Carbonation of Hydrous Materials at the Molecular Level: a ToF-SIMS, Raman and DFT study

Giovanni L. Pesce¹, Ian Fletcher², James Grant³, Marco Molinari³, Stephen C. Parker⁴,* Richard J. Ball³

¹ University of Bath, Department of Arch. and Civil Engineering, Bath, BA2 7AY, UK
² Intertek Wilton Laboratory, The Wilton Centre, Redcar, TS10 4RF, UK
³ University of Bath, Department of Chemistry, Bath, BA2 7AY, UK

Carbonation of hydrous minerals such as calcium hydroxide (Ca(OH)₂), is an important process in environmental and industrial applications for the construction industry, geological disposal repositories for nuclear waste, and green technologies for carbon capture. Although the role of ions during the carbonation mechanism of Ca(OH)₂ is still unclear, we identified the exchange of ions during the dissolution-and-precipitation process, by determining the change in isotopic composition of carbonation products using Time-of-Flight Secondary Ion Mass Spectrometry. Our samples of pure Ca(¹⁸OH)₂ carbonated in air were characterized using Scanning Electron Microscopy and Raman spectroscopy, aided by Density Functional Theory calculations. Our results show that the carbonation process at high pH is a two-stage mechanism. The first stage occurs in a short time after Ca(¹⁸OH)₂ is exposed to air and involved the dissolution of surface Ca ions and hydroxyl ¹⁸OH groups, which reacts directly with dissolved CO₂, leading to 1/3 of ¹⁸O in the oxygen content of carbonate phases. The second stage occurs within 24h of exposure allowing a rebalance of the oxygen isotopic composition of the carbonate phases with higher content of ¹⁶O.

Prof. Steve Parker
Department of Chemistry
University of Bath
BA2 7AY, Bath
United Kingdom,
E: S.C.Parker@bath.ac.uk
P: +44 (0)1225 386505
Carbonation of Hydrous Materials at the Molecular Level: a ToF-SIMS, Raman and DFT study

Giovanni L. Pesce1, i, Ian Fletcher2, ii, James Grant3, Marco Molinari3, Stephen C. Parker3, *, Richard J. Ball1

1 University of Bath, Department of Arch. and Civil Engineering, Bath, BA2 7AY, UK

2 Intertek Wilton Laboratory, The Wilton Centre, Redcar, TS10 4RF, UK

3 University of Bath, Department of Chemistry, Bath, BA2 7AY, UK

* Corresponding authors: Stephen C. Parker, S.C.Parker@bath.ac.uk, phone: +44 (0)1225 386505

1 Currently at Northumbria University, Department of Architecture and Built Environment, Newcastle upon Tyne, NE1 8ST, UK

ii Currently at Newcastle University, School of Mechanical and Systems Engineering, Newcastle upon Tyne, NE1 7RU, UK
Abstract

Carbonation of hydrous minerals such as calcium hydroxide (Ca(OH)₂), is an important process in environmental and industrial applications for the construction industry, geological disposal repositories for nuclear waste and green technologies for carbon capture. Although the role of ions during the carbonation mechanism of Ca(OH)₂ is still unclear, we identified the exchange of ions during the dissolution-and-precipitation process, by determining the change in isotopic composition of carbonation products using Time-of-Flight Secondary Ion Mass Spectrometry. Our samples of pure Ca¹⁸(OH)₂ carbonated in air were characterized using Scanning Electron Microscopy and Raman spectroscopy, aided by Density Functional Theory calculations.

Our results show that the carbonation process at high pH is a two-stage mechanism. The first stage occurs in a short time after Ca¹⁸(OH)₂ is exposed to air and involved the dissolution of surface Ca ions and hydroxyl ¹⁸OH groups, which reacts directly with dissolved CO₂, leading to 1/3 of ¹⁸O in the oxygen content of carbonate phases. The second stage occurs within 24h of exposure allowing a rebalance of the oxygen isotopic composition of the carbonate phases with higher content of ¹⁶O.

Introduction

The carbonation process of hydrous materials and minerals such as calcium and magnesium hydroxides (Ca(OH)₂ and Mg(OH)₂, respectively) is important for a number of environmental and technological applications. These include carbon capture and storage (CCS)¹-², scrubbing procedures of solid waste incinerators³, emerging low carbon building technologies for construction⁴-⁶, and geological disposal repositories for nuclear waste⁷-⁸ where portlandite content in cements becomes a critical factor. Despite its importance,²⁴-⁹-¹⁴ the carbonation mechanism in high pH environments is debated and not yet fully understood. Hence, to devise successful and efficient strategies for carbon dioxide (CO₂) sequestration, soil stabilization in geoengineering and building mortars with enhanced properties, a clear understanding of the details of carbonation mechanisms is required.
Two carbonation mechanisms have been proposed for portlandite at standard conditions, 25°C and 1 atm, based on solid state and a dissolution-carbonation processes (the former is highly unlikely whereas the latter has been documented in a number of cases). Moorehead suggested that carbonation of Ca(OH)₂ at room temperature in CO₂-rich environments is a solid-state reaction, which entails substitution of hydroxyl groups (OH⁻) with carbonate groups (CO₃²⁻) in a topotactic transition, leading to a change of the portlandite d₃₀₀₁₁ spacing. Other authors suggested that the reaction occurs via a dissolution-and-precipitation mechanism catalyzed by water molecules adsorbed on the mineral surfaces. Overall, these two mechanisms would be expected to lead to different reaction rates, and result in the formation of passivating carbonate layers effectively quenching the exploitation of Ca(OH)₂ surface properties.

Recent work by Rodriguez-Navarro and colleagues has involved detailed analysis of calcium carbonate formation from saturated solution and through the carbonation of calcium hydroxide nano-particles. These show that the formation of thermodynamically stable calcite can proceed through a cascade of hydrated and dehydrated amorphous calcium carbonate phases and include (or not) intermediate crystalline phases of vaterite and/or aragonite. In addition to the requirement for CO₂ for carbonation the presence of water, adsorbed from a high RH atmosphere was demonstrated. In the first instance the aim of the present work is to show that artificial doping of isotopes can be used to trace the history of the species involved in the formation of carbonate ions, and thus shed light on the mechanisms of portlandite carbonation.

The natural variation of stable isotopes, such as carbon-13 (¹³C) or oxygen-18 (¹⁸O), can be exploited in the study of carbonation of surfaces, and thus provide complementary results to other techniques. An isotope can be traced during chemical reactions and, as different reaction mechanisms lead to different products with distinctive isotopic compositions, it provides insights on the stages occurring during the reaction. Our research investigated the role of OH⁻ ions in the carbonation mechanism of Ca(OH)₂ by using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) on an artificial Ca(¹⁸OH)₂ sample carbonated in air (rich in ¹⁶O) for 3 minutes (at 27% RH), 1, 8
and 137 days (50% RH). Samples were characterized using Scanning Electron Microscopy (SEM) and Raman spectroscopy. Density functional theory calculations were also employed to corroborate the Raman shifts associated with different degrees of isotopic substitution in Ca(OH)\(_2\) and CaCO\(_3\). We finally discuss critical factors in the carbonation process, which provides new insights of the carbonation mechanism of Ca(OH)\(_2\).

**Experimental and Theoretical Methods**

*Material preparation*

\(^{18}\)O-calcium hydroxide was produced by reacting calcium metal of 99% purity with isotopic labelled water containing >99% \(^{18}\)O (Taiyo Nippon Sanso Corporation), on a platinum (Pt) foil 99.9% pure. To prevent oxygen contamination and carbonation of the Ca(OH)\(_2\) sample, the reaction was performed in an inert atmosphere inside a glove bag filled with nitrogen, where CO\(_2\) and RH were monitored using a K-30 10,000ppm sensor for CO\(_2\), and a DHT22 sensor for temperature and humidity. Both sensors were controlled via an Arduino Uno microcontroller, which was also used for real time monitoring of the conditions.

Experiments were conducted as follows. 1) The equipment and materials were placed into a glove bag that was then filled with nitrogen. 2) The residual air in the bag was flushed using dry nitrogen until the sensor readings were 0 ppm CO\(_2\) and <5% RH. 3) 20mg of Ca metal was weighed on a precision balance and deposited on a Pt foil, positioned inside an open crucible. 4) 800\(\mu\)l of \(^{18}\)O-water was reacted with the Ca metal using a glass Hamilton syringe equipped with a metal needle. The reaction was carried out in an excess of \(^{18}\)O-water to promote the complete reaction of Ca. 5) To ensure the complete evaporation of excess of \(^{18}\)O-water, the bag was flushed several times with dry nitrogen. 6) When the majority of the water had evaporated, portions of the sample were removed from the Pt foil. Portions were sealed inside a glass cell with a quartz window for the Raman analysis; the N\(_2\)-rich atmosphere prevented carbonation before completion of the analysis. The same procedure was followed for samples for SEM analysis except samples were placed in a
small vial and stored under low vacuum. Material for SIMS analysis remained on the Pt foil and stored in a glass vial under low vacuum.

ToF-SIMS analysis

In order to study the isotopic composition of carbonates at the very beginning of the reaction, the first ToF-SIMS analysis was carried out after approximately 3 minutes exposure to air at 23±2°C and 27±10% RH. Low RH levels were maintained to minimize the carbonation rate. After initial analysis, the samples were removed from the instrument and allowed to stand in a dust-free controlled environment at 23±2°C and 50±10% RH for 1, 8 and 138 days before further analysis. Care was taken to analyze fresh areas of the samples that had not previously been exposed to the ion and electron beams. An Analar CaCO₃ powder was analyzed under similar conditions as a reference.

Static ToF-SIMS analyses were carried out using an ION-TOF ‘TOF-SIMS IV – 200’ instrument (ION-TOF GmbH, Münster, Germany) of single-stage reflectron design. Positive and negative ion spectra of the samples were obtained using a Bi³²⁺ focused liquid metal ion gun at 20keV energy, incident at 45° to the surface normal and operated in ‘bunched’ mode for high mass resolution. This mode used 7ns duration ion pulses at 10kHz repetition rate. Charge compensation was effected by low-energy (ca. 20eV) electrons provided by a flood gun. The total ion dose density was less than 5 × 10¹⁶ ions m⁻² in all cases. The topography of the sample surface and the ion gun mode of operation limited the mass resolution in this work to ca. m/Δm = 4000.

Positive and negative ion static SIMS spectra of the samples were recorded in triplicate at room temperature with a 128 × 128 pixel raster and a field of view of 50μm × 50μm. Sample preparation and data analysis was carried out according to the procedure detailed in the SI.

Raman analysis

Raman analysis was performed using a Renishaw inVia Raman Microscope equipped with a laser operating at a wavelength of 785 nm. The analysis was undertaken by focusing the laser with a 50x long distance objective. Laser power at the sample surface was set to 66mW at the sample surface and the acquisition time was set between 3 and 10s for each of the 10 accumulations acquired. Each
spectrum was taken over the wavenumber range 77–1290 cm$^{-1}$. Three spectra per sample were acquired to evaluate variations between different locations. Prior to the analysis, the spectrometer was calibrated using a monocrystalline silicon standard specimen. Renishaw WiRe 4.0 software was applied for peak fitting and deconvolution of Raman spectra. The sample was initially kept in a N$_2$-rich atmosphere inside the glass cell with quartz window to prevent contamination by atmospheric CO$_2$. To investigate the initial stage of carbonation, the quartz window was removed and spectral acquisition of the carbonate phases formed at 23°C and 30%±10%RH was started. These conditions reduced the carbonation rate and, therefore, provided better evidence of the phase transformations related to carbonation. Spectra were taken at intervals up to 55 minutes from initial exposure of the sample to air.

*SEM analysis*

SEM images were obtained using a JEOL field emission scanning electron microscope (FESEM) model JSM6301F. Working distance for scanning and acquiring the images was 7 mm, accelerating voltage was of 5 kV and the spot size 7 nm. Prior to analysis the sample powder was fixed to a metal holder using a double-sided carbon tape and then dried for 24 hours in a vacuum chamber before application of a 10 nm thick layer of chromium using a Quantum Q150T Turbo-Pumped Sputter Coater to prevent surface charging. Once removed from the sputter coater, the sample was immediately inserted into the SEM and analyzed.

*Computational procedure*

Simulations were used to determine the vibrational shifts and Raman spectra for $^{16}$O and $^{18}$O-calcium hydroxide ($^{16}$Ca(OH)$_2$, $^{18}$Ca(OH)$_2$ respectively), as well as calcite containing different amounts of $^{18}$O ($^{18}$CaO$_2$:$^{16}$O$_{3-x}$ with $x=0,1,2,3$). Calculations were performed at the DFT level using the VASP$^{36}$ code with the PBE$^{39,40}$ exchange-correlation functionals including the van der Waals correction optB86b-vdW$^{41,42}$, which improves the description of layered materials. The Brillouin zone was sampled using $4 \times 4 \times 4$ Monkhorst-Pack k-point mesh for portlandite and $4 \times 4 \times 1$ for calcite with a
plane wave cut-off of 500 eV. Convergence criteria were $10^{-8}$ eV for the electronic relaxation and $10^{-4}$ eV Å$^{-1}$ for ionic forces, allowing both the atoms and lattice to relax.

The calculated structure of portlandite contains 1 Ca(OH)$_2$ unit and had lattice parameters of $a = b = 3.573$ Å, $c = 4.794$ Å, $\alpha = \beta = 90^\circ$ and $\gamma = 120^\circ$, which compared well with the experimental values of Desgranges et al.$^{44}$. The calculated structure of calcite contained 6 CaCO$_3$ units and had lattice parameters of $a = b = 5.03$ Å, $c = 16.80$ Å, $\alpha = \beta = 90^\circ$ and $\gamma = 120^\circ$, and agreed with the experimental values of Effenberger et al.$^{45}$

From the minimized structures, the vibrational frequencies were obtained using finite displacements$^{46}$ and the Raman activity$^{47,48}$ was then estimated by calculating the polarizability of the vibrational modes. As noted, the minimized structure for portlandite compares well with the experimental values (Table S1) and this model has recently been shown to perform well for the calcium oxide and carbonate.$^{49,50}$ Additional calculations were undertaken to predict the shift in Raman frequencies due to isotopic substitution and compared to the DFT predicted Raman active peaks. Each vibrational mode is composed of specific motions of the atomic species associated with it. The interaction between the species involved can be related to a bond and this can be illustrated by considering a diatomic molecule. From the initial calculation we obtain a force constant $k$ from which the frequency, $f$, can be calculated according to Equation 1, where $\mu$ is the reduced mass of the components of the mode given by Equation 2, and, $m_1$ and $m_2$ are the masses vibrating.

$$f = \frac{k}{\sqrt{\mu}} \quad (1)$$

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \quad (2)$$

When accounting for the difference in mass between $^{16}$O and $^{18}$O the reduced mass changes according to the O isotope. In practice, we evaluate and diagonalise the complete mass-weighted force constant matrix.$^{51-53}$
Figure 1 - FESEM image of the Ca(\textsuperscript{18}OH)\textsubscript{2} produced by reacting calcium with H\textsubscript{2}\textsuperscript{18}O. Some hexagonal plate-shaped nano-particles typical of Ca(OH)\textsubscript{2} are visible (A) but the material is mostly in smaller irregular shaped crystalline particles (B).

**Results**

**SEM and Raman results**

A microscopic FESEM image is shown in Figure 1 of a Ca(\textsuperscript{18}OH)\textsubscript{2} sample comprising hexagonal plate-shaped crystals of 200-400nm and crystalline particles of 70-150 nm. The presence of many irregular shaped crystals is consistent with the exothermic reaction of calcium with water. The rapid evaporation of the excess H\textsubscript{2}\textsuperscript{18}O is likely to have resulted in a high nucleation rate. This then subsequently led to numerous seed crystals competing for ions from which to grow and provided a limited opportunity for Ostwald ripening of typical hexagonal nanoparticles. The reaction and storage conditions ensured that no carbonation could take place and only Ca(OH)\textsubscript{2} could form.
Figure 2 - Raman spectrum of the Ca\(^{18}\text{OH})_2\) produced during the experiments, compared with the Raman spectrum of a generic \(^{16}\text{O}\text{Ca(OH)}_2\) (lime putty).

Figure 2 shows the Raman spectrum from 100 to 1200 cm\(^{-1}\) of Ca\(^{18}\text{OH})_2\) after about 10 minutes from exposure to air, compared with the spectrum of a generic \(^{16}\text{O}\text{lime putty} partially exposed to air. Both spectra contain portlandite and calcite peaks. Several peaks of Ca\(^{18}\text{OH})_2\) are shifted to lower wavenumbers compared to the Ca\(^{16}\text{OH})_2\). Of the peaks due to portlandite the peak at 356cm\(^{-1}\) is shifted ~19cm\(^{-1}\) to 337cm\(^{-1}\), the peak at 251cm\(^{-1}\) is shifted ~12cm\(^{-1}\) to 239cm\(^{-1}\). We also observe that the peak at 1086 cm\(^{-1}\) resulting from some carbonation of the samples is shifted ~19cm\(^{-1}\) to 1067 cm\(^{-1}\).
Figure 3 - Raman spectrum of the Ca(\(^{18}\)OH)\(_2\) produced partially carbonated. Spectra taken after 10', 30' 55' since the beginning of the tests, which exposes the sample to air.

Figure 3 shows the Raman spectra from 100 to 1300 cm\(^{-1}\) of the Ca(\(^{18}\)OH)\(_2\) produced, after 10, 30 and 55 minutes from opening of the cell, which allowed contact of the sample with air. Peaks at 239, 337 and 655 cm\(^{-1}\) are related to Ca(\(^{18}\)OH)\(_2\) and become weaker over time. This provides evidence of Ca(\(^{18}\)OH)\(_2\) reacting with atmospheric CO\(_2\) containing \(^{16}\)O and forming CaCO\(_3\). According to our simulations, peaks at 152, 271, 698 and 1067 cm\(^{-1}\) can be best modelled as calcite with each carbonate containing a single \(^{18}\)O (although it is possible that the peak at 1067 cm\(^{-1}\) also includes a contribution of \(^{18}\)O-enriched ACC; see discussion later in this paragraph). These peaks are shifted to lower wavenumbers compared to literature spectra of \(^{16}\)O-calcite (Table S4). The intensity of the peak at 152 cm\(^{-1}\) remains unaltered over time, whereas the intensity of peaks at 271, 698 and 1083 cm\(^{-1}\) increase, suggesting progression of the carbonation reaction with the formation of an increasing amounts of \(^{16}\)O-calcite. The broad peaks at 450 cm\(^{-1}\) disappearing after 10 minutes
reaction, suggests the presence of a metastable phase such as ACC (main peak included in the 1067 cm\(^{-1}\) peak as previously mentioned).

**Computation Results**

Table 1 compares Raman active modes of a natural (Ca\(^{16}\)OH\(_2\)) and an isotopically labelled (Ca\(^{18}\)OH\(_2\)) portlandite calculated using DFT with experimental values. Although, the relative positions of the peaks are captured for both minerals, there is a systematic displacement of the predicted peaks relative to the experimental positions\(^5\). This is a well-known effect of DFT calculations and relates to the estimation of bond strengths.

**Table 1 - Comparison of experimental and simulated Raman active modes of portlandite.** The Raman shift due to the different O isotopes, denoted \(\Delta\), is compared to the theoretically derived values (Equation 1).

<table>
<thead>
<tr>
<th>Experiment [cm(^{-1})]</th>
<th>Simulation [cm(^{-1})]</th>
<th>Theory [cm(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(^{16})OH(_2)</td>
<td>Ca(^{18})OH(_2) (\Delta)</td>
<td>Ca(^{16})OH(_2)</td>
</tr>
<tr>
<td>251</td>
<td>239</td>
<td>-12</td>
</tr>
<tr>
<td>356</td>
<td>337</td>
<td>-19</td>
</tr>
<tr>
<td>675</td>
<td>675</td>
<td>0</td>
</tr>
</tbody>
</table>

The two low frequency peaks of portlandite are associated with vibrations of the hydroxide ions relative to each other in plane and out of plane. In the case where two hydroxide ions are vibrating as whole units the individual masses in the pure case are \(m_1=m_2=17\) while for full isotopic substitution with \(^{18}\)O these increase to \(m_1=m_2=19\). The reduced masses are \(17/2\) and \(19/2\) respectively, and thus the theoretical treatment as in Equation 1 predicts the isotopically doped system has a frequency to \((17/19)^{1/2}\) of the natural case corresponding to shifts of -14 cm\(^{-1}\) (for peak 1 at 251 cm\(^{-1}\)) and -19 cm\(^{-1}\) (peak 2). In contrast, the high frequency portlandite peak at 675 cm\(^{-1}\) is
associated with the rocking mode of individual hydroxide ions. Since this is a rotational vibration, any shift is due not to the change in effective mass associated with isotopic substitution but with the moment of inertia. The resulting Raman shift due to isotopic composition is predicted to be ~0.3% (compared with ~5% in the previous cases) which is consistent with no observed shift in the experimental and simulated spectra. While Raman can be used to identify isotopic variation, the comparison with calculation can help to identify the constitution of our samples and give insight into the processes during their formation.

Calcite with different isotopic composition (CaC$^{16}$O$_3$,$^{18}$O$_x$) shows Raman shifts to lower wave number with increasing $x$, the number of $^{18}$O per carbonate ion (Table 2). The peak at about 152 cm$^{-1}$ in the experimental spectra is noisy and difficult to isolate in both the natural and $^{18}$O-sample but the remaining Raman active peaks are relatively well defined and more easily characterized. Overall, the computational results are in good agreement with the measured spectra. The advantage of the calculation is that the vibrational motion associated with each active mode can be identified. For example, we can clearly identify the peak at 1086 cm$^{-1}$ as the symmetric stretch of the C-O bond in the carbonate ions, whereas the peak at 700 cm$^{-1}$ is an antisymmetric coupling between carbonate ions in different layers. The vibrations of the remaining peaks are complex motions of carbonate bending in different layers.

Table 2 - Comparison of experimental and simulated Raman active modes of calcite. In brackets the Raman shift due to the different O isotopes compared to CaC$^{16}$O$_3$. The two columns in the experimental results are related to carbonate phases with different $^{18}$O content.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Experiment [cm$^{-1}$]</th>
<th>Simulation [cm$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CaCO$_3$ $^{18}$O &gt; $^{16}$O</td>
<td>CaCO$_3$ $^{18}$O &lt; $^{16}$O</td>
</tr>
<tr>
<td>1</td>
<td>152</td>
<td>152</td>
</tr>
<tr>
<td>2</td>
<td>277</td>
<td>282</td>
</tr>
</tbody>
</table>
ToF-SIMS Results

ToF-SIMS allows the determination of the elemental, isotopic, or molecular composition of surfaces to a maximum depth of 1-2 nm. It is a destructive technique that reveals, using a mass spectrometer, the mass:charge ratio of secondary ions ejected from the surface when a primary ion beam is fired against it. Therefore, during the analysis secondary ions may be positively and negatively charged depending on their composition and mass. Data analysis has therefore to take into account both polarities. Full details of mass:charge ratio of ejected secondary ions considered in this study are in Tables S2 and S3 where a detailed analysis of the results is also reported. To assess the accuracy of the ToF-SIMS measurement, we tested an Analar CaCO₃ reference sample, which gave an average $^{18}\text{O}:{^{16}\text{O}}$ ratio of 0.021 (Table 3) in agreement with the isotopic ratio between 0.019 and 0.021$^{57-59}$ of naturally occurring samples. Data for the carbonated Ca$(^{18}\text{OH})_2$ samples, show a reduction in the relative intensities of species containing $^{18}\text{O}$ over time, and a simultaneous increase of the intensities of species containing $^{16}\text{O}$ (Figures S1-S3 in the SI). Simultaneously, species containing carbon such as [HC$^{18}\text{O}_3$] and [C$^{18}\text{O}_3$] (Figures S1-S3) show an increase. This is clear evidence of the carbonation of portlandite surfaces as secondary ions ejected from the surface destruction have greater carbon content.

Table 3 reports the $^{18}\text{O}:{^{16}\text{O}}$ ratio calculated for all the secondary ions produced by the destruction of the surface over the duration of the experiment. Data shows an initial isotope ratio of 0.62 for positive ions and a ratio of 0.51 for negative ions. The weighted average value of 0.54 suggests that, at very early stages of the carbonation reaction, for every atom of $^{18}\text{O}$ in carbonate ions, there would be two $^{16}\text{O}$ (theoretical $^{18}\text{O}:{^{16}\text{O}}$ ratio 0.5). However, from day 0 to day 1 the data shows a dramatic decrease in the $^{18}\text{O}:{^{16}\text{O}}$ ratio to a value of 0.038 that shows little variation in the following days. This value shows little variation after 137 days of carbonation. The isotope ratio for positive and negative
species converges towards the same value of 0.046, which is approximately double the value for natural samples.

Table 3 - $^{18}$O:$^{16}$O ratio calculated from the intensity of the ToF-SIMS counts for the ionic species with positive and negative polarity

<table>
<thead>
<tr>
<th></th>
<th>Analar CaCO$_3$</th>
<th>Carbonated Ca($^{18}$OH)$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[18O/16O]$^+$</td>
<td>Day 0</td>
</tr>
<tr>
<td>[18O/16O]$^-$</td>
<td>0.035</td>
<td>0.616</td>
</tr>
<tr>
<td>Weighted Average</td>
<td>0.014</td>
<td>0.537</td>
</tr>
</tbody>
</table>

**Discussion**

The combination of complementary results from the vibrational fingerprint of the materials with different isotopic composition and the ToF-SIMS experiments show that we can elucidate the carbonation mechanism of hydrous materials. However, before discussing our data, the role of the pH in the carbonate precipitation and on the behavior of different isotopes during the process should be highlighted.

Recent work on the precipitation of carbonates in natural systems (i.e. at approximately neutral pH) shows that an isotopic equilibrium is reached between the solution and the precipitated solid, which only depends on temperature. On the other hand, precipitation of carbonates from saturated solutions of Ca(OH)$_2$ take place under high pH (12.4 at 23°C) and therefore is in non-equilibrium conditions. As a consequence, the main phenomenon producing fractionation during precipitation is the reaction kinetics related to the solution high pH. At pH values above 9, various authors suggested that the direct reaction of CO$_2$ with the hydroxyl group (OH') produced by the dissociation of water is the primary pathway for carbonate ion formation (Equation 3). This pathway is suggested to be faster than the one leading to the formation of CO$_3^{2-}$ from the
reaction of CO$_2$ in natural waters at neutral pH\textsuperscript{58} (Equations 4-7) and, consequently, it prevents isotope equilibration of gaseous CO$_2$(g) with the dissolved CO$_2$(aq) (Equation 4). Since heavier isotopes react slower than lighter isotopes, in the carbonate precipitates at high pH we would expect a lower concentration of $^{18}$O and $^{13}$C compared to the carbonates precipitated under equilibrium conditions.\textsuperscript{29} Examples of carbonate phases with a very different isotope signature are limestone of marine and continental origins, and carbonates produced during cement setting.\textsuperscript{31-33}

\begin{align*}
CO_2(aq) + OH^- & \leftrightarrow CO_3^{2-} + H^+ \quad (3) \\
CO_2(g) & \leftrightarrow CO_2(aq) \quad (4) \\
CO_2(aq) + H_2O(l) & \leftrightarrow H_2CO_3(aq) \quad (5) \\
H_2CO_3(aq) & \leftrightarrow HCO_3^{-}(aq) + H^+_{(aq)} \quad (6) \\
HCO_3^{-}(aq) & \leftrightarrow CO_3^{2-}(aq) + H^+_{(aq)} \quad (7)
\end{align*}

Equilibrium in Equation 3 implies that the carbonate ion contains a mixture of the isotopic composition of aqueous CO$_2$(aq) (similar to the isotopic composition of gaseous CO$_2$(g)) and OH$^-$ ions.\textsuperscript{29,31,33} The $^{18}$O composition of these carbonates ($n^{18}O$) can be described by considering the abundance of $^{18}$O in the different species, according to Equation 8.

\[ n^{18}O_{carbonate} \leftrightarrow \frac{1}{3}n^{18}O_{OH} + \frac{2}{3}n^{18}O_{CO_2(g)} \quad (8) \]

Letolle et al.\textsuperscript{29} have calculated that one third of the oxygen in the carbonates formed under high pH conditions, is provided by the OH$^-$ ions originated from the dissociation of H$_2$O molecules catalyzing the reaction between Ca(OH)$_2$ and aqueous CO$_2$(aq). This implies that the $^{18}$O content of OH$^-$ groups is related to the isotopic composition of H$_2$O. Letolle et al.\textsuperscript{29}, however, did not provide any information on the role of OH$^-$ ions produced by the dissolution of Ca(OH)$_2$ on the isotopic composition of carbonate phases.
To demonstrate that hydroxyl groups from the surface have a fundamental role in the formation of carbonate phases, we have studied Ca\(^{\text{18\,\,OH}}\)\(_{2}\) samples containing \(^{18}\text{O}\). Therefore, during the carbonation of Ca\(^{\text{18\,\,OH}}\)\(_{2}\), the sample itself is by far the most significant source of \(^{18}\text{O}\) (a very limited contribution can be due to the CO\(_2\) and H\(_2\text{O}\) \(^{60,61}\) whereas the atmospheric water and CO\(_2\) are the only source of \(^{16}\text{O}\). Any mixture of the isotope in the resulting carbonate phases provides the most likely source of oxygen in the formation of carbonate ions and therefore the carbonation mechanism.

The Raman spectrum of Ca\(^{\text{18\,\,OH}}\)\(_{2}\) confirms the purity of the sample but also the high surface reactivity, as demonstrated by the formation of carbonate phases after 10 minutes from exposure to atmospheric CO\(_2\). This is in agreement with the results of previous studies on the carbonation kinetics and on the role of water vapor on the Ca(OH)\(_2\)/CO\(_2\) solid-gas reaction.\(^{12,62}\) The shift observed for the Raman peaks of portlandite and calcite can be associated with variations in the isotopic composition of the minerals and are supported by ab initio calculations. In the case of portlandite, the shifts in the Raman peaks arise from substitution of all the \(^{16}\text{O}\) with \(^{18}\text{O}\) (Figure 2), whereas the shift in the Raman peaks of carbonate phases formed after the reaction with atmospheric CO\(_2\) arise from partial substitution of \(^{16}\text{O}\) with \(^{18}\text{O}\) (Figure 3). DFT data (Table 2) support that the experimental peaks at 152, 271, 698 and 1066 cm\(^{-1}\) are associated with calcite containing 1/3 of \(^{18}\text{O}\) (\(^{18}\text{O}:^{16}\text{O}\) ratio 0.5). The main vibrational fingerprint of this phase could be identified in the peak at 1066 cm\(^{-1}\) (Figure 3). The peak at 1083 cm\(^{-1}\) belongs to \(^{16}\text{O}\)-calcite, which is a minor phase at the beginning of the reaction which then grows over the time.

SIMS results allow calculation of the \(^{18}\text{O}:^{16}\text{O}\) ratio for the secondary ions ejected from surface destruction. At the early stage of carbonation (~3 minutes exposure to air), the ratio is of 0.51 (Table 3). This value is in good agreement with the results of our theoretical analysis of Raman shifts and with Letolle’s proposition\(^{29}\). This indicated that in carbonate precipitates at high pH, 2/3 of oxygen is supplied by CO\(_2\) whereas 1/3 of the oxygen is provided by OH\(^-\) ions. However, unlike Latolle's proposition suggesting that the OH\(^-\) groups involved in the carbonation originate from the
dissociation of H$_2$O molecules, our results clearly demonstrate that the Ca(OH)$_2$ plays an important role in the formation of hydroxyl groups. ToF-SIMS data displays carbonate species that contain 1/3 of $^{18}$O (the remaining 2/3 comes from C$^{16}$O$_2$), which in our case can only be produced by the dissolution of the surface and not by the dissociation of adsorbed water molecules, which comprise mainly $^{16}$O. This is also supported by PHREEQC$^{57,63}$ modelling (see model description and Table S5 in the SI) showing that the concentration of OH$^-$ ions produced by the dissolution of Ca(OH)$_2$ in pure water at 25°C, is several orders magnitude greater than the concentration of OH$^-$ ions produced by the natural dissociation of pure water. Therefore, the OH$^-$ ions from Ca(OH)$_2$ are more likely to take part in the carbonation reaction compared to those from water. As a consequence, it is possible to infer that in highly alkaline conditions, the isotopic composition of precipitated carbonates, which is generally described by Equation 8, can be rewritten by considering the abundance of $^{16}$O in the CO$_2$ and in the Ca(OH)$_2$ as reported in Equation 9. This new equation marks the very early stage of the carbonation reaction where the dissolution of the surface is the rate-limiting step. Although this equation is a simplification of the real process, since it omits contributions from the equilibration of $^{18}$OH from the surface and from water, it can be used to describe the process in basic terms:

$$n^{18}O_{carbonate} \leftrightarrow \frac{1}{2} n^{18}O_{Ca(OH)_2} + \frac{2}{2} n^{18}O_{CO_2(g)} \quad (9)$$

Subsequent to the formation of $^{18}$O rich carbonate phases in the first stage of the carbonation mechanisms, when the dissolution of portlandite surfaces must occur, our ToF-SIMS data show a dramatic reduction in $^{18}$O:$^{16}$O ratio within the first day of carbonation (Table S6). This is also shown by the growth of the Raman peak at 1083 cm$^{-1}$ of $^{16}$O-calcite over time (Figure 3) and can be explained by the transformation of the initial metastable carbonates into more stable phases over time.$^{64-77}$ Figure 3 shows the disappearance over time of a peak at 495 cm$^{-1}$ that can be related to metastable hydrated phases$^{55}$. A possible explanation of this re-equilibration of $^{18}$O:$^{16}$O ratio is the dissolution of metastable phases that give up some $^{18}$O and the subsequent recrystallization of more
stable phases that acquire $^{16}$O during the precipitation process occurring under equilibrium conditions.

This marks the second stage of carbonation, which involves the transformation carbonate phases from lesser stable to more stable forms. A detailed explanation of this transformation has been recently provided by Rodriguez Navarro et al.\textsuperscript{27}

Earlier, Rodriguez-Blanco et al.\textsuperscript{70} described the transformation mechanism of ACC to calcite as a two stage process: 1) ACC particles rapidly dehydrate and crystallize forming individual particles of vaterite; 2) the vaterite dissolves and re-precipitates as calcite (Ogino et al.\textsuperscript{71} also confirmed the latter stage also for aragonite). Stage 1, mainly entails the release of water molecules initially embedded in the structure of hydrated phases. Stage 2, involves the release of CO$_3^{2-}$ ions that, according to equations 2-5, can lead to an exchange of oxygen atoms with the water molecules. We infer that our data is consistent with this proposition. The oxygen exchange and the formation of new carbonate phases richer in $^{16}$O at the top of the carbonate phases initially formed (stage 1) explains the sudden variation of the $^{18}$O:$^{16}$O ratio within the first 24h. Therefore, it is possible to infer that, whereas precipitation of meta-stable phases takes place under non-equilibrium conditions (i.e. at high pH, which does not allow isotope equilibration), the dissolution-and-precipitation mechanism leading to the formation of stable carbonate phases and the precipitation of new carbonate phases richer in $^{16}$O, occurs at lower pH allowing an isotopic equilibrium of carbonates. It is worth noting that in our experiments this equilibration occurred within the initial 24 hours even at 50% RH (a relatively low RH value for carbonation) and this suggests that stage 2 of the carbonation is a fast kinetic pathway.

**Conclusions**

Our results show new insights in the carbonation mechanism of portlandite. They demonstrate that during the early stage of the carbonation reaction (first 3 minutes, in our experiments) the surface hydroxyl groups are the source of oxygen for the formation of carbonate ions and hence the growth of carbonate begins by the dissolution of hydroxyl and calcium ions followed by the
formation of metastable calcium carbonate. The second stage of the reaction occurs within the 24h after the carbonation started. This involves the transformation of the metastable carbonate phases into stable calcite. During this transformation there is a release of water, which is the source of oxygen for the formation of new carbonate ions.

Our results show how artificial isotopic doping can be used to study processes such as carbonation and have brought new insights into the early carbonation process. This knowledge should further the understanding of many processes involving carbonation such as carbon sequestration technologies, carbonation of construction materials, precipitated carbonate products and geological disposal facilities for nuclear waste.

Acknowledgements

The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC) for financial support through project EP/K025597/1. The computational work has made use of ARCHER, the UK’s national HPC, via the Materials Chemistry Consortium funded by the EPSRC (EP/L000202) in addition to the University of Bath’s HPC resource. The authors are grateful to Mrs Ursula Potter and Dr Philip Fletcher of the Microscope and Analysis Suite of the University of Bath for assistance with SEM imaging and Raman spectroscopy. All data supporting this study are openly available from the University of Bath data archive at 10.15125/BATH-00240.

Supporting Information Description

(1) ToF-SIMS sample preparation; (2) ToF-SIMS data analysis; (3) PHREEQC calculations; (4) detailed plots of the SIMS results; (4) experimental and simulated lattice parameters for portlandite; (5) Plot of the $^{18}\text{O}:{^{16}\text{O}}$ ratio over the time; (6) Table of experimental and simulated lattice parameters for portlandite; (7) List of all ions considered in this research; (8) list of ions considered for calculating the $^{18}\text{O}:{^{16}\text{O}}$ ratio; (9) peak position of the Rama spectra for different CaCO$_3$ phases; (10)
OH\textsuperscript{-} concentration in different aqueous solutions, calculated using PHREEQC. This information is available free of charge via the Internet at http://pubs.acs.org.

References


4) Gartner, E.; Hirao, H. A review of alternative approaches to the reduction of CO\textsubscript{2} emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete Research. 2015, 78 Part A, 126-142.


6) Berger, R. Calcium Hydroxide: Its Role in the Fracture of Tricalcium Silicate Paste. Science, 1972, 175(4022), 626-629


23) Yang, T.; Keller, B.; Magyari, E.; Hametner, K.; Gunther, D. Direct observation of the carbonation process on the surface of calcium hydroxide crystals in hardened cement


50) Grant, J.; Pesce, G.L.; Ball, R.J.; Molinari, M.; Parker, S.C. An Analytical and Computational Study to Resolve the Composition of Dolimitic Lime. *RCS Advances*, 2016, 6(19), 16066-16072


57) Appelo, C. A. J.; D., P. *Geochemistry, groundwater and pollution*; Taylor & Francis, **2005**.

58) Morse, J.; Mackenzie, F. *Geochemistry of sedimentary carbonate*; Developments in Sedimentology 48; Elsevier Science Publisher B.V., **1990**

59) Hoefs, J. *Stable Isotope Geochemistry*; Springer, **2004**

61) Lee X.; Sargent S.; Smith R.; Tanner B. In situ measurement of the water vapor 18O/16O isotope ratio for atmospheric and ecological applications. *Journal of Atmospheric and Oceanic Technology*. 2005, 22(5), 555-565


67) Kerisit S.; Parker, S.C. Free Energy of Adsorption of Water and Metal Ions on the {10\(\bar{1}4\)} Calcite Surface. *Journal of the American Chemical Society*. 2004, 126(32), 10152-10161


SYNOPSIS: At pH above 9, the direct reaction of CO$_2$ with the hydroxyl group produced by the dissolution of Ca(OH)$_2$ is the primary pathway for carbonate ion formation. This pathway is faster than the one leading to the formation of CO$_3^{2-}$ from the dissolution of CO$_2$ in natural waters at neutral pH.