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Abstract. 

BACKGROUND: Isokinetic eccentric cycling is increasingly being utilised to examine the effect of chronic eccentric muscle 

training however little is known about how individuals familiarise to such a unique training modality. 

OBJECTIVE: To examine longitudinal variation in power output and lower limb muscle activation during familiarisation to 

maximal recumbent isokinetic eccentric cycling. 

METHODS: Twelve male volunteers, unfamiliar with eccentric cycling, completed four trials, separated by 7–10 days, each 
comprising 6 × 10 s maximal isokinetic eccentric efforts between 20–120 rpm. Peak power and average power output (PO), and 

surface electromyography (sEMG) of the rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF), and medial gastrocne- 

mius (MG) were recorded throughout. Systematic error across repeated trials was assessed using one-way ANOVA, and random 

error quantified using coefficient of variation (CV, %). 

RESULTS: Average PO at 60 rpm and RF activation at 20 rpm increased from trial 1–2 (p < 0.05), with no other systematic error 
between trials at any cadence. Across all cadences, the CV for peak PO (∼13%), average PO (∼10%), VL activation (∼13%) 

and RF activation (∼19%) was moderate and plateaued after one familiarisation (i.e. T2–T3). However, for BF (∼24%) and MG 

(∼22%) activation reliability was generally poor. For the majority of variables the reliability was best at 60 rpm. 

CONCLUSIONS: Therefore, with one familiarisation, 60 rpm is recommended to achieve moderate between-session reliability 

in the measurement of power output and lower limb muscle activation during recumbent, eccentric cycling. 
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1. Introduction 

 
It is well documented that isolated eccentric con- 

tractions can produce up to twice the force of concen- 

tric  or  isometric  contractions [1–4].  Similar  findings 

have also been observed in eccentric cycling where, 

for the same metabolic cost, up to three times greater 

power can be produced compared to concentric cy- 

cling [5,12]. Furthermore the electrical activity (de- 

tectable with surface electromyography) at any given 

power or force production is less during eccentric com- 

pared to concentric exercise [3,6]. Collectively these 

indicate that eccentric cycling may offer a potent stim- 

ulus for musculoskeletal adaptation by being a train- 

ing  modality  that  is  non  weight  bearing, ‘relatively’ 



 
 

 
low in metabolic cost, but can also put greater stress 

on the muscle-tendon complex through higher levels 

of tension not possible under concentric loading. An 

additional advantage of eccentric cycling ergometry is 

the ability to prescribe high-volume, specific eccen- 

tric work that minimises the concentric contractions 

typically associated with other types of cyclical ec- 

centric training, such as traditional free-weight resis- 

tance exercise. Training studies utilising eccentric cy- 

cling have observed notable increases in vastus lat- 

eralis cross-sectional area [7], jump power, leg stiff- 

ness [8], concentric power, pennation angle [9], and 

jump height [10], supporting the posit that eccentric 

cycling can offer a potent training stimulus. 

Given eccentric cycling is likely a novel stimulus 

for the majority of participants, it is important for both 

researchers and practitioners to understand the time- 

course of familiarisation in order to optimise mea- 

surement and exercise prescription. Brughelli & Van 

Leemputte [11] concluded that two familiarisations are 

required to ensure a good level of within-subject reli- 

ability for power output in maximal eccentric cycling. 

However, this research was conducted on an upright 

ergometer as opposed to a recumbent bike, the latter 

being more commonly used in eccentric cycling re- 

search [8,9,12]. In concentric cycling, differences in 

body orientation (between conventional cycling posi- 

tion and recumbent) are known to significantly alter 

power output and muscle activation [13,14]. There- 

fore it is reasonable to suggest that similar differences 

might also be present in the eccentric domain. 

The evidence around the learning response to re- 

cumbent eccentric cycling is limited. For example, 

greater consistency maintaining a given power output 

was observed after six weeks of recumbent eccentric 

cycling at 60–80 rpm [10], however, this does not of- 

fer insight to the initial, session-by-session, learning 

effect. Penailillo et al. [6] reported reductions in vas- 

tus lateralis activation for a set power output at 60 rpm 

after two sessions, indicating a change in neuromuscu- 

lar activation, but no other muscles or cadences were 

tested. Additionally, very little is known about the ef- 

fect of cadence on the familiarisation process to re- 

cumbent eccentric cycling. It has been suggested that 

during upright eccentric cycling the between-session 

power output at low cadences (40 rpm) is less reliable 

in comparison to higher cadences (60–120 rpm; [11]), 

however this posit has yet to be tested in recumbent ec- 

centric cycling. A greater understanding of the muscle 

activation that underpins pedalling technique, across a 

range of cadences, would help optimise the prescrip- 

tion of eccentric cycling. Furthermore, when combined 

with power output data, it would highlight the num- 

ber of pre-trials required to attain repeatable results af- 

ter which interpretations can be made on interventions 

and progression. Therefore, the aim of this study was 

to identify the reliability of measures of power output 

and lower limb muscle activation during the familiari- 

sation to recumbent eccentric cycling and over a range 

of cadences, to recommend the number of practice tri- 

als required to minimise variation. 
 

 
 

2. Methods 
 

 
2.1. Subjects 

 

 
Twelve recreationally active males (mean ± SD; 

age = 37.5 ± 6.7 years; body mass = 76.1 ± 6.7 

kg; stature = 181 ± 6 cm) with no history of lower 

limb injuries or neurological disorders volunteered to 

 undertake this investigation. All participants provided 

written informed consent and were deemed healthy as 

determined by a physical activity readiness question- 

naire. Participants were asked to refrain from caffeine, 

alcohol and exercise in the 24 hours preceding each 

trial and maintained their habitual training through- 

out the testing process. Ethical approval was granted 

prior to the start of all procedures by the Northum- 

bria University Faculty of Health and Life Sciences 

Ethics committee, in accordance with the Declaration 

of Helsinki. 
 

 
2.2. Experimental design 

 

 
To establish the familiarisation time-course of the 

variables under investigation, participants performed 

maximal eccentric recumbent cycling bouts at a range 

of cadences on four separate trial days. Ten days sepa- 

rated trials one and two with the remaining trials each 

separated by seven days. All exercise was performed 

on a custom built, recumbent, isokinetic cycle ergome- 

ter. During each visit participants completed six, 10 s 

maximal bouts of eccentric cycling in a randomised, 

counterbalanced (Latin squares method) order at 20, 

40, 60, 80, 100 and 120 rpm with 5 min recovery be- 

tween each bout. The dependant variables were peak 

power output (PO), average PO, and muscle activation 

of the rectus femoris, vastus lateralis, biceps femoris, 

and medial gastrocnemius. 



 
 

 
2.3. Eccentric ergometry 

 
All exercise was conducted on a custom built recum- 

bent cycling ergometer (BAE systems, London, UK). 

A 2200 W motor powered the pedals in either a clock- 

wise or anti-clockwise direction at a pre-set cadence in 

an isokinetic manner. Participants either pushed with 

or resisted against the direction of movement in or- 

der to conduct concentric or eccentric muscle actions, 

respectively. Rigid, carbon fibre soled, cycling shoes 

(Bontrager Riot RR-45, Trek, USA) and Look Keo 

pedals (Look Cycle, France) were used to maintain a 

consistent participant-ergometer interface and partic- 

ipants were instructed to remain seated. Torque data 

was obtained from a calibrated strain gauge located on 

the crank arm via a wireless telemetry system (Mantra- 

court Electronics, UK). Data were sampled at 200 Hz, 

digitised and acquired using an A/D converter (CED 

1401, Cambridge Electronic Design, UK) for off-line 

analysis (Spike 2 version 8.02, Cambridge Electronic 

Design, UK). In order to establish a relationship be- 

tween torque and sEMG activity, torque and sEMG 

values from the left limb and crank were used for anal- 

ysis. 

Power values were calculated from torque data using 

the following equation: 

Power (W) = Torque(N · m) × Cadence(rad · s−1)  

Peak PO was derived from the peak instantaneous 

power during each 10 s effort and average PO was cal- 

culated for the entirety of each 10 s effort. Immediately 

prior to each 10 second maximal sprint, participants 

were given 30 seconds to familiarise themselves with 

the cadence (i.e. not resist the pedals but instead be 

passively moved by them); this was the only eccentric 

familiarisation afforded to them. Participants were in- 

structed to resist the pedals in the opposite direction of 

motion. After this familiarisation a one minute rest was 

observed before commencing the 10 s maximal effort. 

For each 10 s effort the participant began by having 

their legs passively turned by the ergometer, to ensure 

the correct cadence was attained, before being counted 

down to initiate the effort. The elapsed time was hidden 

from the participant, but the participant was informed 

when each 10 s epoch had expired and the ergometer 

was subsequently stopped. 

 
2.4. Surface electromyography (sEMG) 

 
For each muscle of interest, two, 20 mm diame- 

ter electrodes (Ag/AgCl; Kendall 1041PTS, Covidien, 

Mansfield, MA, USA) with an inter-electrode distance 

of 20 mm were placed according to the SENIAM 

guidelines for EMG placement [15] on the left leg. The 

muscles used for analysis were the rectus femoris (RF), 

vastus lateralis (VL), biceps femoris (BF) and medial 

gastrocnemius (MG). The skin was shaved and abraded 

with an alcohol swab. A reference electrode was placed 

on the patella. The positions of the electrodes were 

marked with indelible ink to ensure a consistent place- 

ment between trials. Electrode signals were amplified 

(× 1000; acquired via 1902, Cambridge Electronic De- 
sign, Cambridge, UK), 50 Hz notch filtered, band-pass 

filtered (20–2,000 Hz), sampled at 2 kHz (CED 1401, 

Cambridge Electronic Design, UK), and analysed off- 

line (Spike 2 version 8.02, Cambridge Electronic De- 

sign, UK). For normalization of sEMG measures, at 

the start of each trial participants completed three 8 s 

maximal voluntary concentric contractions (separated 

by 5 mins) at 1 rpm between a pedal angle of 0◦ (top 

dead centre) and 48◦. Using a 0.2 s root-mean-square 

(RMS) window, the maximum sEMG activity from the 

three MVC efforts for each muscle was used to obtain 

a reference value for normalization purposes. Muscle 

activation during the maximal 10 s efforts was calcu- 

lated as the average RMS value for the two whole revo- 

lutions that corresponded to the greatest power output. 

This was in order to compare different cadences over 

an identical range of motion. 
 
 

2.5. Statistical analyses 
 

 
All statistical testing was performed using Graph 

Pad Prism 7.00 (GraphPad Software Inc, California, 

USA) and Microsoft Excel 2010 (Microsoft, Washing- 

ton, USA). To assess systematic error between trials 

for peak PO, average PO and EMG, data were analysed 

using one-way repeated measures analysis of variance. 

Where appropriate, Tukey’s post-hoc test was used to 

locate any significant differences. Significance was set 

at an alpha level of 0.05. The random error associated 

with familiarisation of the task was assessed across 

successive trials using coefficient of variation (CV, %) 

calculations ± 95 confidence limits. Reliability was 

defined as the extent to which the experimental trials 

yielded the same results on repeated trials. Coefficient 

of variation values were classed as good (< 5%), mod- 

erate (5–10%), or poor (> 10%) based upon values ob- 

served previously in maximal concentric cycling < 10 

s [11,16,17]. 
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Fig. 1. Peak power (A) and average power (B) data during repeated trials of maximal recumbent eccentric cycling exercise at varying cadences 

(n = 12). Values are mean (SD) * denotes significant difference at p < 0.05. 
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Fig. 2. Between-session coefficient of variation data for peak power (A) and average power (B) output for repeated trials of maximal recumbent 

eccentric cycling exercise at varying cadences (n = 12). Values are mean (95% CI) * denotes significant difference at p < 0.05. 

 

3. Results 

 
3.1. Power data 

 
Figure 1 shows the mean values (± SD) for peak PO 

and average PO across all trials. There was a signifi- 
cant effect of trial on average PO at 40 rpm (F(3,33) = 

3.006, p = 0.044) and 60 rpm (F(3,33)  = 4.913, p = 
0.006). Post-hoc testing revealed that at 60 rpm aver- 
age PO at T2 was greater in comparison to T1 (p = 

0.004), with no other differences thereafter (all p > 

0.05). For 40 rpm, the Tukey post-hoc adjustment to 

limit type 1 errors from multiple comparisons resulted 

in no statistical differences between trials, though PO 

in T1 tended to be lower than subsequent observations 
(T1–T2, p = 0.15; T1–T3, p = 0.07; and T1–T4, p = 

0.07), but with no change thereafter (T2–T3, p = 0.98; 

T3–T4, p = 0.99, Fig. 1, panel B). There were no other 

differences in average PO or peak PO between trials 

at the other cadences. Between-trial CV for peak PO 

and average PO, including 95% confidence limits, are 

displayed in Fig. 2. The greatest reduction of between- 

session CV for peak PO (T1–T2, 8–26%; T2–T3, 9– 

20%) and average PO (T1–T2, 11–28%; T2–T3, 4– 

15%) was seen after one familiarisation session, i.e. 

between T2–T3, with little further improvement there- 

after (peak PO, T3–T4, 8–18%; average PO, T3–T4, 5– 

15%). Between cadences, the lowest CV values were 

observed at 60 rpm for both peak PO (T2–T3, 9%; T3– 

T4, 8%) and average PO (T2–T3, 4%; T3–T4, 5%). 

Furthermore, there was a tendency for faster cadences 

(;? 80  rpm)  to  initially  (T1–T2)  display  larger  CVs 
in comparison to slower cadences ( 60 rpm) in both 
peak PO (11% vs 19%, Fig. 2, panel A) and average 
PO (14% vs 25%; Fig. 2, panel B). 

 
3.2. EMG data 

 
Mean values (± SD) for all muscle activation vari- 

ables are displayed in Fig. 3. There was a significant 
effect of trial on RF activation at 20 rpm (F(3,33) = 

6.038, p = 0.002). Post-hoc analysis revealed greater 
activation at T2 (p = 0.003), and T4 (p = 0.006) in 

comparison to T1, and generally RF activation tended 
to increase with repeated trials (Fig. 3, panel C). Simi- 
larly, at all cadences, MG activation tended to increase 
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Fig. 3. Biceps femoris (A), Vastus lateralis (B), Rectus femoris (C), and Medial gastrocnemius (D) activation data during repeated trials of 

maximal recumbent eccentric cycling exercise at varying cadences (n = 12). Values are mean (SD) * denotes significant difference at p < 0.05. 
 

with repeated trials (Fig. 3, panel D), although this dif- 

ference was not statistically significant at any cadence 

(all p > 0.05). No such patterns were observed in BF 

or VL activation. Between-trial CV data for muscle ac- 

tivation, with 95% confidence limits, are displayed in 

Fig. 4. The majority of EMG CV variables decreased 

with repeat trials (Fig. 4). This reduction in CV was 

consistently observed after one familiarisation, before 

plateauing, with the VL (T2–T3, 9–16%; T3–T4, 8– 

15%) and RF (T2–T3, 14–26%; T3–T4, 12–20 %) 

across all cadences. However, no such plateau was ob- 

served with BF (T2–T3, 30–48%; T3–T4, 15–35%) 

and MG (T2–T3, 27–51%; T3–T4, 13–32%; Fig. 4). 
 

 
4. Discussion 

 
The aim of this study was to establish the time- 

course of familiarisation to maximal recumbent isoki- 

netic eccentric cycling, and to determine the reliabil- 

ity of this mode of exercise for a range of cadences. 

The data suggests that at least one practice trial is re- 

quired to achieve consistent group means and good to 

moderate between-session reliability in peak PO and 

average PO, with 60 rpm displaying the greatest re- 

liability. To improve the reliability of selected lower 

limb muscle activation variables at least one practice 

trial should be employed (VL and RF). However, to 

increase the reliability of sEMG in other lower limb 

muscles (BF and MG) further familiarisations would 

be prudent, and even with this level of experimental 

control between-session variability could still be unac- 

ceptably high. 

The absence of significant changes in average and 

peak PO  after T2 indicates that one familiarisation 

reduces variation sufficiently to attain consistent PO 

data. This notion is supported by the plateau in average 

and peak PO CV between T2–T3 and T3–T4 which 

further indicates that only one familiarisation would 

be sufficient to minimise the initial, large, variability 

observed in the current investigation. A similar time- 

course of familiarisation has been previously observed 

in upright eccentric cycling where a plateau in aver- 

age PO was identified after one familiarisation session, 

although consistent between-session CVs required an 

additional familiarisation [11]. Brughelli & Van Leem- 

putte [11] also observed an increase in peak PO and its 

reliability after two and four sessions respectively. In 

contrast, the current study found no change in peak PO, 

and little discernible change in peak PO reliability after 
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Fig. 4. Between-session coefficient of variation data the biceps femoris (A), Vastus lateralis (B), Rectus femoris (C), and Medial gastrocnemius 
(D) for repeated trials of maximal recumbent eccentric cycling exercise at varying cadences (n = 12). Values are mean (95% CI) * denotes 

significant difference at p < 0.05. 
 

T2. This discrepancy in peak PO and peak PO reliabil- 

ity might stem from the larger absolute peak PO in the 

current study (↑∼100%), even though a similar pop- 
ulation was sampled. One possibility is that different 

factors limit peak PO during upright and recumbent ec- 

centric cycling and that these factors are reduced dur- 

ing recumbent cycling, hence the greater power output. 

Furthermore, greater initial peak PO would reduce the 

capacity for improvement which may explain the ab- 

sence of changes in peak PO in the current study in 

comparison to [11]. This absence of change in peak 

PO, combined with the increases in average PO, sug- 

gest that participants developed a more consistent ped- 

alling technique, rather than a more powerful tech- 

nique, as they became familiarised to maximal recum- 

bent eccentric cycling. 

We demonstrated a trend for increased RF and MG 

activation during the initial stages of familiarisation to 

maximal, recumbent, eccentric cycling. Similar find- 

ings have also been observed in isolated eccentric con- 

tractions and attributed to a reduction in neural inhibi- 

tion [18,19]. Neural inhibition is thought to limit mus- 

cle activation to protect the muscle-tendon unit from 

high forces that would otherwise cause damage. How- 

ever, for the purposes of eliciting a training response, 

it is likely that these high power outputs make eccen- 

tric cycling a potent stimulus. The ability to fully ac- 

tivate the muscle during eccentric cycling could pro- 

mote greater adaptation. Therefore, before the full po- 

tential of eccentric cycling as a training stimulus can 

be realised, or studied, a thorough familiarisation plan 

should be considered. Although the significant changes 

in RF activation (20 rpm) ceased after T2 there was a 

tendency for MG and RF activation to increase from 

T1 to T4. This tendency for increased activation across 

trials was not evident with the BF or VL. It is possible 

that because maximal recumbent eccentric cycling did 

not elicit the same high muscle activation in the VL and 

BF in comparison to the RF and MG that these mus- 

cles did not experience a large enough stress to elicit 

an increase in activation with subsequent trials. Given 

that all monitored muscles do not have the same role in 

this unique movement it is not surprising that they have 

responded differently to the familiarisation process. At 

any given cadence, or trial, muscle activation was, in 
the majority, greatest in the RF (∼77%) followed by 

the MG (∼62%), VL (∼52%), and BF (∼37%). This 

supports work by Elmer et al. [8] that found eccentric 



 

 
 

 
actions of the knee extensors and ankle extensors ab- 
sorb significantly more power during eccentric cycling 

in comparison to the knee flexors. 

Previous research has observed the between-session 

CV of sEMG to be 16% during maximal isometric 

contractions [21] and between 20–78% during a dy- 

namic movement such as cutting [22] or walking [23]. 

This suggests that the CV values of ∼13% (VL) and 

∼16  %  (RF),  in  the  current  study,  are  favourable 
when compared with other dynamic movements. How- 
ever, more concurrent with previous research are the 
worse CV  values observed in the BF (∼24%) and 
MG (∼22%). Considering that the BF does not play 

a key role in power absorption during eccentric cy- 

cling [20] this worse reliability is not surprising. How- 

ever, the MG does play a role in power absorption yet 

displays markedly worse reliability in comparison to 
other prime movers such as the VL and RF. Anecdo- 

tally participants found coordinating the ankle joint the 

most difficult task during each maximal eccentric ef- 

fort. It is possible that a large portion of the variabil- 

ity in power output could be a result of high variability 

in MG activation. Therefore it may be prudent to fo- 
cus a user on maintaining a consistent ankle joint ori- 

entation during familiarisation to recumbent isokinetic 

eccentric cycling. 
To account for the acute changes in PO and lower 

limb muscle activation during the familiarisation to 

maximal recumbent isokinetic eccentric cycling it is 
recommended that at least one familiarisation session 

be prescribed. Furthermore, after one familiarisation 

session, moderate between-session reliability can be 

attained in peak and average PO, and VL and RF acti- 

vation. However, in order to improve the reliability of 

 

 BF and MG activation it may be prudent to adopt 

at least two familiarisations, although this is unlikely 

to result in improving reliability to acceptable levels. 

Fi- nally, a cadence of 60 rpm is recommended in 

order to achieve the greatest reliability in the 

aforementioned variables. 
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