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PHYSICAL REVIEW D, VOLUME 64, 077502
Adaptive optimization of wave functions for fermion lattice models

Matteo Beccaria and Antonio Moro
Dipartimento di Fisica dell’Universita` di Lecce, I-73100, Italy

and Istituto Nazionale di Fisica Nucleare - INFN, Sezione di Lecce, Italy
~Received 23 May 2001; published 5 September 2001!

We present a simulation algorithm for Hamiltonian fermion lattice models. A guiding trial wave function is
adaptively optimized during Monte Carlo evolution. We apply the method to the two dimensional Gross-Neveu
model and analyze systematic errors in the study of ground state properties. We show that accurate measure-
ments can be achieved by a proper extrapolation in the algorithm-free parameters.
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Lattice field theory is a constructive framework whe
nonperturbative properties of quantum models can be
dressed both analytically and by numerical techniques.
main standing theoretical viewpoints are the traditional L
grangian approach@1# and the Hamiltonian formulation@2#.
In the study of fermionic models, Lagrangian simulatio
suffer the drawback of requiring Grassmann variables
are difficult to handle numerically and must be integrated
explicitly leading to large nonlocal determinants. Instead
the Hamiltonian approach, the treatment of Fermi antico
muting operators is straightforward. In particular, this ho
in one spatial dimension where notoriously difficultsign
problems@3# are tame.

Another important reason to resort to Hamiltonian me
ods is that they rely on powerful well founded many-bo
techniques@4#. In particular, a direct analysis of the groun
state structure is often feasible through a guidingtrial wave
function @5#. This is an approximation to the exact groun
state that can provide deep physical insights into the mo
under consideration@6#. Also, it plays a central role in the
simulation algorithms, and the quality of the results depe
critically on its accuracy@7#. Usually, it contains a set of fre
parameters that deserves optimization by rather expen
variational calculations@8#.

Here we present a Monte Carlo~MC! algorithm that in-
cludes an automatic optimization of the trial wave functi
by means of a nonlinear feedback between state samp
and guiding. The MC core is based on a general stocha
representation of matrix evolution problems@9#, and was dis-
cussed in the specific case of the Hubbard model@10#. The
adaptive optimization strategy has been already applie
diffusion MC studies of purely bosonic models with contin
ous state space@5#.

In this Brief Report, we focus on fermionic models an
present an algorithm suitable for the study of Hamiltonia
acting on a finite-dimensional fully discrete state space
fact, for a local fermion model discretized on a finite lattic
the Hamiltonian is a large sparse matrixH5$Hss8%s,s8PS ,
with Sdenoting the discrete state space. The ground state
be obtained by acting on a given initial state with the evo
tion semigroupV5$e2tH% t>0 in the t→` limit. For sim-
plicity, we assume a nondegenerate ground state; in the
eral case,V projects onto the lowest eigenspace.

To build a MC algorithm, we need a probabilistic repr
sentation ofV. For each pairs,s8PS such thatsÞs8 and
Hs8sÞ0 we defineGs8s52Hs8s . We assume that allGs8s
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.0 ~no sign problem!, and build anS-valued Markov sto-
chastic processst by identifyingGs8s as the rate for the tran
sition s→s8. Hence the average occupationPs(t)5E(d)s,st

,

with E(•) denoting the average with respect tost , obeys the
master equationṖs(b)5(s8Þs(Gss8Ps82Gs8sPs).

Related tost , we also define the real valued stochas
processWt5exp(2*0

t vst
dt), with vs5(s8PSHs8s . It can be

shown that the weighted expectation valuecs(t)
5E(ds,st

Wt) reconstructs V, (d/dt) cs(t)5

2(s8PSHss8cs8(t), with cs(0)5Prob(s05s). Matrix ele-
ments ofV can be identified with certain expectation value
In particular, the ground state energyE0 can be obtained by

E05 lim
t→1`

@E~vst
Wt!/E~Wt!# , ~1!

that givesE0 as the asymptotic average ofvs over realiza-
tions of st with weight Wt , calledwalkersin the following.
The actual construction of the process is straightforward
realization ofst is a piecewise constant mapR→S with iso-
lated jumps at timest5t0 ,t1 , . . . , with t0,t1,t2,•••. An
algorithm to compute the triples$tn ,stn

,Wtn
% is the follow-

ing.
~1! We simply denotestn

[s and define the setTs of target

states connected tos: Ts5$s8,Gs8s.0%. We also define the
total widthGs5(s8PTs

Gs8s . ~2! Extractt>0 with probabil-

ity density ps(t)5Gse
2Gst. In other words, t5

2(1/Gs)logj, with j uniformly distributed in@0,1#. ~3! Ex-
tract a new states8PTs with probability ps85Gs8s /Gs . ~4!
Define tn115tn1t, stn11

5s8 andWtn11
5Wtn

e2vst.
The above algorithm is the explicit zero imaginary tim

limit of power algorithms@14#.
For a better performance, it is useful to introduce a tr

stateuF(a)& depending on some parametersa. The original
Hamiltonian H is replaced by the isospectralHss8(a)
5Fs(a)Hss8Fs8

21(a) with Fs(a)5^suF(a)&. The algo-
rithm is unchanged@the hermiticity of H(a) has not been
assumed#, but everything, in particularvs , becomesa de-
pendent. In the ideal case whenuF(a)& is an exact ground
state, thenvs[E0, and the ground state energy is estimat
by Eq. ~1! with zero fluctuations.

As is well known, a naive implementation of Eq.~1! fails
because the variance of the right hand side diverges ast→
1`. A possible way out is stochastic reconfiguration~SR!
©2001 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW D 64 077502
@11–14#. An ensemble with a large fixed numberK of walk-
ers is introduced, and a branching procedure deletes wa
with low weight and makes copies of the ones with larg
weight. In the end, we take the numerical limitK→`. If b is
the time between two SR’s, then we denote the estimat
the ground state energy byÊ0(b,K,a), where we do not
write the dependence on physical parameters~lattice size,
couplings!. Usually, the dependence ona is quite strong and
requires optimization to makeuF(a)& the closest possible to
the exact ground state.

As we remarked, a possible way to optimizea is to mini-
mize the fluctuations ofvst

(a) @15#. To this aim, following

the general ideas of@16#, we promotea to a sequence$an%

FIG. 1. L510, Nf52, g53.0, K510, andb50.5. MC evo-
lution of the ground state energy estimate and of thea parameter.
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and, after each SR, we compute the variance ofv(a) over
the K walkers, with their states kept fixed. Then we propo
to updatea according to

an115an2hn¹an
Varv~an!. ~2!

The sequence$hn% controls the speed of the adaptive proce
and vanishes asn→`, typically like n21. The novelty of the
procedure is that MC sampling and trial wave function op
mization are coupled. A change ina induces a change in th
walker dynamical distribution, which in turn determines t
next evolution ofa. The whole process is nonlinear and a
explicit numerical investigation is required to assess its s
bility.

As a specific nontrivial application, we consider the tw
dimensional Gross-Neveu model@17# described by the
Hamiltonian

H5E dxF2 ica†sx]xc
a2

g2

2Nf
~ca†szc

a!2G , ~3!

whereca are Nf Dirac fermions and we sum over the re
peated flavor indexa51, . . . ,Nf . The model is asymptoti-
cally free, admits a 1/Nf expansion, and spontaneous
breaks the discrete chiralZ2 symmetryc→g5c.

Following Ref.@18#, a lattice formulation with staggere
Kogut-Susskind fermions@19# is based on

H52 (
n50

L21 H 1

2
~cn

a†cn11
a 1H.c.!1

g2

8Nf
~cn

a†cn
a2cn11

a† cn11
a !2J ,

where $cn
a ,cm

b %50, $cn
a ,cm

b†%5dn,mda,b , and periodic
boundary conditions are assumed. The state space is th
e
s

FIG. 2. L510 and Nf52.
Relative percentual error on th
ground state energy. The variou
lines correspond to b50.1
~circles!, b50.25 ~squares!, b
50.5 ~diamonds!, b50.75 ~tri-
angles up!, and b51.0 ~triangles
down!.
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BRIEF REPORTS PHYSICAL REVIEW D 64 077502
of eigenstates of the occupation number operatorsni
a

5ci
a†ci

a denoted byun&. The fermion number is conserve
and we focus on the half-filled sector with( ini

a5L/2. The
Z2 symmetry corresponds to translations by two lattice si
To avoid sign problems related to the boundary crossing
the following we chooseL mod 452 ~the ground state is
then nondegenerate!.

We adopt the one parameter trial wave function

^nuF~a!&5expFa (
i 50

L21 S (
a51

Nf

~ni
a2ni 11

a !D 2G ^nug50&,

where ug50& is the exact ground state atg50. The algo-
rithm requires an explicit formula for the rati
^n8uF&/^nuF&, where un& and un8& are states that differ by
one fermion hopping. If$xi% and $xi8% are theL/2 fermion
positions in the two states and ifxi5xi8 for iÞp, then the
following formula can be derived:

^n8uF&

^nuF&
5expS 2p i

L

L/221

2
~xp2xp8! D

3

)
kÞp

S exp
2p ixp8

L
2exp

2p ixk

L D
)
kÞp

S exp
2p ixp

L
2exp

2p ixk

L D .

FIG. 3. L510, Nf52, andK5500. Relative percentual erro
on the energy obtained from data at largeK at severalb.

TABLE I. E0 /Nf for the L510 model with Nf52 flavors.
DE5E0

Lanczos2E0
MC .

g a* (500,0.1)
Exact Lanczos
diagonalization

Polynomial
extrapolation 1000uDE/Eu

0.5 0.07638~1! 23.34904 23.34908(5) 0.012
1.0 0.31347~5! 23.71687 23.71689(5) 0.005
2.0 1.4044~3! 25.99265 25.9929(5) 0.03
2.5 2.0575~2! 28.4526 28.4524(3) 0.02
3.0 2.6198~2! 211.6949 211.6927(3) 0.2
07750
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We compute the ground state energy on a lattice withL
510 sites, and begin our analysis with the caseNf52. We
consider several ensemble sizes and evolution timesK
510, 50, 100, and 500 andb50.1, 0.25, 0.5, and 1.0. Fo
each pair (K,b) we determine, by the adaptive algorithm
the besta, and estimate the ground state energy. For co
parison, we also determineE0 by exact Lanczos diagonaliza
tion.

Figure 1 shows the typical initial steps of a run. The p
rametera and the energy measurements evolve and fluctu
around (K,b) dependent definite average valuesa* (K,b)
and Ê0„K,b,a* (K,b)…. For largeK, the statistical error on
Ê0 decreases likeK21/2. For K→`, the results are expecte
to beb independent. However, for moderate ensemble siz
like those considered (K;500), a residualb dependence can
be observed, particularly at intermediate coupling, as sho
in Fig. 2. This effect is due to the process of walker select
associated with SR. The correct approach is to take thb
→0 limit where this effect is expected to be negligible.
Fig. 3, we plotÊ0@b,500,a* (500,b)# asb andg are varied.

FIG. 4. L510, Nf52, and g52.0. MC evolution of the six
parameters$a,b%. From top to bottom, on the right of the plot, th
parameters area1 , a3 , a2 , b1 , b2, andb0.

FIG. 5. L510, Nf52, g52.0, andK5500. Improvement in
the energy estimate with the six-parameter trial wave function.
2-3



th
or

er

e
t

ha

ou
es

ne

ial

he

s the
bor

een

rtur-

ger

we

ious

ion

or-
ed

rical
ls
of

os-
re-

l-

r

BRIEF REPORTS PHYSICAL REVIEW D 64 077502
All the curves converge to zero and, in fact, can be smoo
extrapolated tob→0. The resulting percentual relative err
100uE02Ê0u/uE0u is very small, well below the permille
level ~see Table I for numerical results with fourth-ord
polynomial extrapolation!.

For large couplingg, the convergence is quite fast. Th
one-parameter trial wave function is accurate because
ground state is dominated by states with low potential t
are easily selected byuF(a)&. Relatively smallK’s are then
already in the asymptotic regime. For intermediate c
plings, g;2.0, the convergence is again smooth, but l
than linear. For smaller couplings, a good convergence
observed, and in fact a precise wave function can obtai
with a* .0. The optimala* at K5500, b50.1 is shown in
Table I.

FIG. 6. L510, Nf56, andK5500. Relative percentual erro
on the energy estimate obtained from data at largeK at severalb.
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For g52.0, we explore a tentative six-parameter tr
wave function. Denoting the two fermion flavors by↑ and↓,
we use ^nuF&5e( iFi^nug50& with Fi5(k51

3 ak(ni
↑ni 1k

↑

1↑↔↓)1(k50
2 bk(ni

↑ni 1k
↓ 1↑↔↓). The MC automatic de-

termination of the six parameters is shown in Fig. 4. T
algorithm converges to definite coefficients$a,b%, but the

behavior of Ê0 does not dramatically improve~Fig. 5!.
Nonetheless, some qualitative remarks can be stressed, a
presence of long range correlations between next to neigh
fermions with the same spin and anticorrelations betw
fermions with opposite spin.

Since the Gross-Neveu model can be studied nonpe
batively in the framework of the 1/Nf expansion, it is inter-
esting to analyze the algorithm performance with a lar
number of flavors. In Fig. 6, we show the results forNf56.
The exact value is beyond Lanczos diagonalization, and
choose to normalize errors at theb50.1, K5500 value. A
comparison with Fig. 3 reveals that the error as well as itsb
dependence are rather reduced with respect to the prev
Nf52 case.

In summary, our data show that a clever extrapolat
in the algorithm free parametersK and b allows accurate
results even with small walker ensembles. This is an imp
tant feature for realistic large scale simulations aim
at reaching the continuum limit. Results with largeNf

suggest that the present algorithm can be a viable nume
technique for other fermionic two-dimensional mode
where the 1/Nf expansion applies, like the important case
models with dynamical supersymmetric breaking@20#. In
principle, extensions to models with sign problems are p
sible and, in fact, progress in the optimization issue was
cently proposed@21# within the considered class of MC a
gorithms.
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