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Adaptive optimization of wave functions for fermion lattice models

Matteo Beccaria and Antonio Moro
Dipartimento di Fisica dell'Universitadi Lecce, 1-73100, Italy
and Istituto Nazionale di Fisica Nucleare - INFN, Sezione di Lecce, Italy
(Received 23 May 2001; published 5 September 2001

We present a simulation algorithm for Hamiltonian fermion lattice models. A guiding trial wave function is
adaptively optimized during Monte Carlo evolution. We apply the method to the two dimensional Gross-Neveu
model and analyze systematic errors in the study of ground state properties. We show that accurate measure-
ments can be achieved by a proper extrapolation in the algorithm-free parameters.
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Lattice field theory is a constructive framework where >0 (no sign problem and build anS-valued Markov sto-
nonperturbative properties of quantum models can be achastic process; by identifying ' s as the rate for the tran-
dressed both analytically and by numerical techniques. Thgijtion s—s’. Hence the average occupatiBy(t) =E(8)ss,,
main standing theoretical viewpoints are the traditional Lasith E(-) denoting the average with respectsto obeys the

rangian approacfil] and the Hamiltonian formulatiof2]. e
grang bp ] 2] master equatioPy(B) =g . s(I'sg Py —T's/sPy).

In the study of fermionic models, Lagrangian simulations Related t Iso define th | Valued stochasti
suffer the drawback of requiring Grassmann variables that elated tos,, we aiso define the real valued stochastic

_ ot i _
are difficult to handle numerically and must be integrated ouP"0C€SSWi=exp(=Jows df), with ws=2  sHys. It can be
explicitly leading to large nonlocal determinants. Instead, inshown that the weighted expectation valugs(t)
the Hamiltonian approach, the treatment of Fermi anticom= E(JssW) reconstructs (1, (drdt) ys(t) =
muting operators is straightforward. In particula_r, _this_ holds—X, _ sHeg s/ (1), With ¢5(0)=Prob(s,=s). Matrix ele-
in one spatial dimension where notoriously difficiign  ments ofQ) can be identified with certain expectation values.

problems[3] are tame. In particular, the ground state enerBy can be obtained by
Another important reason to resort to Hamiltonian meth-

ods is that they rely on powerful well founded many-body Eo= lim [E(wsI WHIE(W,) ], D

techniqued4]. In particular, a direct analysis of the ground t— e

state structure is often feasible through a guidinal wave ) ) _
function [5]. This is an approximation to the exact ground that givesE, as the asymptotic average of over realiza-
state that can provide deep physical insights into the moddions of s; with weight W, calledwalkersin the following.
under consideratiof6]. Also, it plays a central role in the The_ ac'gual construction of. the process is stralgh_tfor.ward. A
simulation algorithms, and the quality of the results dependéealization ofs; is a piecewise constant mép— S with iso-
critically on its accuracy7]. Usually, it contains a set of free 1ated jumps at times=to,t;, ..., with to<t;<t,<---.An
parameters that deserves optimization by rather expensiv@gorithm to compute the tripleft,,s; ,W; } is the follow-
variational calculation$8]. ing.

Here we present a Monte Car(®C) algorithm that in- (1) We simply denotes; =s and define the séfi; of target
cludes an automatic optimization of the trial wave functionstates connected ® Ty={s’,I's¢s>0}. We also define the
by means of a nonlinear feedback between state samplingta| width I's=3g .1 lss. (2) Extract7=0 with probabil-
ond g The MC core fobased on & geneal SOCHRSly onsiy () To 1. In_other _words, -

: . f — (1 g)log & with ¢ uniformly distributed in[0,1]. (3) Ex-
cussed in the specific case of the Hubbard m¢di@]. The ] : . o
: R . tract a new stats’ e T with probability ps:=Tg/T's. (4)
adaptive optimization strategy has been already applied tBefinet —t 4 s =< andW.  —W. e @sT
diffusion MC studies of purely bosonic models with continu- n+1= T T Tt 1 Tt ) .
ous state spade). ~ The above algorithm is the explicit zero imaginary time

In this Brief Report, we focus on fermionic models and limit of power algorithms{14]. _ _
present an algorithm suitable for the study of Hamiltonians FOr @ better performance, it is useful to introduce a trial
acting on a finite-dimensional fully discrete state space. Irftate|®(a)) depending on some parametersThe original
fact, for a local fermion model discretized on a finite lattice, Hamiltonian H is replaced by the isospectrdflsy ()
the Hamiltonian is a large sparse mathk={Hsg}sscs, = Ps(@)Hsg Py (a) with &y (a)=(s|®(a)). The algo-
with Sdenoting the discrete state space. The ground state caithm is unchangedthe hermiticity ofH(«) has not been
be obtained by acting on a given initial state with the evolu-assumeg] but everything, in particulawg, becomesa de-
tion semigroupQ={e "},_, in the t—oe limit. For sim-  pendent. In the ideal case whih(a)) is an exact ground
plicity, we assume a nondegenerate ground state; in the gestate, thenw,=E,, and the ground state energy is estimated
eral case() projects onto the lowest eigenspace. by Eq. (1) with zero fluctuations.

To build a MC algorithm, we need a probabilistic repre-  As is well known, a naive implementation of E(d,) fails
sentation of(2. For each pairs,s’ € S such thats#s’ and  because the variance of the right hand side divergds-as
Hy s#0 we definel'y, = —Hg . We assume that ally,;  +9. A possible way out is stochastic reconfigurati@R)
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and, after each SR, we compute the variance»@&) over
the K walkers, with their states kept fixed. Then we propose
to updatea according to

an+1:an_77nvanvarw(an)- 2

The sequencgy,} controls the speed of the adaptive process
and vanishes as— o, typically like n~ 1. The novelty of the
procedure is that MC sampling and trial wave function opti-
mization are coupled. A change ininduces a change in the
walker dynamical distribution, which in turn determines the
next evolution ofa. The whole process is nonlinear and an
explicit numerical investigation is required to assess its sta-
bility.

As a specific nontrivial application, we consider the two

0 20 40 60 80 100

Monte Carlo iteration dimensional Gross-Neveu mod¢lL7] described by the
Hamiltonian
FIG. 1. L=10, Ny=2, g=3.0, K=10, and3=0.5. MC evo-
lution of the ground state energy estimate and of dhgarameter. . g2
H= f dx —iy o= o (W o?)?) )

[11-14. An ensemble with a large fixed numbi€rof walk-
ers is introduced, and a branching procedure deletes walkevghere ¢ are N¢ Dirac fermions and we sum over the re-
with low weight and makes copies of the ones with largerpeated flavor indexa=1, ... N;. The model is asymptoti-
weight. In the end, we take the numerical liit-. If Bis  cally free, admits a N; expansion, and spontaneously
the time between two SR’s, then we denote the estimate direaks the discrete chirzl, symmetryy— ysi.
the ground state energy Hy,(S3,K,a), where we do not Following Ref.[18], a lattice formulation with staggered
write the dependence on physical parametéatiice size, Kogut-Susskind fermionkl9] is based on
couplings. Usually, the dependence anis quite strong and L1 )
requires optimization to makeb («)) the closest possible to He— S 1 Z(caea,  +Hoe)+ g—(caTca—caT @, )2
the exact ground state. o (207 Tl T gN T T Tl e

As we remarked, a possible way to optimizes to mini-
mize the fluctuations oég () [15]. To this aim, following  where {c2,ct}=0, {c2,ctll= Snmdap, and periodic
the general ideas ¢fL6], we promotex to a sequencéa,} boundary conditions are assumed. The state space is the set

4 T T T T T 4 T T T T T
3+ 1 3r 1
2t g=0.5 1 2t g=10 |
@
9 1t {1 1t 1
g ]
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-1t 1 1t 4 FIG. 2. L=10 and N¢=2.
Relative percentual error on the
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FIG. 3. L=10, Ny=2, andK=500. Relative percentual error
on the energy obtained from data at lai§eat severalg.

of eigenstates of the occupation number operatofs
=c?'c? denoted byin). The fermion number is conserved,
and we focus on the half-filled sector wiltyn?=L/2. The
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Monte Carlo iteration
FIG. 4. L=10, Ny=2, andg=2.0. MC evolution of the six

parameterga,b}. From top to bottom, on the right of the plot, the
parameters ara;, as, a,, by, b,, andb.

We compute the ground state energy on a lattice With
=10 sites, and begin our analysis with the chke=2. We
consider several ensemble sizes and evolution tinkes:
=10, 50, 100, and 500 angl=0.1, 0.25, 0.5, and 1.0. For
each pair K,8) we determine, by the adaptive algorithm,

Z, symmetry corresponds to translations by two lattice sitesy, best, and estimate the ground state energy. For com-

To avoid sign problems related to the boundary crossing,
the following we choosd. mod4=2 (the ground state is
then nondegenerate
We adopt the one parameter trial wave function
L-1
3, |

i=0

N¢

>

a=1

(ng=0),

2
<nl¢(a)>=exp[ (n?—n?+1))
where |g=0) is the exact ground state g&=0. The algo-
rithm requires an explicit formula for the ratio
(n'|®)/{n|®), where|n) and|n’) are states that differ by
one fermion hopping. Ifx;} and{x/} are theL/2 fermion
positions in the two states andxf=x; for i #p, then the
following formula can be derived:

(n'|®) 2mi L/2—1 ,
woy AT Tz e %)
2mix! 2mix
11 (exp P _exp k)
><k;&p L L
I ( 27X 27Tixk>'
ex —ex
wap | P L

TABLE I. Ey/N; for the L=10 model withN;=2 flavors.
AE= EI(_)anczos_ Eg’lc .

Exact Lanczos Polynomial

g «*(500,0.1) diagonalization extrapolation 1000AE/E|
0.5 0.076381) —3.34904 —3.34908(5) 0.012
1.0 0.31347%) —3.71687 —3.71689(5) 0.005
2.0 1.40443) —5.99265 —5.9929(5) 0.03
25 2.057%2) —8.4526 —8.4524(3) 0.02
3.0 2.61982) —11.6949 —11.6927(3) 0.2

”E)arison, we also determirig, by exact Lanczos diagonaliza-

tion.

Figure 1 shows the typical initial steps of a run. The pa-
rametera and the energy measurements evolve and fluctuate
around K,B) dependent definite average value$(K,B)
and EO(K,ﬁ,a*(K,,B)). For largeK, the statistical error on
E, decreases liké& ~ Y2 ForK—, the results are expected
to be 8 independent. However, for moderate ensemble sizes,
like those considered(~500), a residugB dependence can
be observed, particularly at intermediate coupling, as shown
in Fig. 2. This effect is due to the process of walker selection
associated with SR. The correct approach is to takeghe
—0 limit where this effect is expected to be negligible. In

Fig. 3, we pIotEo[ﬁ,SOOa* (5008)] asB andg are varied.

2
b
o0—o | parameter
&——e 6 parameter f
1.5 1
g
9 1
g
05 r
0 1 L L L
0 0.2 0.4 0.6 0.8 1
B

FIG. 5. L=10, N;=2, g=2.0, andK=500. Improvement in
the energy estimate with the six-parameter trial wave function.
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2 ' , ' , ' For g=2.0, we explore a tentative six-parameter trial
—o0g=0.5 wave function. Denoting the two fermion flavors byand |,

15 | —og=10 1 we use (n|®)=eFi(n|g=0) with F;=33_,a,(n/n/,,
o—0g=2.0 +1e)+32_b(nint, +1<]). The MC automatic de-
termination of the six parameters is shown in Fig. 4. The
algorithm converges to definite coefficierta,b}, but the

behavior of E, does not dramatically improvéFig. 5).
Nonetheless, some qualitative remarks can be stressed, as the
presence of long range correlations between next to neighbor
fermions with the same spin and anticorrelations between
05 | 1 fermions with opposite spin.
Since the Gross-Neveu model can be studied nonpertur-
1 . . . . . batively in the framework of the l¥; expansion, it is inter-
0 0.2 0.4 0.6 0.8 1 1.2 esting to analyze the algorithm performance with a larger
B number of flavors. In Fig. 6, we show the results fy=6.
FIG. 6. L=10, N;=6, andK=500. Relative percentual error The exact value i; beyond Lanczos diagonalization, and we
on the energy estimate obtained from data at l&g® severalg. choose to normalize errors at tife=0.1, K=500 value. A
comparison with Fig. 3 reveals that the error as well agits
All the curves converge to zero and, in fact, can be smoothifiependence are rather reduced with respect to the previous
extrapolated tg8— 0. The resulting percentual relative error Nt=2 case. _
100E,— Eo|/|Eo| is very small, well below the permille In summary, our data show that a clever extrapolation
level (see Table | for numerical results with fourth-order IN the algorithm free parametets and 5 allows accurate
polynomial extrapolation results even with sma!l vyalker ensembles: This is an impor-
For large couplingg, the convergence is quite fast. The tant feature for realistic large scale simulations aimed
one-parameter trial wave function is accurate because th@t reaching the continuum limit. Results with lardé
ground state is dominated by states with low potential thasuggest that the present algorithm can be a viable numerical
are easily selected byb(a)). Relatively smallK’s are then technique for other fermionic two-dimensional models
already in the asymptotic regime. For intermediate couwhere the IN; expansion applies, like the important case of
plings, g~2.0, the convergence is again smooth, but lessnodels with dynamical supersymmetric breakif2p]. In
than linear. For smaller couplings, a good convergence igrinciple, extensions to models with sign problems are pos-
observed, and in fact a precise wave function can obtainesible and, in fact, progress in the optimization issue was re-
with @* =0. The optimale* atK=500, 8=0.1is shownin cently proposed21] within the considered class of MC al-

100 AE/E
=3
w
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