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Both metaphysical and practical considerations related to time inversion have intrigued scientists
for generations. Physicists have strived to devise and implement time-inversion protocols, in par-
ticular different forms of “time mirrors” for classical waves. Here we propose an instantaneous time
mirror for quantum systems, i.e. a controlled time discontinuity generating wave function echoes
with high fidelities. This concept exploits coherent particle-hole oscillations in a Dirac spectrum in
order to achieve population reversal, and can be implemented in systems such as (real or artificial)
graphene.

I. INTRODUCTION

The physicists’ fascination with time inversion goes
back a long time, as testified by the famous 19th-century
argument between Loschmidt and Boltzmann concern-
ing the arrow of time [1, 2]. Deep theoretical and meta-
physical considerations are not the sole reasons behind
it, though. The pioneering work of Hahn in 1950 [3], in
which the dynamics of an ensemble of nuclear spins was
successfully time inverted, gave birth to the concept of
spin echo, now central to numerous imaging techniques
[4]. A spin echo, at least in its most basic form, can be
understood in terms of “population reversal” in two-level
systems: an ensemble of initially uniformly aligned spins
precesses around an applied magnetic field, progressively
losing relative phase coherence; a microwave π-pulse is
then used to simultaneously flip the spins, making them
effectively evolve “back in time” regaining (“echoing”)
the initially aligned, phase coherent configuration.

Another successful approach to time inversion has been
developed for classical waves based on time-reversal mir-
rors implemented with acoustic [5, 6], elastic [7], electro-
magnetic [8] and recently water waves [9, 10]. It relies
on the fact that any wave field can be completely de-
termined in a volume by knowing only the field at any
enclosing surface (a spatial boundary). It requires the
use of receiver-emitter antennas positioned on the surface
that record an incident wavefront and later rebroadcast
a time-inverted copy of the signal. If an initially local-
ized pulse, e.g. a wave emitted from any source, is left
to evolve for a certain time and then in this manner t-
inverted on a boundary, it can trace its way back to the
initial source and there refocus or “echo” [11–13]. This
process is difficult to implement in optics because of the
lack of controllable antennas [14], and a solution to cre-
ate time-reversed waves is to work with monochromatic
light and use three- or four-wave mixing [15, 16].

A potent alternative to wave field control via spatial
boundaries is the manipulation of time boundaries [17–
23]. Specific time reversal protocols for one-dimensional
(1D) propagation were proposed [24, 25] and experimen-
tally realized [26] in the kicked rotator model of atomic

matter waves (for a narrow range of momenta), and pro-
posed for electromagnetic waves [27, 28], the latter based
on time- and space-modulated perturbations of a pho-
tonic crystal with linear dispersion. The latest develop-
ment in this context is the concept of an instantaneous
time mirror, which has been verified experimentally [29]
in the field of gravity-capillary waves: A sudden modifi-
cation of water wave celerity obtained from a vertical ac-
celeration of a bath of water creates a time-reversed wave.
This time disruption realizes an instantaneous time mir-
ror in the entire space. Such a mirror can be viewed as
the analogue in time to a standard mirror that acts on
space.

In spite of these successes for classical waves, a long
standing challenge remains: are Quantum Time Mirrors
(QTMs) feasible for spatially extended quantum waves?
In other words, can one time-invert the motion of a quan-
tum wave propagating in space? Notice that unlike spin
echoes, which deal with (an ensemble of) discrete two-
level systems, one is here dealing with a continuous de-
gree of freedom describing a wave function extending and
evolving coherently in space. A direct adaption of the
aforementioned classical wave strategies appears difficult:
On the one hand, recording and properly re-emitting
waves would require to measure and thereby massively
change the quantum state; on the other hand, the in-
triguing concept of a time mirror for water waves cannot
be transferred to wave functions due to the inherently dif-
ferent structure of the underlying differential equations
describing classical and quantum wave propagation.

Here we show that it is indeed possible to devise high-
fidelity (instantaneous) QTMs for the time evolution of
wave functions. We propose a concept of QTMs based
on (bosonic or fermionic) Dirac-like systems, such as
graphene, exploiting the “population reversal” principle
at the heart of spin echoes. Indeed, this approach uni-
fies two up to now distinct paradigms, the t-inversion
of a spatially extended wave and the generation of a
(pseudo)spin echo. Figure 1 gives a taste of its effective-
ness: an initially ~-shaped wave packet evolves in time
progressively losing its profile, until the action of the in-
stantaneous QTM, a short pulse at t = t0, inverts the
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FIG. 1. Echo in a Dirac quantum system. The absolute value of a ~-shaped wave packet is shown in real space (a.u.). The
intial wave packet (at t = 0) becomes completely blurred while propagating until t = t0. A fast quantum time reversal pulse
at t = t0 leads to a nearly perfect echo at t = 2t0. The right panel (at t = 3t0) shows a second echo after a further subsequent
pulse at t = 2.5t0. This simulation is done without disorder. The colorscale is the same in all snapshots, normalized to the
highest value of the modulus of the initial wave packet.

propagation and leads to a distinct echo at t = 2t0; the
subsequent echo at t = 3t0 is due to a further QTM pulse
at t = 2.5t0 (see movie in [30]). Experimentally there
are various ways of injecting electronic wave packets –
of simpler shape – into a system, notable ones includ-
ing quantum dots as single-electron sources [31] or short
voltage (“Leviton”) pulses [32].

II. QUANTUM TIME MIRROR - BASICS

The two-dimensional (2D) Dirac system considered
above could describe fermions in real [33] and artifi-
cial [34] graphene, or e. g. Dirac plasmons in metallic
nanoparticle lattices [35] and polaritons in a honeycomb
lattice [36]. In such systems the velocity is approximately
constant – it does not depend on the k-vector – and equal
in magnitude, but opposite in direction, on the upper and
lower Dirac cones. Our t-inversion protocol aims at in-
ducing a “population reversal”, say from the upper to the
lower Dirac cone, which corresponds to an inversion of the
velocity and thus effectively a propagation back in time.
This is achieved by applying a short, spatially extended
and (roughly) uniform perturbation opening a gap in the
spectrum: Once initial upper cone states suddenly find
themselves in the forbidden gap region, they start coher-
ent oscillations between the upper and lower branches
of the spectrum – akin to those responsible for Zitter-
bewegung. A proper tuning of such oscillations ensures
that, by the time the perturbation is switched off and
the gap closes, the states will end up in the lower Dirac
cone. [37] A protocol of this kind must ensure that the
initial wave function, a arbitrary coherent superposition
of particle-like k-modes at different (positive) energies,
keeps its shape while reforming as a coherent superposi-
tion of hole-like k-modes in the corresponding (negative)
energy window, and that the probability for this “rigid”
transition to the hole branch is as high as possible. As
we will see, the linearity of the dispersion plays here the

critical role. While the physical gap-opening mechanism
depends on the Dirac-like system considered [38], its sin-
gle crucial requirement is its non-adiabatic character as
quantified below.

The effective Dirac Hamiltonian reads

H = ak · σ +M(t)σz = H0 +H1, (1)

where the mass term

M(t) =

{
M0 , t0 < t < t0 + ∆t,
0 , otherwise,

(2)

acts as the time-dependent perturbation which temporar-
ily opens a gap. The eigenenergies and eigenstates of H0

are Ek,± = ±ak and ψ±(k) = 1√
2

(
1
±eiθk

)
, with θk the

polar angle in k-space. During the pulse the eigenenergies

of H are εk,± = ±
√
M2

0 + E2
k,±. In the time interval ∆t,

an initial H0 eigenstate is subject to oscillations, whose
cycle depends on the pulse strength M0 and duration ∆t.
The amplitude A to end up in the counter-propagating
H0 eigenstate at t = t0 + ∆t after the pulse can be tuned
by adjusting both parameters. A straightforward calcu-
lation yields (see Appendix A)

A(k) = 〈ψ±,k | e−
i
~H∆t | ψ∓,k〉

= − i√
1 + η2

sin
(
µ
√

1 + η2
)
,

(3)

where we introduced the dimensionless parameters η =
Ek,±/M0 and µ = M0∆t/~. The amplitude need be
maximized for optimal echo strength, which then re-
quires η � 1, µ ≈ π(n + 1/2), n ∈ Z, corresponding
to Ek,± � M0 ≈ π~/2∆t for n = 0. Notice that in a
fermionic system the counter-propagating states need be
empty. This is ensured e.g. if Fermi level (before injec-
tion of the wavepacket) is such that εF < −M0. The
reversal amplitude (3) is weakly k-dependent, a criti-
cal characteristic tied to the linearity of the dispersion,
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FIG. 2. Quantitative analysis of the echo strength. (a) Correlation C(t), Eq. (4), obtained from numerical propagation of
the ~-wave, see Fig. 1. Black circles mark the snapshot times. The solid black curve shows distinct echo peaks for the clean
Dirac system, Eq. (1). The insets show sketches of the Dirac-type dispersion with a gap opening at t = t0. Further curves
correspond to different disorder types: gap disorder with τgap ≈ 0.2t0 (red dotted), spatial disorder with τimp ≈ 0.8t0 (blue)
and τimp ≈ 0.2t0 (green). τimp and τgap are the respective elastic scattering times (see Sec. B in the Appendix). (b) Modulus
|A(k)| of the transition amplitude, Eq. (3), plotted as a function of parameters η and µ.

[39] which suggests the QTM to be highly effective in
a wide k/energy range. As we will see shortly, the nu-
merical simulations confirm this. In general, given an
initial wave packet ψ(r, 0) = (2π)−2

∫
d2kψ(k, 0)eik·r, a

convenient measure of the echo strength is given by the
correlation

C(t) =

∫
d2r |ψ(r, 0)||ψ(r, t)| (4)

between the moduli of the amplitudes at times 0 and t.
To illustrate the QTM effect, a complicated wave

packet resembling ~ is numerically propagated in time
(see Fig. 1). At times t0 and 2.5t0, a pulse with M0 =
8〈Ek〉 and µ = M0∆t/~ = π/2 is applied, with ∆t� t0.
Here 〈Ek〉 = a〈k〉 is the mean wave packet energy, i.e.
〈η〉 = 1/8. The snapshots in Fig. 1 demonstrate that
even after full destruction the spatial distribution of the
initial wave packet can be reconstructed. This is quanti-
fied and confirmed in Fig. 2a), showing the corresponding
correlator (4). At the echo time (t = 2t0+∆t ≈ 2t0), ma-
jor parts of the time propagated wave packet indeed re-
turn to the initial position. This QTM mechanism is not
limited to a single pulse: subsequent kicks at t = 2.5t0
and t = 3.25t0 cause further peaks, albeit of decreasing
size. The distinct echo peaks, based on the linear disper-
sion relation, arise since the kinetic phases accumulated
by each k-mode during forward (0 → t0) and backward
(t0 + ∆t → 2t0 + ∆t) propagation add up to zero (see
Appendix A).

The numerical simulations are based on the wave
packet propagation algorithm Time-dependent Quantum
Transport (TQT) [40]. The state is discretized on a
square grid and the time evolution is calculated for suffi-
ciently small time steps such that the Hamilton oper-
ator can be assumed time independent for each step.
We calculate the action of H on ψ in a mixed posi-

tion and momentum-space representation by the appli-
cation of Fourier Transforms. With this a Krylov Space
is spanned, which can be used to calculate the time evo-
lution using a Lanczos method [41].

For an arbitrary wave packet, the echo strength C(2t0+
∆t) is analytically given solely in terms of the amplitude
A(k), Eq. (3), and the wave packet at t=0 as

C(2t0+∆t) =

∫
d2r

∣∣∣ψ(r, 0)
∣∣∣ ∣∣∣ ∫ d2k

(2π)2
A(k)ψ(k, 0)eik·r

∣∣∣.
(5)

Figure 2b) shows the η- and µ-dependence of |A(k)|,
obtained from the time-reversal amplitude (3). One finds
extended stripes of high fidelity. To check this analytical
result we simulate the propagation of a normalized 2D
Gaussian wave packet with positive energy and small k-
space width ∆k � k0 compared to the absolute value
k0 of its mean wave vector, such that A(k) ≈ A(k0) for
all k-modes involved. Under these assumptions, Eq. (5)
reduces to C(2t0+∆t) ≈ |A(k0)| (see Appendix A), which
can be compared with the correlation C(2t0+∆t), Eq. (4),
obtained from full numerical time evolution. As the mean
difference between analytics and numerics is 0.03, only
the analytical plot is shown. Clearly, strong echoes can
be obtained in the full energy range 0 . η . 1.

III. DISORDER

We now investigate the QTM robustness against dis-
order. While this is typically present in a real sys-
tem, it should be emphasized that state-of-the-art hBN-
encapsulated graphene samples are effectively ballistic
over scales of several microns, [42] corresponding to
(transport) scattering times of several picoseconds. For
the sake of clarity, we keep the discussion at a qualita-
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tive level and refer the reader to Appendix B for quan-
titative details. We consider two types of disorder: a
static spatial disorder potential and a spatially random
pulse strength (referred to as “gap disorder”). Spatial
disorder enters into the Hamiltonian (1) as a time- and
(pseudo)spin-independent potential Vimp(r)σ0, where σ0

is the unit matrix in (pseudo)spin-space. Gap disorder is
instead given by Vgap(r)σz for t ∈ [t0, t0 + ∆t], i.e. only
during the pulse. Both random potentials are Gaussian
distributed with width uimp or ugap. As shown in Fig.
2a), the echo is clearly more sensitive to a static ran-
dom impurity potential than to gap disorder. This is
expected, and can be understood within the framework
of Loschmidt echo theory [12, 43, 44]: If a t-inversion
protocol is not perfect, the echo signal decays as a func-
tion of the propagation time t0. Spatial disorder reduces
the fidelity, since the QTM mechanism, even for an op-
timally calibrated pulse, achieves “population reversal”
without directly affecting the impurity scattering dynam-
ics. In other words, the QTM protocol does not lead to
Vimp(r) → −Vimp(r). In this sense elastic disorder has a
qualitatively similar effect to inelastic scattering, whose
effects are also not undone by the QTM. Gap disorder
plays in principle a similar QTM-breaking role. How-
ever, and contrary to spatial disorder, it is active only
during the very short pulse duration time ∆t � t0 and
thus causes only negligible echo losses, reflected in the
perfect agreement of the black line and dotted red line
in Fig. 2a). Our analysis also highlights a fundamental
difference between standard spin echoes and the present
wave function echo: while a spin echo decays because
of dynamical (inelastic) perturbations leading to T2, the
role of T2 is here played by the elastic scattering time τ .
This suggests an application of the QTM as a probe of
the quality of a sample – much as the spin echo is used
as a probe of decoherence in two-level systems.

We now explain at a qualitative level how and why
static (elastic) disorder affects our echo, whereas spin
echoes are insensitive to it. First, consider the scattering
off a single impurity, assuming an incoming plane wave
with a given propagation direction v̂. Scattering leads to
a position-dependent change of the wave front propaga-
tion direction. Considering true time reversal after the
scattering process, every scattered part of the wave prop-
agates back to the impurity and is scattered again. How-
ever, due to destructive interference only the (inverted)
initial propagation direction −v̂ survives.

In the presence of many scatterers, a Feynman path
approach provides convenient insights. While a phase
ϕs is accumulated along one particular path s due to
scattering off impurities, the same phase with inverted
sign −ϕs is picked up on the way back, after (perfect)
time inversion due to the time reversal operator T ∝ Cσy,
where C indicates complex conjugation. Every backward
path s′ other than the original one leads to a different
phase −ϕs′ 6= −ϕs. This causes destructive interference
and ensures that only the contribution from the original
path s survives.

This phase inversion is also achieved in spin echoes.
Depending on the environment, the spins precess slower
or faster. By applying a π-pulse at time t0 which flips the
spin, the faster spins are “suddenly behind” the slower
ones. Neglecting inelastic effects, all spins are in phase
again at 2t0 leading to the Hahn echo [3].

As opposed to the discussion about perfect time rever-
sal, our pulse does not define an exact t-inversion pro-
tocol even in the absence of inelastic scattering, since it
only inverts (“flips”) the kinetic phase due to H0, which
is e−iE±t0/~. Without disorder this is the only phase
present, and thus it disappears for a closed loop (for-
ward, then backward) propagation (see Appendix A).
With disorder the phase due to the random potential
Vimp(r) is not inverted and therefore not cancelled after
the pulse on the way back. This leads to a “dephasing”,
such that contributions from various paths s′ survive at
each impurity as opposed to the perfect time reversal dis-
cussed above, where only the time-reversed counterpart
of the incoming path survives.

IV. CONCLUSIONS

The analytical and numerical considerations presented
in this work confirm the principles behind our QTM for
pseudo-relativistic graphene-like systems. This means
that a sufficiently fast and spatially extended perturba-
tion which opens a gap in a Dirac system can act similar
to a microwave π pulse in spin-echo experiments, effec-
tively t-inverting the orbital wave function dynamics and
thus generating a wave function echo.

It is important to remark that the QTM does not re-
quire time-reversal symmetry to be preserved. Indeed,
we checked both analytically and numerically that high-
fidelity echoes can also be obtained e.g. in graphene
in the presence of a constant perpendicular magnetic
field B = ∇ × A, described by the Hamiltonian H =
a [k− (e/~)A] · σ + M(t)σz. Wave packets in this case
consist of superpositions of Landau levels with discrete
energies En,± ∝ ±

√
n [45, 46], while during the pulse

the dispersion becomes εn,± =
√
M2

0 + E2
n,±. The anal-

ogy with the discussion of Eq. (1) is evident, and in
fact for each electron-like (upper Dirac branch) Lan-
dau level, the transition amplitude to its hole-like (lower
Dirac branch) equivalent is again given by Eq. (3), where
now η = En,±/M0. Since the propagation directions of
electron- and hole-like Landau levels are reversed, the
QTM principle still applies, and strong echoes are ob-
tained for 0 . η . 1.

The fact that time-reversal invariance need not be pre-
served may allow a further twist to the QTM proposal.
The idea is to exploit the orbital effects of a pulsed out-of-
plane magnetic field, rather than a mass gap pulse: when
the magnetic field is switched on the Dirac k-dispersion
is abruptly changed to a gapped Landau level spectrum,
suggesting the feasibility of a Landau level-based QTM
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[47].
Various experimental realizations of the QTM pro-

posed here can be imagined. Our QTM represents
a general proof of concept, based on a single-particle
picture[48] and including the assumption that the inelas-
tic relaxation time of the injected wave packet is larger
than t0. This condition imposes certain restrictions in
real graphene [49–51], though femtosecond laser pulses,
routinely employed in nano-spectroscopy,[52] could be
employed to open gaps therein, and indeed recent ex-
perimental advances suggest such restrictions not to be
critical [53]. On the other hand, certain forms of artificial
graphene [34, 36] could be amenable to a straightforward
experimental implementation of the QTM. We also note
that similar physics can be expected in the surface states
of 3D topological insulators,[54] though this will be dis-
cussed elsewhere.

We furthermore demonstrated that the t-inversion pro-
tocol does not require time-reversal symmetry and is
practically insensitive to pulse (gap) disorder. Vice versa,
QTM-based echo spectroscopy could be used as a sensi-
tive local probe of elastic and inelastic scattering times
in Dirac-type systems.

In summary, we have proposed an instantaneous QTM
for an extended quantum state, based on the pseudo-
relativistic dispersion of (bosonic or fermionic) Dirac-like
systems. An experimental realization of such an echo
mechanism is within reach in state-of-the-art real or ar-
tificial graphene.
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Appendix A: Derivation of transition probability to
counter-propagating eigenstate

We first derive Eq. (3) describing the transition ampli-
tude owing to a time-dependent pulse in a Dirac-type sys-
tem. The effective Hamiltonian for graphene-like (single-
cone) systems is given by Eqs. (1) and (2). The eigenen-
ergies and eigenstates of H0 are

E± = ±ak (A1)

ψ±(k) =
1√
2

(
1

±e−iθk

)
, (A2)

where θk is the polar angle in k-space. During the
time interval ∆t, an initial H0 eigenstate is subject to
Rabi-like oscillations, whose cycle depends on the pulse’s
strength M0 and length ∆t. The new eigenenergies and

states become

ε± = ±
√
a2k2 +M2

0 , (A3)

χ±(k) =
1√

a2k2 + (M0 + ε±)
2

(
M0 + ε±
ak e−iθk

)
. (A4)

Thus, a band gap opens at k = 0 with width ∆ = 2M0.
The time evolution is explicitly performed for one

mode, so as to derive the transition probability. Con-
sider, an initial eigenstate with negative energy |φk(t =
0)〉 = |ψk−〉. The index k is from now on omitted for sake
of brevity. The time evolution up to t = t0 is trivial and

results in a global phase: |φ(t)〉 = e−
i
~E−t0 |ψ−〉. During

the pulse, the time evolution is governed by H, therefore
we decompose |ψ−〉 into eigenstates |χ±〉:

|ψ−〉 =
∑
s=±

αs|χs〉 (A5)

with

αs = 〈χs | ψ−〉 (A6)

and the time evolution from t = t0 to t = t0 + ∆t = t1
becomes

|φ(t1)〉 = e−
i
~E−t0e−

i
~H∆t|ψ−〉

= e−
i
~E−t0

∑
s=±

αse
− i

~ εs∆t|χs〉. (A7)

We are interested only in the component propagating
back to its initial position, thus we project |φ(t1)〉 onto
|ψ+〉, which has opposite velocity as compared to the ini-
tial state,

〈ψ+ | φ(t1)〉 = e−
i
~E−t0

∑
s=±

αse
− i

~ εs∆t〈ψ+ | χs〉

= e−
i
~E−t0

∑
s=±

αse
− i

~ εs∆tβ∗s (A8)

with

βs = 〈χs | ψ+〉. (A9)

The component 〈ψ− | φ(t1)〉 keeps propagating in its
initial direction and is lost for the echo.

The echo takes place at t = 2t0 + ∆t ' 2t0 (∆t� t0),
because the absolute value of the velocity is the same for
|ψ+〉 and |ψ−〉. The last propagation step to t2 is again

trivial and yields an additional phase e−
i
~E+t0 for the

component traveling back, which cancels with the phase
from t = 0 to t = t0 (E+ = −E−). The echo amplitude
thus reads

〈ψ+ | φ(t2)〉 =
∑
s=±

αsβ
∗
se
− i

~ εs∆t. (A10)
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Inserting the explicit expressions for αs, βs and εs, a
straightforward but tedious calculation yields

〈ψ+ | φ(t2)〉 = − i√
1 + a2k2

M2
0

sin

(
M0∆t

~

√
1 +

a2k2

M2
0

)

= − i√
1 + η2

sin
(
µ
√

1 + η2
)
, (A11)

where the dimensionless parameters η = ak/M0 and µ =
M0∆t/~ were introduced. Equation (A11) corresponds
to Eq. (3). The trivial time evolutions before and after
the pulse cancel each other in the absence of disorder,
so that the echo strength is solely due to the (modulus
of the) transition amplitude to the counter-propagating
eigenstate.

Starting in |ψ+〉 instead of |ψ−〉, or in a superposition
of the two, leads to the same conclusions.

For an arbitrary initial wave packet φ(r, 0) =
(2π)−2

∫
d2kφ(k, 0)eik·r, the simulation-derived echo

strength C(2t0) can be analytically estimated. In equa-
tions (A5)-(A11), we solve the Schrödinger equation ex-
actly for the population-reversed part of the wave packet,
i.e. the only part contributing to the echo is

φ(k, 2t0 + ∆t) = A(k)φ(k, 0), (A12)

and therefore in real space

φ(r, 2t0 + ∆t) =

∫
d2k

(2π)2
φ(k, 2t0)eik·r

=

∫
d2k

(2π)2
A(k)φ(k, 0)eik·r. (A13)

As noted, the kinetic phases accumulated before and af-
ter the pulse cancel at t = 2t0 + ∆t ' 2t0, preventing
interference effects in real space. Moreover, the linear
band structure with constant phase velocity keeps the
shape of the wave packet.

Thus, our analytical estimate yields

C(2t0) =

∫
d2r |φ(r, 0)||φ(r, 2t0)|

=

∫
d2r

∣∣∣φ(r, 0)
∣∣∣ ∣∣∣ ∫ d2k

(2π)2
A(k)φ(k, 0)eik·r

∣∣∣
=: CA , (A14)

which is the same as Eq. (5).
In case of nearly constant A(k) ≈ A(k0), e.g. for nar-

row peaked wave packets in k-space around an average
value k0, the echo strength can be estimated by

C(2t0) ≈
∫

d2r
∣∣∣φ(r, 0)

∣∣∣ ∣∣∣ ∫ d2k

(2π)2
A(k0)φ(k, 0)eik·r

∣∣∣
= A(k0)

∫
d2r |φ(r, 0)| |φ(r, 0)| = A(k0), (A15)

having taken a normalized initial wave packet.

Appendix B: Disorder effects to the echo

1. Spatial disorder

For the numerical investigation of disorder effects,
we use a random, pseudospin-independent potential
Vimp(r)σ0. The latter assigns to every grid point i a nor-
mally distributed value βi, which is then multiplied with
the disorder strength uimp. The discontinuous potential
is then smoothed by a Gaussian distribution with width
l0. This leads to

Vimp(r) =
uimp

N
∑
i

βie
− (r−ri)

2

l20 , (B1)

where the sum runs over all grid points. The normaliza-
tion N is due to numerical reasons and is given by

N =

 1

A

∫
A

d2r

(∑
i

βie
− (r−ri)

2

l20

)2
 1

2

, (B2)

A being the (finite) grid area for the numerical simula-
tion. The correlator

〈Vimp(r)Vimp(r′)〉 = u2
impe

− (r−r′)2

2l20 , (B3)

where 〈·〉 stands for disorder average, is needed in order
to compute the scattering time. The latter is given by
(see e.g. [55])

~
τk

=

∫
dk′dr

2π~
δ(k − k′)〈Vimp(0)Vimp(r)〉eir·k

′
, (B4)

and can be calculated analytically as

1

τk
=

2π

a~
u2

impl
2
0k e

−l20k
2

I0(l20k
2). (B5)

I0(x) is the modified Bessel function of zeroth kind.
In the main part, we explained on a qualitative level

the effect of disorder. Here, we discuss it quantitatively
and for that reason we turn to the theory of Loschmidt
echoes (see e.g. [43, 44, 56, 57]), where the role of disorder
has been thoroughly studied and characterized. In this
context the echo is measured by the “fidelity”

M(t) = |〈φ | eiHat/~e−iHbt/~ | φ〉|2, (B6)

which is the overlap squared between the initial and fi-
nal, i.e. time-evolved, state. The time propagation is
governed by Hb until the time t, and by −Ha thereafter,
i.e. the time evolution is (“by hand”) explicitly inverted.
(Note the difference to our protocol where the flow in
time is not changed.) Moreover, we use instead the cor-
relation C(t), Eq. (4), to quantify the echo in a phys-
ically transparent way – as the overlap between initial
and time-evolved local density. In order to establish a
connection with the Loschmidt echo theory, it is however



7

0 200 400 600 800
t0 ( /M0 )

0.1

1

e
ch

o
 s

tr
e
n
g
th

(a)
0 0.005 0.01 0.015

uimp (M0 )

0

0.002

0.004

0.006

0.008

1
/τ

0
(M

0
/

)

(b)

FIG. 3. Effects of disorder on graphene echo. (a) The echo strength measured by the echo fidelity M̃(techo) is shown as a
function of pulse time t0 for various disorder strengths uimp between 0.002M0 and 0.016M0, averaged over 50 realizations (see
text). The error bars denote the standard error of the mean. An exponential fit is used to extract the decay rate. For higher
uimp an expected saturation sets in, such that only a brief regime of exponential decay is visible. (b) Plot of the fitted decay
rates 1/τ0 as a function of uimp, Eq. (B5), which is quadratic for weak scattering. The black dotted line is the analytically
expected curve, which matches well the fitted quadratic function (blue), until the expected strong scattering saturation sets in.

more convenient to introduce the following “echo fidelity”
M̃

M̃(t) = |〈σzφ | e−iHt/~ | φ〉|. (B7)

Notice the difference with C(t), where |φ| appears, and

the σz Pauli matrix: M̃(t) is the overlap of the time prop-
agated state with the initial one with flipped spinor, since
the returning part of the wave packet is in the flipped
eigenstate of H0. In the golden rule decay regime [44],

the (mean) echo strength M̃ decays exponentially in time

M̃(t) ∼ e− t
2τ . (B8)

As mentioned, the pulse time-reverses the dynamics due
to H0 only, without affecting the dynamics arising from
the impurity potential.

This can be seen by splitting the time evolution op-
erator in three parts: before the pulse, during the pulse
and after the pulse. Furthermore, we consider only the
part of the wave function which is reflected, which means
that the time evolution during the pulse is given by the
transition amplitude A(k) times the operator σz, which
maps any state to its energy-inversed counterpart.

M̃(2t0) = |〈φ | σze−
i
~ (H0+Vr)t0σzA(k)e−

i
~ (H0+Vr)t0 | φ〉|2

= |〈φ | e− i
~σz(H0+Vr)σzt0A(k)e−

i
~ (H0+Vr)t0 | φ〉|2

(B9)

Since σzσiσz = −σi for i ∈ {x, y} and H0 is a lin-
ear combination of σx and σy, the sign in front of H0

changes after the pulse, whereas the term related to the

pseudospin-independent potential Vr is not affected at all
by the pulse.

M̃(2t0) = |〈φ | e− i
~ (−H0+Vr)t0A(k)e−

i
~ (H0+Vr)t0 | φ〉|2.

(B10)

As there is a different sign in the propagation due to H0

before and after the pulse, there is effectively a propaga-
tion backwards in time. On the other hand, our σz-pulse
cannot invert the time evolution due to the disorder po-
tential, which causes disorder to ultimately destroy the
echo.

Since the scattering occurs during the whole propaga-
tion time 2t0, we expect the echo fidelity (B8) to decay
as

M̃(2t0) ∼ e−
2t0
2τ = e−

t0
τ . (B11)

This decay is confirmed in Fig. 3a), where the echo fi-
delity (= echo strength), Eq. (B7), is shown as a function
of the pulse time t0. The initial wave packet is a 2D-
Gaussian with small k-space width σk � k0 as compared
to the mean wave vector k0 , such that the k-dependence
of the scattering time can be neglected (τk ≈ τk0 =: τ0).
The echo strength is calculated for 50 different realiza-
tions of the random disorder potential and averaged sub-
sequently. For large disorder strengths uimp, a saturation
regime is reached, in accordance with Loschmidt echo
theory[44]. The decay rate is extracted by fitting an ex-
ponentially decaying function to the data, and compared
in Fig. 3b) to the analytically expected decay rate 1/τ0
from Eq. (B5), yielding a good agreement.
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The time-decay of C(t) is qualitatively similar though
slower, because the phase differences between the ini-
tial and the propagated wave packet are neglected in the
modulus, preventing eventual destructive interference.

2. Gap disorder

The gap disorder potential Vgap(r)σz models fluctua-
tions in the pulse strength and is therefore only active in
the short time window ∆t. Figure 2 a) shows that gap

disorder has practically no effect on the echo as com-
pared to spatial disorder. This is expected, as spatial
disorder is active during a time 2t0 � ∆t. Assuming
similar scattering times for uimp = ugap, practically no
gap disorder-induced scattering takes place during the
pulse, since τ0 � ∆t. Moreover, spatial and gap disorder
acts slightly differently. The impurities lead to a random-
ization of the propagation direction, such that a smaller
amount of the wave packet goes back to the initial posi-
tion. Gap disorder instead modulates in space the tran-
sition probability to the counter-propagating eigenstate,
but the propagation direction is not randomized.
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[2] L. Boltzmann, “Über die Beziehung eines allgemeinen
mechanischen Satzes zum zweiten Hauptsatze der
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