
URL:
This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/30158/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.)

www.northumbria.ac.uk/nrl
RESULTS

The table below shows the radiocarbon ages obtained for the mortar samples.

<table>
<thead>
<tr>
<th>Preparation technique</th>
<th>²⁰⁷²⁰⁸ (‰)</th>
<th>Radiocarbon age (BP)</th>
<th>Calibrated age</th>
<th>Confidence level (2σ)</th>
<th>Confidence level (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk mortar (n=2)</td>
<td>1940±17</td>
<td>25 AD - 40 AD</td>
<td>13.4</td>
<td>68.2</td>
<td>95.4</td>
</tr>
<tr>
<td>5 CO₂ fraction (each)</td>
<td></td>
<td>40 AD - 80 AD</td>
<td>54.8</td>
<td>95.4</td>
<td>95.4</td>
</tr>
<tr>
<td>10 AD - 150 AD</td>
<td>86.5</td>
<td>95.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 AD - 130 AD</td>
<td>8.9</td>
<td>95.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lime lump (n=1)</td>
<td>1979±45</td>
<td>90 BC - 130 AD</td>
<td>68.2</td>
<td>95.4</td>
<td>95.4</td>
</tr>
<tr>
<td>5 CO₂ fraction (each)</td>
<td></td>
<td>95.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Different 1000 years</td>
<td>95.4</td>
<td>95.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

• A detailed architectonic and archaeological knowledge of both, building and sampling point allow a more precise evaluation of the radiocarbon results.

• Both results include the historically known construction time of the building (70-79 AD) within the confidence level 95.4%. However, only the result of the bulk mortars includes the construction time within the confidence level 68.2%.

• The bulk mortar samples show a narrower uncertainty, compared to the result obtained with the lime lump technique. This is due to a combined calibration of 5 measured CO₂ fractions from 2 samples that was not available for the lime lumps.

CONCLUSIONS

Success of the radiocarbon dating of lime mortars, is based on a number of factors including the knowledge of the context in which the samples are collected and the laboratory procedure that follows the sampling work.

Different preparation techniques lead to similar radiocarbon ages (although with some differences).

Sequential dissolution of a few bulk mortar samples lead to similar radiocarbon ages as the total dissolution of a single lime lump. However, a combined calibration of five measurements lead to a narrower time span for the bulk mortar.

ACKNOWLEDGMENTS

Authors are grateful to R. Rea and A. Delfino of the Soprintendenza Archeologica of Rome for their help in the radiocarbon dating of mortar.

CONTACT DETAILS

Rita Vecchiattini – Department of Sciences of Architecture, University of Genoa; Stradone S. Agostino, 37 16123, Genova, Italy; E: vecchiattini@arch.unige.it

Alf Lindroos – Åbo Akademi University, Domkyrkoborg 3, 20000 Åbo, Finland; E: alf.lindroos@abo.fi

Giovanni L. Pesce – Department of Architecture and Built Environment, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom; E: Giovanni.Pesce@northumbria.ac.uk

Åsa Ringbom – Åbo Akademi University, Domkyrkoborg 3, 20000 Åbo, Finland; E: jh@phys.au.dk

Lynne Lancaster – College of Arts and Sciences, Ohio University; 210 Ellis Hall, Athens, USA; E: lancaste@ohio.edu

Heinemeier Jan – Department of Physics and Astronomy, Aarhus University and to the Center for Dating e Diagnostics (CEDAD) of the University of Salento for their help in the radiocarbon dating of mortar.

Optimisation of the radiocarbon dating process of mortar samples. A case study in the Colosseum, Rome (Italy)

Rita Vecchiattini¹, Alf Lindroos², Giovanni Luca Pesce³, Asa Ringbom², Lynne Lancaster⁴, Jan Heinemeier⁵

¹University of Genoa, Italy; ²Åbo Akademi University, Finland; ³Northumbria University, United Kingdom; ⁴Ohio University, Athens, US; ⁵Aarhus University, Denmark

INTRODUCTION

This project highlights the importance of an integrated planning of field and laboratory procedures for the success of the radiocarbon dating of mortar samples. This project highlights the importance of an integrated planning of field and laboratory procedures for the success of the radiocarbon dating of mortar samples.

THE BUILDING

The Amphitheatrum Flavium (known as Colosseum or Coliseum) is an iconic public building constructed in Rome (Italy, Southern Europe) between the 70 and the 79 AD by the Roman Emperor Titus Flavius Vespasianus. Despite the magnificent opening in the 80 AD, the construction works continued in the following years under the Emperor Domitian who modified the underground environments, the highest level of the cavea, and the external area.

From then, the building has undergone a number of destructions (generated by events such as fires and earthquakes), modifications and additions that have heavily altered its original structures and finishes, in particular at ground level.

SAMPLING AND SAMPLES

Sampling work was carried out in 2001 as a part of the Abo Akademi International Mortar Dating Project.

The specimen dated in this study was carefully sampled in an interior brick wall of the second room, west of the North entrance of the Colosseum. The room was probably built during the Flavian period and it has always been well covered and never restored.

In order to perform the test, the specimen was split in two parts and each part was analysed separately using different preparation techniques, in different laboratories.

The first part comprising the bulk mortar (green) was sent to Århus University in Denmark for the H₃PO₄ sequential hydrolysis described in Heinemeier et al. 2010. Sequential dissolution (5 CO₂ fractions) was applied to 2 pieces of the same part. The second part (red) was crushed in order to isolate some lime lumps. These were sent to the Åbo Akademi University and to the CEnter for Dating e Diagnostics (CEDAD) of the University of Salento for their help in the radiocarbon dating of mortar.

BIBLIOGRAPHIC REFERENCES
