Glyph-based video visualization on Google Map for surveillance in smart cities

Mehboob, Fozia, Abbas, Muhammad, Rehman, Saad, Khan, Shoab, Jiang, Richard and Bouridane, Ahmed (2017) Glyph-based video visualization on Google Map for surveillance in smart cities. EURASIP Journal on Image and Video Processing, 2017. p. 28. ISSN 1687-5281

[img]
Preview
Text (Article)
art%3A10.1186%2Fs13640-017-0175-4.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (3MB) | Preview
Official URL: https://doi.org/10.1186/s13640-017-0175-4

Abstract

Video visualization (VV) is considered to be an essential part of multimedia visual analytics. Many challenges have arisen from the enormous video content of cameras which can be solved with the help of data analytics and hence gaining importance. However, the rapid advancement of digital technologies has resulted in an explosion of video data, which stimulates the needs for creating computer graphics and visualization from videos. Particularly, in the paradigm of smart cities, video surveillance as a widely applied technology can generate huge amount of videos from 24/7 surveillance. In this paper, a state of the art algorithm has been proposed for 3D conversion from traffic video content to Google Map. Time-stamped glyph-based visualization is used effectively in outdoor surveillance videos and can be used for event-aware detection. This form of traffic visualization can potentially reduce the data complexity, having holistic view from larger collection of videos. The efficacy of the proposed scheme has been shown by acquiring several unprocessed surveillance videos and by testing our algorithm on them without their pertaining field conditions. Experimental results show that the proposed visualization technique produces promising results and found effective in conveying meaningful information while alleviating the need of searching exhaustively colossal amount of video data.

Item Type: Article
Subjects: G400 Computer Science
G900 Others in Mathematical and Computing Sciences
Department: Faculties > Engineering and Environment > Computer Science and Digital Technologies
Depositing User: Ay Okpokam
Date Deposited: 02 May 2017 15:08
Last Modified: 03 May 2017 06:49
URI: http://nrl.northumbria.ac.uk/id/eprint/30663

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics


Policies: NRL Policies | NRL University Deposit Policy | NRL Deposit Licence