Instabilities of Couette-Taylor (CT) flow between two rotating cylinders are the cornerstone of 20th century studies of hydrodynamics [1]. In 1917 Rayleigh found a necessary and sufficient condition for the centrifugal instability of CT flow of an ideal fluid between cylinders of infinite length with respect to axisymmetric perturbations [2]. Taylor extended Rayleigh's result to viscous CT flow and computed seminal linear stability diagrams that perfectly agreed with the experiment at moderate angular velocities [3].

Despite the fact that the Couette-Taylor flow has been studied, theoretically and experimentally, for more than a century, the past decade has seen a true renaissance of this classical subject caused by increased demands for active development of laboratory experiments with liquid metals that rotate in an external magnetic field [4]. The prevalence of resistive dissipation over viscous dissipation in liquid metals dictates unprecedentedly high values of the Reynolds number (Re ∼ 10^6) at the threshold of the magnetorotational instability (MRI) of hydrodynamically stable quasi-Keplerian flows, which is currently considered to be the most probable cause of turbulence in astrophysical accretion disks [5].

By methods of modern spectral analysis, we rigorously find distributions of eigenvalues of linearized operators associated with an ideal hydromagnetic Couette-Taylor flow. The transition to instability in the limit of a vanishing magnetic field has a discontinuous change compared to the Rayleigh stability criterion for hydrodynamical flows, which is known as the Velikhov-Chandrasekhar paradox.

DOI: 10.1103/PhysRevE.84.065301 PACS number(s): 47.35.Tv, 46.15.Ff, 47.32.–y, 47.85.L–
and the other set contains purely imaginary eigenvalues. The unstable real eigenvalues converge to the zero accumulation point when $\Omega_1 \to 0$ for fixed $\Omega_2 > 0$ (where $a > 0$), whereas the stable imaginary eigenvalues persist across $\Omega_1 = 0$.

(III) For any magnetic field ($b_0 \neq 0$), co-rotating cylinders ($\Omega_1, \Omega_2 > 0$), and an ideal nonresistive hydromagnetic flow, we prove that there exist two sets of eigenvalue pairs and both sets contain only purely imaginary eigenvalues for $0 < \Omega_1 < \Omega_2$. One set remains purely imaginary for $\Omega_1 > \Omega_2$ but the other set transforms to the set of real eigenvalues along a countable sequence of curves, which are located for $\Omega_1 > \Omega_2$ and approach the diagonal line $\Omega_1 = \Omega_2$ (c = 0) in the limit $b_0 \to 0$. One pair of purely imaginary eigenvalues below the corresponding curve transforms into a pair of unstable real eigenvalues above the curve. No eigenvalues pass through the origin of the complex plane in the neighborhood of the line $a = 0$, even if b_0 is close to zero.

(IV) Under the same conditions but for counter-rotating cylinders with $\Omega_1 < 0$ and $\Omega_2 > 0$, we show the existence of four sets of eigenvalue pairs, which are either purely imaginary or real. The unstable eigenvalues bifurcate again along a countable sequence of curves, which are located for $\Omega_1 < 0$ and approach $\Omega_1 = 0$ in the limit $b_0 \to 0$. The purely imaginary pair of eigenvalues above the curve turns into a purely real pair of eigenvalues below the curve.

Although the results (I) and (II) partially reproduce the conclusions of Synge [11], the existence of zero eigenvalues of infinite multiplicity at the Rayleigh threshold is emphasized here. A similar coalescence of all eigenvalues at the zero value occurs also in the Bose-Hubbard dimer [12]. Results (III) and (IV) are unique, to the best of our knowledge. Numerical evidence of these results can be found in Ref. [13].

The rest of our Rapid Communication is devoted to the proofs of the above results and their numerical illustrations. We take the equations for an ideal hydromagnetic fluid [9]

$$\mathbf{u}_r + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla \left(p + \frac{1}{2} |\mathbf{b}|^2 \right) + (\mathbf{b} \cdot \nabla)\mathbf{b},$$

$$\nabla \cdot \mathbf{u} = 0, \quad \nabla \cdot \mathbf{b} = 0,$$

(3)

where p is the pressure term determined from the incompressibility condition $\nabla \cdot \mathbf{u} = 0$. We linearize (3) at the basic flow (1) and use the standard separation of variables for symmetric (θ-independent) perturbations

$$\mathbf{u} = \mathbf{u}_0 + \mathbf{U}(r)e^{\gamma t + ikz}, \quad \mathbf{b} = \mathbf{b}_0 + \mathbf{B}(r)e^{\gamma t + ikz},$$

(4)

where γ is the growth rate of perturbations in time and $k \in \mathbb{R}$ is the Fourier wave number with respect to the cylindrical coordinate z. Performing routine calculations [8], we find the system of four coupled equations for components of \mathbf{U} and \mathbf{B} in the directions of \mathbf{e}_r and \mathbf{e}_θ (denoted by $U_r, U_\theta, B_r,$ and B_θ) for

$$ikb_0(k^2 + L)B_r + 2k^2\Omega(r)U_\theta = \gamma(k^2 + L)U_r,$$

$$ikb_0B_\theta - 2aU_r = \gamma U_\theta,$$

$$ikb_0U_r = \gamma B_\theta,$$

$$ikb_0U_\theta = \frac{2c}{r^2}B_r = \gamma B_\theta,$$

(5)

where $L = -\partial^2_r - \frac{1}{r}\partial_r + \frac{1}{r^2}$ is the Bessel operator, which is strictly positive and self-adjoint with respect to the weighted inner product $(f, g) = \int_{r_0}^{R_0} r f(r)g(r)dr$. We note that the z components of \mathbf{U} and \mathbf{B}, as well as the pressure term, have been eliminated from the system of equations (5) under the condition $k \neq 0$.

For hydrodynamic instabilities of the CT flow, we set $b_0 = 0$, which yields uniquely $B_r = B_\theta = 0, 2aU_r + \gamma U_\theta = 0$, and a closed linear eigenvalue problem

$$\gamma^2(k^2 + L)U_r = -4k^2a\Omega(r)U_r, \quad R_1 < r < R_2, \quad (6)$$

subject to the Dirichlet boundary conditions at the inner and outer cylinders $U_r(R_1) = U_r(R_2) = 0$.

The operator L is an unbounded strictly positive operator with a purely discrete spectrum of positive eigenvalues $\{\mu_n\}_{n \in \mathbb{N}}$ that diverge to infinity according to the distribution $\mu_n = O(n^2)$ as $n \to \infty$. Inverting this operator for any real k and defining a different eigenfunction Ψ by $U_r = (k^2 + L)^{-1/2}\Psi$, we rewrite (6) in the form

$$\gamma^2\Psi = -aT\Psi, \quad T = 4k^2(k^2 + L)^{-1/2}\Omega(k^2 + L)^{-1/2},$$

(7)

where the self-adjoint compact operator T has eigenvalues $\{\gamma^2/a\}_{a \in \mathbb{N}}$ that accumulate to zero with $\gamma_n = O(n^{-1})$ as $n \to \infty$.

If $\Omega_1, \Omega_2 > 0$, then $\Omega(r) > 0$ for all $r \in [R_1, R_2]$ and T is a compact positive operator. Hence, all $\gamma_n^2 < 0$ if $a > 0$ and all $\gamma_n^2 > 0$ if $a < 0$. The condition $a = 0$ ($\Omega_2 R_2^2 = \Omega_1 R_1^2$) is the Rayleigh boundary, at which all eigenvalues are at $\gamma = 0$. The proof of (I) is complete.

If $\Omega_1 < 0$ and $\Omega_2 > 0$, then $a > 0$ but Ω is sign indefinite on $[R_1, R_2]$. Since T is a compact sign-indefinite operator, it has two sequences of eigenvalues accumulating to zero: One sequence has $\gamma_n^2 < 0$ and the other one has $\gamma_n^2 > 0$. This completes the proof of (II).

Figure 1(a) gives numerical approximations of the five positive and five negative squared eigenvalues γ^2 as functions of the parameter Ω_1 for fixed values of $\Omega_2 = 1, R_1 = 1, R_2 = 2, k = 1$. The dotted line shows the accumulation point $\gamma = 0$ for the sequences of eigenvalues.

For hydromagnetic instabilities, we express $B_r, B_\theta,$ and U_θ from the system of linearized equations (5) and find a closed linear eigenvalue problem

$$\gamma^2 + k^2b_0^2(k^2 + L)U_r = 4k^2\Omega(r)\left(R_2^2 - R_1^2\right)^2 \left(\frac{k^2b_0^2}{r^2} - \frac{\gamma^2}{a}\right)U_r,$$

(8)

subject to the same Dirichlet boundary conditions at $r = R_1, 2$.

If $b_0 = 0$ and $\gamma \neq 0$, system (8) reduces to (6), however, it is a biquadratic eigenvalue problem and hence has a double set of eigenvalues compared to (6).

Denoting $\lambda = \gamma^2 + k^2b_0^2$, we rewrite (8) as the quadratic eigenvalue problem

$$\lambda^2(k^2 + L)U_r + 4ak^2\lambda\Omega(r)U_r = 4k^2b_0^2\Omega^2(r)U_r.$$ \quad (9)

It follows again from the compactness of the operators $(k^2 + L)^{-1}\Omega$ and $(k^2 + L)^{-1}\Omega^2$ that the spectrum of
Here eigenvalues ν of (11) for $a \neq 0$ are continued with respect to the real values of ϵ to recover eigenvalues $\lambda = \nu^{-1}$ of (9) at the intersections with the diagonal $\nu = \epsilon$.

At $\epsilon = 0$, we recover the hydrodynamical problem (6). If $\Omega_1, \Omega_2 > 0$, then $\Omega(r) > 0$ for all $r \in [R_1, R_2]$ and eigenvalues $\{\nu_\nu(\epsilon)\}_{\epsilon \in \mathbb{N}}$ at $\epsilon = 0$ are strictly negative if $a > 0$ or strictly positive if $a < 0$. Moreover, $\nu_\nu(0) = O(n^2)$ as $n \to \infty$. Without loss of generality, let us consider the case $a > 0$. Each negative eigenvalue $\nu_\nu(\epsilon)$ is strictly increasing for large values of $|\epsilon|$ at any point ϵ_0, because

$$a\epsilon \frac{d\nu_n}{d\epsilon} \bigg|_{\epsilon=\epsilon_0} = 2\epsilon^2 k^2 b_0^2 \left(\frac{\Omega^2 - \nu_n}{\Omega \nu_n} \right) > 0, \quad (12)$$

where ν_n is the eigenfunction for the eigenvalue $\nu_n(\epsilon)$ in Eq. (11) at $\epsilon = \epsilon_0$. The right-hand side of (12) is always bounded, hence the eigenvalues $\{\nu_n(\epsilon)\}_{\epsilon \in \mathbb{N}}$ are continued to positive infinity as $|\epsilon| \to \infty$. As a result, there exist two countable sets of intersections of eigenvalues $\{\nu_n(\epsilon)\}_{\epsilon \in \mathbb{N}}$ with $\nu = \epsilon$: One set is for positive $\lambda = \nu^{-1}$ and the other set is for negative λ. Both sets accumulate at zero as $n \to \infty$. This completes the proof of (III).

If $\Omega_1 < 0$ and $\Omega_2 > 0$, then $a > 0$ but Ω is sign indefinite on $[R_1, R_2]$. In this case, again using the compact operator T in Eq. (7), there exist two sets of eigenvalues $\{\nu^\pm_n(\epsilon)\}_{\epsilon \in \mathbb{N}}$ of (11) at $\epsilon = 0$. One set $\{\nu^-_n(0)\}_{\epsilon \in \mathbb{N}}$ is strictly negative with $\langle \Omega \nu^-_n, \nu^-_n \rangle > 0$ and the other set $\{\nu^+_n(0)\}_{\epsilon \in \mathbb{N}}$ is strictly positive with $\langle \Omega \nu^+_n, \nu^+_n \rangle < 0$. Because the signs of $\langle \Omega \nu^+_n, \nu^+_n \rangle$ are preserved for small $\epsilon \neq 0$, it follows from the derivative (12) that the eigenvalues $\{\nu^+_n(\epsilon)\}_{\epsilon \in \mathbb{N}}$ are convex upward for larger values of $|\epsilon|$ and the eigenvalues $\{\nu^-_n(\epsilon)\}_{\epsilon \in \mathbb{N}}$ are concave downward for larger values of ϵ. The curves of $\{\nu^+_n(\epsilon)\}_{\epsilon \in \mathbb{N}}$ may intersect but the intersection is safe (i.e., eigenvalues split without the onset of complex eigenvalues) because the eigenvalue problem (11) is self-adjoint for any real ϵ and hence multiple eigenvalues are always semisimple. If the signs of $\langle \Omega \nu^+_n, \nu^+_n \rangle$ are preserved along the entire curves, then we conclude on the existence of four sets of intersections of these eigenvalues with the main diagonal $\nu = \epsilon$: Two sets give positive eigenvalues λ and the other two sets give negative eigenvalues. The conclusion is not affected by the fact that $\langle \Omega \nu^+_n, \nu^+_n \rangle$ may vanish along the curve. If this has occurred, then $\langle \Omega \nu^+_n, \nu^+_n \rangle$ has at least a simple zero due to analyticity in ϵ and hence the derivative (12) is infinite, which implies that the corresponding curve $\nu^+_n(\epsilon)$ goes to plus or minus infinity for finite values of ϵ. This argument completes the proof of (IV).

Figure 1(b) shows numerical approximations of the five positive and five negative squared eigenvalues ν^2 as functions of Ω_1 for fixed values of $\Omega_2 = 1$, $R_1 = 1$, $R_2 = 2$, $b_0 = 0.4$, and $k = 1$. Cascades of instabilities arise for $\Omega_1 > \Omega_2$ and $\Omega_1 < 0$ by subsequent merging of pairs of purely imaginary eigenvalues γ at the origin and splitting into pairs of real (unstable) eigenvalues ν. For $\Omega_1 > 0$, the two sets of squared eigenvalues accumulate to the value $\nu^2 = -k^2 b_0^2 \lambda^2 (\lambda = 0)$, which is shown by the dotted line. For $\Omega_1 < 0$, a more complicated behavior is observed within each set: The squared eigenvalues coalesce and split safely, indicating that each set is actually represented by two disjoint sets of the squared eigenvalues.
To study the instability boundaries in Eq. (8), we substitute \(\gamma = 0 \) and regroup terms for \(b_0 \neq 0 \) to obtain

\[
b_0^2(k^2 + L)U_r = 4(\Omega_1 - \Omega_2) \frac{R^2_1 R^2_2 \Omega(r)}{(R^2_1 - R^2_2)^2} U_r. \tag{13}
\]

If \(\Omega_{1,2} > 0 \), it follows from Eq. (13) that there exists a countable set of bifurcation curves for \(\Omega_1 > \Omega_2 \), because \(L \) is a positive operator and \(\Omega(r) \) is strictly positive. On the other hand, in the quadrant \(\Omega_1 < 0 \) and \(\Omega_2 > 0 \), there exists another set of bifurcation curves, because \(\Omega \) is sign indefinite and \(L \) is unbounded.

To study further the instability boundaries, we notice that \(\Omega(r) \) depends on both \(\Omega_1 \) and \(\Omega_2 \). Therefore, we shall rewrite (13) as the quadratic eigenvalue problem with the unique eigenvalue parameter \(c \) in Eq. (2)

\[
b_0^2(k^2 + L)U_r = \frac{4 \Omega_2}{r^2} c U_r + \frac{4}{r^2} \left(1 - \frac{1}{L} \right) c^2 U_r. \tag{14}
\]

Figure 2 shows numerical approximations of the first five curves of zero eigenvalues in the upper half of the \((\Omega_1, \Omega_2)\) plane for fixed values of \(R_1 = 1, R_2 = 2, b_0 = 0.4 \), and \(k = 1 \) and their mirror reflections in the lower half plane. The dotted curves show the diagonal line \(\Omega_1 = \Omega_2 \), the Rayleigh line \(\Omega_1 R^2_1 = \Omega_2 R^2_2 \), as well as the axes \(\Omega_1 = 0 \) and \(\Omega_2 = 0 \). It is clear that each curve approaches the diagonal line \(\Omega_1 = \Omega_2 \) for large values of \(\Omega_{1,2} \). When \(b_0 \) becomes small, they approach closely to the line \(\Omega_1 = \Omega_2 \).

The above conclusions also follow from a rigorous analysis of the quadratic eigenvalue problem (14). In the limit \(\Omega_2 \to \infty \), we can set \(\lambda = \Omega_2 c \) as a unique eigenvalue and treat the last term in Eq. (14) as a small bounded perturbation to the unbounded operator. In the limit \(b_0 \to 0 \), we set \(c = b_0^2 \lambda \) and again treat the last term in Eq. (14) as a small perturbation. In both cases, eigenvalues \(\lambda \) approach to the first eigenvalues of the positive unbounded operator \(r^2(k^2 + L) \). We note that this approximation is not uniform for all bifurcation curves and only applies to the finitely many bifurcation curves.

To summarize, we gave mathematically rigorous proofs of the distributions and bifurcations of eigenvalues of linearized operators associated with an ideal hydromagnetic CT flow. This work lays a firm basis for perturbation theory in small dissipation and resistivity that will enable an identification of unstable modes of the nonideal MRI.

O.K. thanks Frank Stefani for fruitful discussions. D.P. is supported by the AvH Foundation. G.S. is supported by DFG through the Excellence cluster SimTech.