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Abstract 

The aim of this study was to compare the effects of beetroot juice (BTJ) and a nitrate only drink 

(sodium nitrate; SN) on indices of exercise-induced muscle damage (EIMD). Thirty 

recreationally active males consumed either BTJ (n=10), a nitrate matched SN drink (n=10) or 

an isocaloric placebo (PLA; n=10) immediately, 24 and 48 h after performing 100 drop jumps. 

To assess muscle damage, maximal isometric voluntary contractions (MIVC), 

countermovement jumps (CMJ), pressure-pain threshold (PPT), creatine kinase (CK) and high 

sensitivity C-reactive protein (hs-CRP) were measured pre, immediately post, 24, 48 and 72 h 

following the drop jumps. BTJ and SN increased serum nitric oxide, which peaked at 2 h post-

ingestion (136±78 and 189 ± 79 μmol/L, respectively). PPT decreased in all groups post-

exercise (P = 0.001), but was attenuated with BTJ compared to SN and PLA (P = 0.043). PPT 

was 104±26% of baseline values 72 h post after BTJ; 94±16% after SN, and; 91±19% after 

PLA. MIVC and CMJ were reduced following exercise (−15-25%) and did not recover to 

baseline by 72 h in all groups; however, no group differences were observed (P > 0.05). Serum 

CK increased after exercise but no group differences were present (P > 0.05). hsCRP levels 

were unaltered by the exercise protocol (P > 0.05). These data suggest that BTJ 

supplementation is more effective than SN for attenuating muscle pain associated with EIMD, 

and that any analgesic effects are likely due to phytonutrients in BTJ other than nitrate, or 

interactions between them.  
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Introduction  

We have recently shown that beetroot juice (BTJ), which has mostly been studied for its 

potential as a pre-exercise ergogenic aid, might also hold some promise as a recovery aid 

following muscle-damaging exercise (Clifford et al. 2016a,c). More specifically, we found that 

consuming BTJ for 3 days after either a bout of drop jumps (Clifford et al., 2016a) or a bout of 

repeated sprints (Clifford et al., 2016c), accelerated the recovery of counter movement jump 

(CMJ) performance and attenuated muscle pain. These findings do not appear to be consistent 

across all types of exercise, however, as BTJ did not benefit recovery after a marathon (Clifford 

et al., 2016d), which was likely related to the significantly smaller magnitude of muscle damage 

in this study.  

The mechanisms by which BTJ improved exercise recovery in the aforementioned studies is 

unclear. Our initial hypothesis was that, akin to other functional foods shown to attenuate 

exercise-induced muscle damage (EIMD), such as cherry juice (Bell et al. 2014; Bell et al. 

2015; Bowtell et al. 2011; Connolly et al. 2006; Howatson et al. 2010) and pomegranate juice 

(Trombold et al. 2010; Trombold et al. 2011), it could be through an anti-inflammatory or 

antioxidant (AOX) related mechanism. Nonetheless, it is equivocal as to whether beetroot juice 

and/or its constituents are effective AOXs, with some studies suggesting not (Whitfield et al., 

2016; Larsen et al., 2014) and others showing reductions in oxidative stress and inflammatory 

markers (Clifford et al. 2015; El Gamal et al. 2014; Jadert et al. 2012; Justice et al. 2015; 

Pietrzkowski et al. 2010; Ashor et al., 2016). Notwithstanding the disparate findings to date, it 

is conceivable that AOX or anti-inflammatory effects could help to dampen the acute secondary 

muscle damage response after an exercise bout—the hallmarks of which are proposed to be 

oxidative stress, inflammation and muscle proteolysis—and this could facilitate a faster 

recovery of muscle function and/or reduction in muscle pain (Howatson & van Someren, 2008; 

Sousa et al. 2014; Urso 2013). Indeed, these are the proposed mechanisms that underpin the 

effects seen with other functional foods on recovery after muscle-damaging exercise 

(Howatson et al. 2010; Trombold et al. 2010). Yet, unlike the other functional foods shown to 

attenuate EIMD, BTJ is unique in that it also contains high amounts of nitrate, a precursor for 

endogenous nitric oxide (NO) production via the nitrate-nitrite-NO pathway (Lundberg et al. 

2008; Kapil et al. 2014). It has become apparent that NO has a regulatory influence on several 

of the biological processes often impaired (microvascular blood flow, Ca2+ handling) 



(Ferguson et al. 2013; Hernandez et al. 2013; Hoon et al. 2015) or upregulated (phagocytosis, 

calpain activity and myogenesis) (Jädert et al. 2012; Lomonosova et al. 2014; Rigamonti et al. 

2013) after muscle-damaging exercise. Due to the potential involvement of NO in the damage 

and repair processes in skeletal muscle, it has been suggested that NO donors, such as nitrate 

for example, could offer a therapeutic approach to enhance recovery after muscle injury 

inflammation (Lomonosova et al 2014; Rigamonti et al. 2013). With that said, it is also 

important to point out that nitrates conversion to NO, and thus its bioavailability, is thought to 

be facilitated by a low partial pressure oxygen (PO2) and pH within tissues (Lundberg et al. 

2008; Jones, 2014), and therefore the levels needed for beneficial physiological effects might 

not be achievable in healthy tissues; that is muscle tissue with PO2 and pH within the normal 

ranges, as would be expected in the days following an exercise bout e.g., at rest. Nonetheless, 

the effects of nitrate on exercise recovery, independent of BTJ, are still yet to be tested in 

humans to confirm or refute a potential role in recovery.  

Some of the effects mentioned above that have been attributed to NO make the expectation 

tenable that it could be the main compound in BTJ responsible for exerting the beneficial 

effects we have recently observed on exercise recovery (Clifford et al. 2016a, c). If this is the 

case, because of the plethora of biological processes that NO is involved in, mechanisms other 

than AOX and anti-inflammatory could provide an explanation for some of the beneficial 

effects we have reported with BTJ on recovery. Furthermore, it would also help to answer the 

question of whether these effects are exclusive to BTJ and its somewhat unique mixture of 

phytonutrients, or whether similar effects could be expected with foods that are just simply rich 

in nitrate. Thus, the aim of this study was to investigate the effects of BTJ versus a nitrate only 

containing drink (SN) on muscle damage following a bout of eccentric-heavy exercise. It is 

important to note that we were specifically interested on the effects of nitrate on the functional 

outcomes of muscle damage (e.g., muscle pain and muscle function loss) and not its effects on 

oxidative stress, or at the skeletal muscle level, because we were unable to analyse these aspects 

in the present study. We therefore stress that their mention in the introduction is simply to 

inform the reader of the potential mechanisms by which we speculate BTJ and or nitrate might 

benefit recovery. It was hypothesized that BTJ and SN would be similarly effective for 

attenuating indices of muscle damage compared to a PLA.   

Materials and Methods  

Participants  



According to our previous work (Clifford et al. 2016a), a sample size of n = 10 per group was 

sufficient to detect an 8% (ES = 1.25) between group difference (SD: 6%) in CMJ at a power 

of 0.80 and α level of 0.05. Consequently, 30 healthy male participants were recruited to 

participate in this study (Table 1). All participants were recreationally active and engaged in 

some form of exercise 1-3 d∙wk⎺1 but none had completed intense plyometric exercise for >12 

months. Participants provided written informed consent and completed a health screening 

questionnaire prior to study entry. The use of any dietary supplements (i.e., multivitamins, 

whey protein and creatine), pain relief medications (i.e., non-steroidal anti-inflammatory 

drugs) or putative recovery treatments (i.e., compressions garments, massage) was prohibited 

throughout testing. The study procedures received institutional ethical approval and were 

conducted in accordance with the Declaration of Helsinki. 

 

Experimental design  

The study employed a double blind, randomized, independent groups design. Prior to data 

collection, participants were required to attend a familiarisation session in which height, body 

mass and maximal isometric voluntary contractions (MIVC) were established. Using MIVC 

scores as a blocking factor, participants were then randomized to 1 of 3 experimental treatment 

groups: SN; n =10, BTJ; n =10 or PLA; n =10. At least 1 week after familiarisation participants 

attended the laboratory on 4 consecutive mornings. On day 1, participants performed a 

strenuous plyometric exercise protocol to induce muscle damage. A venous blood draw, muscle 

soreness and measures of muscle function were taken pre and immediately post muscle-

damaging exercise on day 1 and on the following 3 mornings (24, 48 and 72 h post-exercise). 

After the muscle-damaging exercise on day 1, participants consumed 1 serving of their 

allocated supplement alongside a standardized breakfast meal. Breakfast consisted of cereal 

(Rice Krispies, Kellogs, UK) and milk (semi-skimmed, Tesco Ltd, UK) and provided 10% of 

daily energy requirements calculated from age and body mass (kg) (Schofield 1984). Following 

a 2 h absorption period a final blood draw was taken. Participants could consume water ad 

libitum during the absorption period but were required to avoid consuming any other foods 

until the final blood draw.  

Muscle-damaging protocol 

The muscle damaging protocol consisted of 100 drop jumps from a 0.6 m high box and has 

proved to be an effective means of inducing muscle-damage in several previous studies 

(Howatson et al. 2009; Clifford et al. 2016a). Briefly, upon landing, participants were required 



to descend into a squat (~90° knee flexion) and then jump vertically with maximal force. Each 

jump was separated by 10 seconds and each 20 jumps by a 2-minute rest period.  

Pressure pain-threshold  

As in several previous studies (Clifford et al. 2016; Bowtell et al. 2010; Connolly et al. 2006), 

pressure-pain threshold (PPT) was used to assess site-specific muscle soreness. All measures 

were taken with a handheld algometer (Wagner Instruments, Greenwich CT, US) and with the 

participant lying supine on a medical bed. The specific muscles tested were: vastus laterialis 

(mid-way between the superior aspect of the greater trochanter and head of the tibia), rectus 

femoris (mid-way between the anterior patella and inguinal fold) and gastrocnemius (medial 

aspect of the calf at relaxed maximum girth). PPT was recorded as the first instance of pain felt 

when pressure was applied at a constant rate of 10 N cm-2∙s-1 to the muscle belly. Two 

recordings were taken and the average used for analysis, unless these values differed by 10 N2, 

in which case a third measure was taken and the two closest values averaged. The inter-day 

CV for this procedure was calculated as <8% (average CV for the 3 sites measured).  

Maximal isometric voluntary contraction  

As in previous studies (Clifford et al. 2016; Howatson et al. 2009), MIVC was measured using 

a portable strain gauge (MIE Medical Research Ltd., Leeds, UK). In a seated position, 

participants exerted maximal force against a plinth attached to their right ankle, just above the 

malleoli. They were instructed to hold this contraction for 3 seconds and were provided strong 

verbal encouragement for each effort. Three contractions were performed, separated by 60 sec 

of passive (seated) recovery. The peak value was used for analysis. The coefficient of variation 

(CV) for this protocol was 1.1%.  

Counter movement jump 

To perform the counter movement jump (CMJ) test, participants descended into a squat (to a 

~90º knee angle) and jumped vertically with maximum effort, keeping their hands on hips 

throughout the entire movement. Participants performed 3 maximal efforts, interspersed by 30 

seconds passive (standing) recovery with the mean height of the 3 jumps used for analysis. The 

CV for measuring CMJ in our lab been was previously calculated as <2.5%.  

Blood sampling and analysis  

Venous blood samples were obtained pre-exercise, 2 h post-breakfast, 24, 48 and 72 h post 

exercise via venepuncture. With the exception of the sample taken 2 h after breakfast, all 

samples were obtained following a ≥12 h overnight fast. Blood was collected into serum (1x10 



ml) vacutainers and subsequently centrifuged at 3000 g (4˚) for 15 minutes after ~30 min was 

allowed for clotting. The serum supernatant was aspirated into a series of aliquots and 

immediately stored at -80º C for later analysis of creatine kinase (CK), high sensitivity C-

reactive protein (hs-CRP) and NO. CK and hs-CRP were measured in serum using an 

automated electrochemiluminescence method (Roche Modular, Roche Diagnostics, 

Indianapolis, IN, USA. The laboratory calculated the CV for this analysis to be <2%. Because 

we did not have the facilities to measure nitrate and nitrite using chemiluminescence or liquid 

chromatography methods, we elected to estimate the sum total of nitrate and nitrite (NOx) in 

serum using the griess reaction with a commercially available assay kit (R&D Systems, 

Minneapolis, Minnesota). This assay has been successfully used to quantify NOx in a previous 

study with nitrate supplementation and exercise (Christensen et al., 2013).  The CV for this 

measure was <15%; the sensitivity of this assay is calculated as 0.78 umol/L.  

Supplementation  

Participants received BTJ, SN or an isocaloric placebo (PLA) drink for 3 days’ post muscle-

damaging exercise. Table 2 provides an overview of each supplement. A SN drink was used 

instead of the nitrate-depleted BTJ drink used in other studies (Gilchrist et al. 2013; 

Muggeridge et al. 2013) because we could not source this from the manufacture. Supplements 

were consumed on three occasions on day 1; one 30 min post-exercise alongside a breakfast 

meal, one 2.5 h post-exercise after an additional blood sample, and a third with their evening 

meal. Participants consumed 2 more servings at 24 and 48 h post (the first within 30 min of 

completing all dependent variables and the second with their evening meal). SN was purchased 

in powder form (BASF, Ludwigshafen, Germany) and mixed with water into bottles for 

participants to consume as a drink. Both maltodextrin (Myprotein, Manchester, UK) and 

flavourless protein powder (Arla Foods, Amba, Denmark) were added to each serving of SN 

and PLA to match the BTJ for macronutrient composition. The SN and BTJ were matched as 

closely as possible for nitrate content. The nitrate content of this particular batch of BTJ was 

approximately 210 mg (~3.4 mmol/L) per 250 ml serving (data from the manufacturer). This 

amount of nitrate was equivalent to 287 mg of SN after adjusting for differences in molecular 

weight; thus, 287 mg (~3.4 mmol/L) of SN powder was carefully weighed and added to each 

250 ml serving. All 3 supplements were provided in masked bottles that were identical in size 

and appearance. The drinks could not be taste-matched and therefore the study aims were 

concealed from the participants; in other words, they were not informed that BTJ was under 

investigation, just that they would be drinking newly developed antioxidant-based recovery 



drinks. The independent groups design ensured that each group was unaware of what the other 

drinks under investigation were and thus they were never made aware if their drink was the 

experimental treatment. We have implemented this strategy in several previous studies 

(Clifford et al. 2016a; Clifford et al. 2016c).  

Dietary control 

Participants were asked to not deviate from their usual eating pattern and record their food and 

fluid intake throughout the trial using the food diaries provided. However, as in our previous 

work (Clifford et al. 2016a), they were prohibited from using antibacterial mouthwash 

throughout data collection due its potential interference with nitrate-nitrite conversion. In 

addition, prior to each study visit, participants were provided with a meal (Beef Lasagne, 450 

g; Tesco Ltd, UK) and a snack bar (Honey and Oat Cunch Bar, 42 g; Natures Valley, UK) to 

consume as a replacement for their usual evening meal. Participants were instructed to consume 

both the foods together at least 12 h prior to their study visit the following morning and to avoid 

consuming any other food or drink (other than water) until all measures had been completed 

that day. The meal and snack bar provided 836 kcal, of which 34.6% was carbohydrates, 18.9% 

protein and 43.7% fat.  

Data analysis  

All data were analysed using IBM SPSS Statistics 22 for Windows (Surrey, UK) and are 

presented as mean ± SD. Multiple one-way ANOVA’s were used to test for group differences 

between participant’s physical characteristics and dietary intake. Food diaries were analysed 

for macronutrient content using Nutritics dietary analysis software (Nutritics LTD, Dublin, 

Ireland). CMJ, MIVC and PPT were measured using a mixed design ANOVA; 3 group levels 

(BTJ vs. SN vs. PLA) by 5 time levels (pre-exercise, post-exercise, 24, 48 and 72 h post-

exercise). Data analysis for these measures was performed on values corrected for percentage 

change from baseline. Biochemical markers were analysed with a 3 (group) x 6 (time; pre-

exercise, post-exercise, 2.5 h post-exercise, 24, 48 and 72 h post-exercise) mixed design 

ANOVA. Significance was read from the Greenhouse-Geisser adjustment if Mauchly’s test of 

Sphericity had been violated. In the event of a significant interaction effect (drink*time) Fisher 

LSD post hoc analysis was performed to locate where the differences occurred. Where relevant, 

Cohen’s d ES were calculated with the magnitude of effects considered small (0.2-0.49), 

medium (0.5-0.79) and large (≥0.8). Statistical significance was set at P < 0.05 prior to 

analyses.  

Results  



There were no significant differences between groups for their physical characteristics or 

macronutrient intake throughout the testing period (Table 1; P > 0.05). Serum NOx 

concentrations showed group (P = 0.007) and group*time interaction effects (P = 0.004), 

increasing after BTJ and SN but not PLA. As shown in Figure 1, 2 h after consuming BTJ and 

SN serum NOx was markedly higher (P < 0.001; 135.5 ± 78.7 and 189.2 ± 78.8 μmol/L, 

respectively) than baseline and PLA concentrations. Serum NOx remained elevated above 

baseline for the rest of the trial in the BTJ and SN groups (P < 0.05).  

PPT showed a main effect for both time (P = 0.001) and group (P = 0.043) whereby PPT was 

reduced in all groups as a result of exercise but consistently higher in BTJ compared to the SN 

and PLA in the 72 h post-exercise period (Figure 2). PPT had recovered to baseline values in 

the BTJ group by 72 h (104.3 ± 25.9%) but remained depressed in both the SN (94.1 ± 16.0%) 

and PLA groups (91.2 ± 19.0%) (ES = 0.69 vs PLA and 0.53 vs. SN).  

There was an immediate decline in MIVC and CMJ following the exercise bout (time effect; P 

< 0.05) with neither variable recovering to baseline by 72 h post-exercise (Table 3). There were 

no differences between the three groups at any time point for MIVC and CMJ (P > 0.05).  

Serum  CK increased in response to the exercise bout (time effect; P = 0.011), peaking at 24 h 

post in all groups (Table 3); however, no group or interaction effects were present (P > 0.05). 

hs-CRP was unaltered following exercise and showed no time, group or interaction effects (P 

> 0.05).   

Discussion  

The aim of this study was to compare the effects of a nitrate matched BTJ and SN drink on 

muscle force loss and muscle pain after eccentric exercise, in an attempt to gain a better 

understanding of the potential effects of nitrate on EIMD. While ingestion of BTJ and SN 

increased serum NOx levels, neither drink protected against muscle force deficits (MIVC and 

CMJ) in the 72 h after the exercise bout. However, BTJ was more efficacious for attenuating 

muscle pain than SN and a PLA. A biochemical marker of muscle damage (CK) and a general 

marker of inflammation (hs-CRP) did not differ between supplement groups at any time point.   

As expected, provision of BTJ and SN after muscle-damaging exercise evoked large increases 

in serum NOx concentrations compared to PLA, 2.5 h post (Figure 2). These results are in 

agreement with the findings from our previous work (Clifford et al. 2016b) and others 

(Cristensen et al. 2012; Joris and Menesik 2013) who observed large increases in circulating 

NOx bioavailability after SN and BTJ ingestion. In the subsequent days, the NOx levels were 

much lower, likely due to the fact the last dose was provided ~12 h before being measured and 



therefore samples were not taken at peak concentrations on these occasions. Importantly, the 

rise in serum NOx was similar between SN and BTJ at 2.5 h post ingestion, indicating that the 

drinks evoked similar levels of NOx and were therefore well-matched for nitrate content.  

Recent data have shown that NO is integral for normal muscle regeneration, and that 

administering NO donors enhances the recovery of strength after eccentric exercise 

(Lomonsova et al. 2014; Rigamonti et al. 2013). Nevertheless, the present findings are in 

contrast to the above data, instead suggesting that SN supplementation is ineffective for 

attenuating force loss or any other parameter of EIMD after an eccentric-heavy exercise bout. 

The most obvious explanation for the discrepant findings between the present and 

aforementioned studies is the species difference; the present study was in humans, whereas 

most previous studies suggesting a role for NO in EIMD were in animals (Corona and Ingalls, 

2013; Lomonsova et al. 2014; Rigamonti et al. 2013; Sakurai et al., 2013). However, it is also 

possible that other methodological differences, such as exercise model, NO donor and dosage 

contributed to the discrepancies. Additionally, it could also be due to the fact that, as alluded 

to in the introduction, nitrate to NO conversion was not sufficient in the tissues because 

preferable conditions for this conversion were not met (e.g., ischemia, low PO2 and pH) (Jones, 

2014).  Notwithstanding, the fact that SN had no influence on any of the indices of muscle 

damage measured in this study, would seem to indicate that nitrate, at least at this dose, might 

not exert any favourable effects on exercise recovery. These findings also suggest that nitrate 

might not be the main constituent in BTJ responsible for attenuating losses in muscle function 

in previous studies (Clifford et al. 2016a, c).  

The inability of BTJ to attenuate the post-exercise loss in CMJ height is in direct contrast to a 

previous investigation (Clifford et al., 2016a), in which 48 and 72 h after the same bout of 

plyometric exercise, BTJ was found to attenuate the deficit in CMJ. Because in both studies 

muscle damage was induced with an identical protocol, and the participants were similar in 

terms of training status, this discrepancy is difficult to account for. Nevertheless, a possible 

explanation could lie in the differences in dietary control between the two investigations. In 

the previous study, a strict low-phytonutrient diet was imposed 48 h prior to and throughout 

the course of the trial (5 days in total), whereas in the present study, participants were 

encouraged to not deviate from their usual eating patterns. This change in design was to ensure 

the findings of the present study were more ecologically valid and applicable to real-world 

scenarios, in which individuals, particularly athletes, do not restrict their phytonutrient intake. 

Nonetheless, it has been demonstrated that restricting the intake of AOX and phytonutrient rich 



foods in the diet can leave individuals more vulnerable to oxidative stress (Watson et al., 2005) 

and inflammation (Plunkett et al. 2009) after stressful exercise. This could have important 

implications for secondary muscle damage after strenuous exercise, and muscle function 

(Paschalis et al. 2016), and makes the expectation tenable that dietary intake of AOX and/or 

phytonutrient rich foods could influence an individual’s susceptibility to EIMD, and, thus, their 

ability to recover from muscle-damaging exercise.  

Interestingly, the CMJ loss in response to the drop jumps in our previous study was clearly 

greater than in the present study, which would lend some support to the idea that a low 

phytonutrient intake might impact an individual’s rate of recovery. Indeed, the recovery of 

CMJ performance was more prolonged in the 72 h following the drop jumps in that study, and 

there was a clear secondary loss in muscle function without BTJ supplementation in the 24-72 

h after exercise, which was also less pronounced in the present study. Just to illustrate, CMJ 

height was −25% and −14% at 48 and 72 h post-exercise in the PLA group in our previous 

work (Clifford et al. 2016a), compared to −14% and −8% in the present study. These results 

provide tentative support for the idea that restricting phytonutrients through the diet might leave 

an individual more vulnerable to muscle damage, at least after eccentric-heavy exercise, in 

which secondary damage is presumed to be of a higher magnitude and more prolonged 

(Howatson and van Someren, 2008). If this is the case, it would be reasonable to assume that 

BTJ would be more beneficial for functional recovery and performance in individuals with 

lower AOX intakes and/or higher oxidative stress, as has been recently suggested with vitamin 

C supplementation (Paschalis et al. 2016). This might help to explain, at least in part, why BTJ 

attenuated the loss in CMJ in our previous work, when phytonutrient intake was restricted (and 

participants might have been more susceptible to EIMD) but not in present study, when 

phytonutrient intake was unrestricted (thus participants were possibly less vulnerable to 

EIMD). Clearly, without measuring phytonutrient intake and inflammation/oxidative stress 

(and other aspects that might influence secondary muscle damage) in either of these studies the 

above postulate is speculative, and needs to be clarified in future work. We acknowledge that 

not exploring oxidative stress or inflammation in the present study is a limitation and therefore 

interpretation of the mechanisms behind these findings need to be treated with caution, 

especially as we pointed out in the introduction, data to support an AOX effect of BTJ or nitrate 

remains equivocal.  

As in previous studies, serum CK efflux increased after exercise, irrespective of 

supplementation. These data support the conclusions of others who have also found that 



functional foods do not seem to reduce CK efflux to a greater extent than a PLA (Bell et al. 

2014; Bell et al. 2015; Goldfarb et al. 2011; Howatson et al. 2010; Peschek et al. 2013). It is 

important to note that CK is not considered a valid enough measure for assessing the extent of 

EIMD (Paulsen et al. 2012; Warren et al. 1999) and, thus, it might not be a sensitive enough 

marker to detect changes associated with an intervention. Hence, the primary outcome 

measures were changes in muscle function, which are proposed at the most sensitive and valid 

markers of EIMD.  

Unlike the muscle function measures, muscle pain, as measured by changes in PPT, was 

alleviated by BTJ supplementation (Figure 2). This pattern for improved recovery of PPT is 

consistent with our previous work, where PPT recovered quicker with BTJ versus a PLA after 

eccentric-heavy exercise. An explanation as to how BTJ might reduce muscle pain is still 

unclear. Part of the difficulty in determining the potential mechanisms involved stems from the 

fact that the precise causes of exercise-induced muscle pain are still uncertain (Yu et al. 2013). 

Nonetheless, as described before, a possibility is that BTJ might suppress the release of stimuli 

thought to sensitize nociceptive neurons in the muscle and ECM (Murase et al. 2013), the latter 

of which, to the best of the current knowledge, is proposed as the main site where muscle pain 

originates (Crameri et al. 2007). However, because muscle tissue samples could not be obtained 

in this study, this posit is somewhat speculative until confirmed by future studies; we 

acknowledge that our inability to collect muscle tissue and investigate these mechanisms is a 

limitation of this study.  

Perhaps the most pertinent new finding of this study is that muscle pain was attenuated with 

BTJ but not SN. These results suggest that phytonutrients other than nitrate, such as betalains 

and phenolics, or interactions between them (or with nitrate), are likely responsible for its 

analgesic effects. Although there have been no previous attempts to directly compare the 

effects of nitrate and BTJ on muscle pain, reports that nitrate free but betalain-rich treatments 

can alleviate muscle pain appear to support this concept. In two studies (Pietrzkowski et al. 

2010 & Pietrzkowski et al. 2014) muscle and joint pain, as measured with the McGill pain 

questionnaire, was significantly lower after 10 days of taking specially formulated betalain 

capsules derived from beetroot extracts. The supplements used in these studies did not contain 

any of the nitrate or phenolic compounds inherently found in BTJ, therefore suggesting that 

betalains, independent of any interactions with other biological compounds, were responsible 

for alleviating muscle and joint pain. Based on these findings, the improved PPT seen in the 

present study with BTJ might have been due to the high amount of betalains it contains, 



particularly betanin (see Table 2). With that said, it is important to point out, that because we 

were unable to measure the potential mechanisms underpinning these findings, the pain 

alleviating effects could simply be an artefact of the subjective nature of measuring muscle 

pain, and not due to a true physiological effect—especially as this was not a crossover study 

and therefore the participants did not rate pain in response to the different treatments. However, 

when these findings are coupled with those from the previously aforementioned studies 

(Pietrzkowski et al. 2010 & Pietrzkowski et al. 2014) and our own (Clifford et al. 2016a; 

Clifford et al. 2016c) which demonstrated a pain-relieving effect with beetroot or its individual 

constituents, we are more confident that the findings of this study are due to a true physiological 

effect. Yet, we stress that further studies are still needed to support these findings.  

In conclusion, this study found that acute supplementation with BTJ and SN did not influence 

the recovery of muscle function or attenuate CK efflux or hs-CRP after exercise. BTJ was more 

beneficial than SN for attenuating PPT though, advocating the use of BTJ over nitrate only 

containing drinks for attenuating exercise-induced muscle pain. Relief from exercise-induced 

muscle pain is desirable given the fact that muscle pain can alter movement patterns and 

heighten injury risk (Hodges & Tucker, 2011; Cheung et al. 2003); thus, BTJ might be useful 

to those regularly taking part in sport or strenuous physical activity. These findings also suggest 

that the phenolics and betalains could be the compounds in BTJ most likely to exhibit analgesic 

effects after exercise and therefore further exploration of their potential for pain relief is 

warranted—not only in exercise but perhaps also clinical settings.  
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Table 1. Participant’s physical characteristics and macronutrient content of their dietary intake 

throughout the study.  

 

 

Characteristic 

 Group  

BTJ SN PLA 

Age (years) 22.6±2.8 21.7±2.8 21.0±1.4 

Mass (kg) 76.7±12.1 76.0±7.5 72.8±10.8 

Height (cm) 178.9±7.5 179.2±6.9 176.1±5.0 

Daily energy intake (kcal) 2460 ± 494 2491 ± 706 2108 ± 387 

Cho (%) 42 44 43 

Pro (%) 18 22 20 

Fat (%) 40 34 37 

Values are means ± SD; n=10 per group. Groups were not significantly different for any 

variable (P > 0.05). Cho = carbohydrate and Pro = protein.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 2. Macronutrient and nitrate content of the 3 supplements.  

Supplement BTJ SN PLA 

Energy (Kcal) 81.0 78.6 76.8 

Volume (ml) 250 250 250 

Carbohydrate (g) 16.4 16.4 16.4 

Protein (g) 2.8 2.8 2.8 

Fat (g) 0.4 0.2 Trace 

Nitrate (mg) ~210 ~210 N/A 

Betanin (mg/L)* 

Polyphenol content (mg/GAE/L)*  

TEAC (mmol/L)*  

~194 

~405  

~3 

N/A 

N/A 

N/A 

N/A 

~43 

<0.5 

GAE, Gallic acid equivalent; TEAC, trolox equivalent antioxidant capacity. *Based on data 

from BTJ analysed in Clifford et al. (2016b). The BTJ was provided by the same manufacturer 

but a different batched was used so a slight variation in these values is likely.  

 

 

 

 

 

 

 



Table 3 - MIVC, CMJ, CK and hs-CRP values pre and post muscle damaging exercise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#Values in brackets represents data normalised to percentage change from baseline. *Time effect; P < 0.05.

Variable Pre exercise Post exercise 2.5 h post 

exercise 

24 h post 

exercise 

48 h post 

exercise 

72 h post 

exercise 

MIVC (N)*# 
      

BTJ 602(100) ± 

109(0) 

479(80) ± 

144(16) 

 
487(81) ± 

159(19) 

510(87) ± 

162(10) 

556(95) ± 

164(8) 

SN 577(100) ± 

100(0) 

503(87) ± 

136(9) 

 
510(88) ± 

126(10) 

501(85) ± 

151(19) 

546(92) ± 

149(17) 

PLA 597(100) ± 

117(0) 

504(84) ± 

111(8) 

 
505(84) ± 

153(15) 

521(87) ± 

136(13) 

536(89) ± 

131(10) 

CMJ (cm)*# 
      

BTJ 31.8(100) ± 

7.0(0) 

29.1(90) ± 

8.8(11) 

 
29.2(91) ± 

8.4(15) 

29.4(91) ± 

8.9(15) 

30.9(97) ± 

8.0(10) 

SN 33.9(100) ± 

6.2(0) 

30.1(88) ± 

7.0(9) 

 
30.5(90) ± 

5.5(7) 

29.7(89) ± 

5.2(11) 

32.8(96) ± 

5.3(7) 

PLA 36.5(100) ± 

4.8(0) 

32.0(90) ± 

5.2(11) 

 
32.1(87) ± 

6.7(14) 

31.6(86) ± 

6.9(15) 

33.7(92) ± 

5.6(10) 

CK (IU∙-1)* 
      

BTJ 224 ± 104 242 ± 129 358 ± 142 714 ± 638 564 ± 615 351 ± 396 

SN 198 ± 108 229 ± 121 264 ± 98 312 ± 122 192 ± 43 148 ± 31 

PLA 224 ± 88 266 ± 97 298 ± 122 395 ± 245 274 ± 194 261 ± 126 

hs-CRP (mg∙L-

1) 

      

BTJ 0.41 ± 0.28 0.43 ± 0.33 0.40 ± 0.29 0.35 ± 0.14 0.44 ± 0.12 0.58 ± 0.82 

SN 0.42 ± 0.30 0.45 ± 0.30 0.42 ± 0.27 0.50 ± 0.28 0.46 ± 0.26 0.39 ± 0.18 

PLA 0.44 ± 0.32 0.48 ± 0.34 0.42 ± 0.31 0.42 ± 0.29 0.34 ± 0.34 0.32 ± 0.13 
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Figure 1 - Serum nitric oxide (NO) concentrations before, immediately post, 2.5 h post 

breakfast and at selected intervals up to 72 h after exercise. *Interaction effect; beetroot juice 

(BTJ) and sodium nitrate (SN) higher than placebo (PLA); P < 0.05. Data are mean ± SD, n = 

10 per group. 

 



 

Figure 2 - Pressure pain threshold (PPT) before and 72 h after exercise (% of baseline). Values 

presented are average of the three sites measured (calf, CF; rectus femoris, RF; vastus laterialis, 

VL). *Denotes group effect across all time points post-exercise; P < 0.05, beetroot juice (BTJ) 

higher than sodium nitrate (SN) and placebo (PLA). Values are mean ± SD; n = 10 per group. 
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