Computer Numerical Control Machine Tool Information Reusability within Virtual Machining Systems

Vichare, Parag, Zhang, Xianzhi, Dhokia, Vimal, Cheung, Wai Ming, Xiao, Wenlei and Zheng, Lianyu (2017) Computer Numerical Control Machine Tool Information Reusability within Virtual Machining Systems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. ISSN 0954-4054 (In Press)

[img] Text
CNC Machine Tool Information IMechE B - April 2017 accepted.pdf - Accepted Version
Restricted to Repository staff only until 17 May 2018.

Download (2MB) | Request a copy
Official URL: http://doi.org/10.1177/0954405417708219

Abstract

Virtual Machining (VM) allows simulation of the machining process by realistically representing kinematic, static and dynamic behaviour of the intended machine tools. Using this method, manufacturing related issues can be brought to light and corrected before the product is physically manufactured. Machining systems utilised in the manufacturing processes are represented in the VM environment and there is a plethora of commercial VM software used in the industry. Each software system has a different focus and approach towards virtual machining; more than one system may be needed to complete machining verification. Thus, the significant increase in the use of virtual machining systems in industry has increased the need for information reusability. Substantial time and money has been put into the research of virtual machining systems. However, very little of this research has been deployed within industrial best practice and its acceptance by the end user remains unclear. This paper reviews current research trends in the domain of VM and also discusses how much of this research has been taken on board by software venders in order to facilitate machine tool information reusability. The authors present a use cases which utilises the novel concept of Machining Capability Profile (MCP) and the emerging STEP-NC compliant process planning framework for resource allocation. The use cases clearly demonstrate the benefits of using a neutral file format for representing MCPs, as opposed to remodelling and or reconfiguring of this information multiple times for different scenarios. The paper has shown through the use cases that MCPs are critical for representing recourse information from a kinematic, static and dynamic perspective that commercial software vendors can subsequently use. The impact of this on mainstream manufacturing industry is potentially significant as it will enable a true realisation of interoperability.

Item Type: Article
Uncontrolled Keywords: Virtual Machining, Digital Manufacturing, CNC, CAD/CAM, STEP-NC, Interoperability
Subjects: H100 General Engineering
H300 Mechanical Engineering
H700 Production and Manufacturing Engineering
Department: Faculties > Engineering and Environment > Mechanical and Construction Engineering
Depositing User: Wai Ming Cheung
Date Deposited: 10 Apr 2017 14:59
Last Modified: 02 Jun 2017 13:08
URI: http://nrl.northumbria.ac.uk/id/eprint/30423

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics


Policies: NRL Policies | NRL University Deposit Policy | NRL Deposit Licence