
URL: http://ieeexplore.ieee.org/document/7482010/

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/31282/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.)

www.northumbria.ac.uk/nrl

Craig Warren¹, Lara Pajewski², Alessio Ventura², Antonios Giannopoulos¹,
¹School of Engineering, The University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JL, UK
Craig.Warren@ed.ac.uk, A.Giannopoulos@ed.ac.uk
²Department of Engineering, Roma Tre University, via Vito Volterra 62, 00146, Rome, Italy
lara.pajewski@uniroma3.it, alessioventura@hotmail.com

Abstract—The development of accurate and realistic models of Ground Penetrating Radar (GPR) antennas is being driven by research into quantitative amplitude information from GPR, improved GPR antenna designs, and better-performing forward simulations that can feed into inversion algorithms. The Finite-Difference Time-Domain (FDTD) method and Finite-Integration technique (FIT) are popular numerical methods for simulating electromagnetic wave propagation. Time-Domain methods are particularly well-suited to modelling ultra-wideband GPR antennas as a broad range of frequencies can be modelled with a single simulation. We present comparisons using experimental and simulated data from a Geophysical Survey Systems 1.5 GHz antenna and a MALÅ Geoscience 1.2 GHz antenna. The antennas were investigated in free space and over a lossy dielectric environment with a target. For the simulations we used a commercial solver – Computer Simulation Technology Microwave Studio (CST) – and a free open-source FDTD solver – gprMax. For each test scenario, phase and amplitude information from the antenna responses were compared. Generally, we found very good agreement between the experimental data and the two simulations.

Index Terms—antenna, simulation, Finite-Difference Time-Domain, Ground Penetrating Radar.

I. INTRODUCTION

Simulations of Ground Penetrating Radar (GPR) that have included models of the actual antenna details have been mainly of antennas used in academia or for research purposes [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. There has been very limited published work of GPR simulations with models of commercial antennas [11], [12], [13]. In fact, many simulations have used a theoretical infinitesimal dipole source to represent a real GPR antenna where only far-field behaviour or travel-time information was of interest, or where computational resources were limited. However, computing power is increasing dramatically and becoming more accessible – multi-core CPUs and gigabytes of RAM are now standard features on desktop and laptop machines, and many businesses and universities now have their own High-Performance Computing (HPC) systems. These computational advances have particularly benefited volume-based numerical techniques such as the Finite-Difference Time-Domain (FDTD) method, and allowed larger and more complex problems to be investigated. This, coupled with the desire to investigate quantitative information from GPR, means detailed three dimensional (3D) FDTD models of realistic GPR antennas need to be created and used.

In Section II we briefly present the two simulation tools that were evaluated. In Sections III and IV we describe the commercial GPR antennas that were modelled and present comparisons of measured responses with simulated responses from the two software (a response refers to a time history of electric field values at a spatial location). These comparisons are made with the antennas in free space, as well as with the antennas over emulsions which simulate dielectric environments with embedded targets.

II. SIMULATION SOFTWARE

We evaluated two simulation software tools: gprMax, which uses Yee’s algorithm [14] to solve Maxwell’s equations in 3D, and Computer Simulation Technology Microwave Studio (CST), which implements the Finite Integration Technique (FIT).

A. gprMax

gprMax is free, open-source software that simulates electromagnetic wave propagation for numerical modelling of GPR, and is available at http://www.gprmax.com. It was originally developed in 1996 [15] when numerical modelling using the FDTD method and, in general, the numerical modelling of GPR were in their infancy. Over the past 19 years gprMax has been one of the most widely used simulation tools in the GPR community. It has been successfully used for a diverse range of applications in academia and industry [16], [17], [18], [19], [20], [21], and has been cited more than 200 times since 2005 [22].

gprMax has recently been redeveloped in Python [23] with a series of improvements made to existing features as well as the addition of several new advanced modelling features including: an unsplit implementation of higher order perfectly matched layers (PMLs) using a recursive integration approach; diagonally anisotropic materials; dispersive media using multiple
Debye, Drude or Lorenz expressions; improved soil modelling using a semi-empirical formulation for dielectric properties and fractals for geometric characteristics; rough surface generation; and the ability to embed complex transducers and targets [24].

B. Computer Simulation Technology Microwave Studio

CST is a well-established commercial software tool available at http://www.cst.com. It features a suite of different solvers that use the FIT, Finite Element Method, Method of Moments, and Transmission-line matrix method. In this study we employed the transient solver, which is a general-purpose time-domain electromagnetic simulator implementing the FIT. The FIT is a spatial discretization scheme to numerically solve electromagnetic field problems and can yield results in both time and spectral domains. It was proposed in 1977 by Thomas Weiland and has been continually developed over the years [25]. This method covers the full frequency range of electromagnetics (from static up to high frequency) and optical applications and is the basis not only for the CST transient solver but also for other commercial simulation tools [26].

III. ANTENNA MODELS

The simulations included a model of a GPR antenna that is representative of a Geophysical Survey Systems, Inc. (GSSI) 1.5 GHz (centre frequency) antenna, and a model of a GPR antenna that is representative of a MALÅ GeoScience (MALÅ) 1.2 GHz (centre frequency) antenna. The antenna models include all of the main features and geometry of the real antennas. Details of the development of antenna models and initial validation can be found in [13]. Fig. 1 and Fig. 2 show photographs of the real antennas and views of the detailed geometry of the antenna models from gprMax and CST. A spatial discretization of $\Delta x = \Delta y = \Delta z = 1$ mm was chosen as a good compromise between accuracy and computational resources. The Courant Friedrichs Lewy (CFL) condition was enforced which resulted in a time-step of $\Delta t = 1.926$ ps.

IV. EXPERIMENTAL AND SIMULATED ANTENNA RESPONSES

Experimental and simulated responses were taken in the following four environments:

1) Free space (crosstalk) response of GSSI 1.5 GHz antenna and MALÅ 1.2 GHz antenna
2) Response of of GSSI 1.5 GHz antenna in a lossy dielectric environment of permittivity, $\epsilon_r = 32$, and complex conductivity
3) Response of of GSSI 1.5 GHz antenna in a lossy dielectric environment of permittivity, $\epsilon_r = 10$, and complex conductivity with a 12 mm steel rebar target
4) Response of of GSSI 1.5 GHz antenna in a lossy dielectric environment of permittivity, $\epsilon_r = 32$, and complex conductivity with a 12 mm steel rebar target

A series of oil-in-water (O/W) emulsions were used to simulate lossy dielectric environments. The permittivity and conductivity of the emulsions were set by controlling ratios of the constituent chemicals [13]. A further advantage of using liquids was the ease with which targets could be positioned. The main components of the experimental apparatus were: a 50 litre galvanised steel tank ($610 \text{ mm} \times 400 \text{ mm} \times 210 \text{ mm}$); a plastic rig to mount and position the antenna and the 12 mm...
Fig. 2. MALÅ 1.2 GHz antenna

Fig. 3. Experimental and simulated responses from a GSSI 1.5 GHz antenna in free space.

Fig. 4. Experimental and simulated responses from a MALÅ 1.2 GHz antenna in free space.

Fig. 5 presents the responses of the antennas over a lossy dielectric environment of permittivity, $\epsilon_r = 32$. The direct wave (propagation from transmitter to receiver) and a reflected wave (from the bottom of the steel tank) are evident. There is good agreement between the phase and amplitude of the experimental and simulated responses. However, the differences demonstrate that even in such a simple environment the electromagnetic wave propagation is still complex. The emulsion is a lossy dielectric with a complex, frequency-dependent conductivity. Both simulations used a Debye model with an additional constant DC conductivity term to replicate this dispersive behaviour. The Debye formulation is given by (1) and the parameters used are given in Table I.

$$\chi(t) = \frac{\Delta\epsilon_r}{\tau} e^{-t/\tau}, \quad (1)$$
where $\Delta \varepsilon_r = \varepsilon_{rs} - \varepsilon_{r\infty}$, ε_{rs} is the zero-frequency relative permittivity, $\varepsilon_{r\infty}$ is the relative permittivity at infinite frequency, and τ is the pole relaxation time.

Fig. 6 and Fig. 7 present the responses of the antennas to a 12 mm diameter steel rebar embedded in lossy dielectric environments of permittivity, $\varepsilon_r = 10$ and $\varepsilon_r = 32$. There are now three overlapping parts to the response, the direct wave, the reflected wave from the rebar, and the reflected wave from the bottom of the steel tank. Again, the fundamental amplitude and phase information from the simulated data agrees with the experimental measurements.

V. Conclusion

Models of two commercial high-frequency GPR antennas have been developed and used with two commonly used simulation tools. The models include all the main features and geometry of the real antennas. The models were used to compare free space responses and responses in lossy dielectric environments with experimental data. Good agreement between the phase and amplitude of the experimental data and the two simulations is evident. This cannot be attained by only using a simple infinitesimal dipole model in simulation – a realistic model of the antenna is required. Differences that were evident between the simulated data, highlight the importance of understanding how features such as material dispersion and antenna feeding are modelled in simulations. This is particularly relevant for the many GPR applications which operate in the near-field of the antenna, where the interaction between the antenna, the ground/structure and targets is important.

Acknowledgment

This work benefited from networking activities carried out within the EU funded COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar.”

References

