2, it is clear that the weighting scheme 10% 

L-MSDSM+90% L-MSDA gives the minimum form errors 
for all cases but the last one. Therefore, we established Eq. 
(12) as our key combined regularity with determined 
weightings and applied it in our reconstruction strategy for 
local optimization. 

 
Min ' 0.1 Min( ) 0.9 Min( )τ σ δ= + ,        (12) 

 
5  Tests and result analysis 

 

Our stepwise reconstruction method has been prototyped 
with the identified local regularities in Matlab® for all our 
case studies. We used isometric 2D drawings from 

AutoCAD as input for 3D recognition. The parent face and 
the corresponding face connection graphs for each case 
were produced manually during a data preparation process. 

 
5.1  Satisfactory cases 

First, we tested our local and stepwise reconstruction 
method with different cases, as shown in Table 3. The first 
four cases(top four rows) show the input drawings with 
vertices and face indexes. The face F1 was chosen as the 
root face for each case. The other cases give face indexes 
only. Each reconstructed result is displayed in two columns 
with different viewpoints. All the reconstructed results are 
satisfactory.  

 

 
 



 

 

Table 3. Examples of line drawings with analytical solutions 
Input-2D drawings Reconstructed result Another view 

1

2
3

4
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6

7 8
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5.2  Challenging/failed cases 

During our tests, we met some challenging cases. In 
general, if an object does not have solvable sequences as 
discussed in[9] such as Sugihara torus, as is shown in Fig. 9, 
our method will fail to solve its reconstruction problem. 

 

 

Fig. 9 Sugihara torus 
 

6  Conclusions 
 

(1) The proposed stepwise 3D reconstruction method 
with local regularities can recognize polyhedral objects 
with resolvable presentations, and it provides a way to 
decompose a complex reconstruction problem into simpler 
local optimization problems.  

(2) Two localized regularities namely localized MSDA 
(L-MSDA) and localized MSDSM(L-MSDSM) need to be 
utilized together and best weightings for their usage are 
10% L-MSDSM and 90% L-MSDA. 

(3) The combined local regularity can be adopted in 
other divide-and-conquer reconstruction methods. 

(4) In the future, the comparison study between local 
regularity-based solution and global regularity-based 
solution will be carried out to test their performance and 
suitability. 
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