A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

Dimitrios Sisiaridis
University of Northumbria
Newcastle, UK, NE1 1ST
d.sisiaridis@unn.ac.uk

Nick Rossiter
University of Northumbria
Newcastle, UK, NE1 1ST
nick.rossiter@unn.ac.uk
http://computing.unn.ac.uk/staff/CGNR1/

Michael Heather
Ambrose Solicitors St
Bede’s Chambers
Jarrow NE32 5JB
United Kingdom
michael.heather@cantab.net
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

– In modern heterogeneous interoperable systems such as **Distributed Information Systems (DIS)**
 • higher-order operations are needed as same conditions applied in different systems may lead to unpredictable results

– **Security** for Distributed Information Systems
 • Can be achieved by securing the processes and the channels used for their interactions and by protecting the resources against unauthorized access
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

Fig 1: Security in distributed information system
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

– Security is a higher order activity, related to issues as:

 • **data integrity**
 – enforcement of database integrity constraints
 – concurrency control
 – backup and recovery procedures, within
 – an overall security and access control framework

 • **interoperability**
 – among complex heterogeneous systems
 – a global requirement of higher order
 – cannot be handled in a complete and decidable manner by axiomatic methods such as first order predicate calculus
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

- Current security approaches are characterized by their locality
 - They can be seen as first-order activities
- Organizations usually respond to security threats on a piecemeal basis following hardware and software solutions
 - inevitably leave gaps and generate inconsistencies, which can be exploited by intruders
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

- **Bottom-up** approaches, such as *risk analysis* and *risk management*, are subjective
- **Top-down** approaches (e.g. *baseline* approaches), such as *ISO/IEC 27001:2005* specification and the *ISO/IEC 17799:2005 Code of Practice*, leave the choice of control to the user
- A complete security strategy needs to be layered
- A promising solution is to include security considerations as *core processes* of the system itself.
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

- A holistic approach with natural closure seems necessary to describe a complete and global view.
 - Based on the CIA security principles, namely confidentiality, integrity and availability
 - Focused on securing the infrastructure itself by forcing users to adopt best security practices while ensuring that the system is “secure by design” rather than by post-rational customization
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

– In the context of Distributed Information Systems
 • A distributed computation M, e.g. a distributed transaction, is composed of a dynamic group of processes P running on different resources and sites expressed in the form of a group of communication channels W
 • The processes P:
 – Have a disjoint address space
 – Communicate with each other by message passing via W
 using a variety of mechanisms, including unicast and multicast
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

- **Category theory** provides a formal approach to process simply by the use of the **arrow**
 - It is inherently holistic
 - and with intrinsic natural closure

- A **category**:
 - A *class*, consisting of arrows between objects
 - It provides a much greater power than functions between sets
 - It is also of the nature of a *type*
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

– Fundamental category theory shows that for physical existence the real world operates as a **Cartesian Closed Category** (that is a category of *real world objects*)

– It has been shown in previous work that, any realizable system can be conceptually expressed using *four interchangeable levels* in categorical terms (Figures 2 & 3)
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

Fig 2: Natural composition of adjoint functors
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

Fig 3: Four levels defined with contravariant functors and intension-extension pairs
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

- **Adjointness** characterizes the unique relationship between these *Cartesian Closed Categories*

 - *Interoperability* is expressed in terms of the adjunction of the adjoint functors in Figure 4.
 - *Naturality* is based on the ordering and interoperability of the two free and open represented category systems

- From an **application** viewpoint, a useful view of an adjunction is that of *insertion in a constrained environment*

 - The unit η can be thought of as quantitative creation, the counit ε as qualitative validation (Figure 5)
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

Fig 4: Adjointness between two systems
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

Fig 5: Adjunction between two systems L & R.
(a) the unit of the adjunction,
(b) the co-unit of the adjunction,
(c) adjoint functors $F \& G$
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

The proposed Holistic Security Framework is developed in two parallel stages:

- In stage 1, security entities such as objects and object hierarchies are *categorified* into Cartesian Closed Categories.

- In stage 2, distributed computations, e.g., distributed transactions, between processes or groups of processes (each one consisted of a series of events), can be broken up into a series of composed adjoints.
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

– The holistic security architecture, in categorical terms, can be visualized as mappings between pairs of adjoint functors

– For example:

 • *Local extensionalities*, e.g. local security policies in the form of comma categories, are interconnected one with another through *global intentionality* e.g. global security policy or meta-policy framework
A Holistic Security Architecture for Distributed Information Systems – A Categorical Approach

– Summary

• Current security approaches are characterized by their locality and are based on axiomatic set theory, which offend Gödel.

• But, security for heterogeneous distributed information systems is based on higher order activities.

• The object-oriented approach, in the context of distributed information systems security, needs to be founded in applied category theory to be complete and decidable

• A holistic, modular security approach provides natural closure and follows the ‘process’ approach of the DIS itself