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Abstract 

 

Little is known about the burial rates of carbon in Small Water Bodies (SWBs <10 

km2), since most research has been on larger lakes. Obtaining carbon burial rates 

of sub-recent (<20 years) sediments requires a high resolution dating technique 

which permits sub-decadal error ranges. Typically, isotope dating is used to date 

young sediment cores but is limited to error ranges of 10-20 years.  

 

This thesis examines whether the pollen and testate amoebae record of different 

types of SWBs from North East England can be matched to records from 

vegetation monitoring, crop harvests, and rainfall measurements in order to allow 

precise dating. High resolution pollen and testate amoebae assemblages from 

short sediment cores of three different types of SWBs are compared with an 

eighteen-year vegetation dataset. Utilising research on pollen grain morphology 

and representation, coupled with records from modern pollen surface sediment 

samples and vegetation mapping, aid the interpretation of pollen assemblages in 

the SWB sediment cores with the vegetation monitoring record. 

 

The results suggest that the ability of a pollen-vegetation record dating approach 

is controlled by the type and size of the individual SWB. High resolution pollen 

analysis and vegetation matching can be used on an open semi-natural SWB to 

obtain coherent dates throughout the sediment core. SWBs that are constructed 

to 1m2, or have vegetation growing in the pond, cannot be used for dating. There 

is a minimum size required for the calculation of sedimentation rates on SWBs, 

as the 1m2 constructed SWBs were not suitable. Reworking of pollen grains, 

particularly in the small constructed ponds is identified by the occurrence of a 

carboniferous spore (Lycospora), reducing the accuracy of matching the pollen 

and vegetation assemblages in these pond types.  

 

This technique can be applied to other SWBs to further our understanding of sub-

decadal carbon burial rates. The approach also allows a documentation of the 

palynological interactions occurring within a variety of types and sizes of SWBs.  
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1 Introduction 

The influence on and contribution of Small Water Bodies (SWBs) to the global 

carbon cycle has remained relatively neglected in past research, but recent 

studies have estimated that SWBs can sequester carbon at rates up to 400 times 

greater than inland seas (Downing, 2006; Boyd, et al., 2010). Lehner & Doll 

(2004) suggested that there are 8 million natural lakes >0.01km2 in the world 

however, their estimate did not include water bodies < 1.2 km2. Downing et al. 

(2006) developed this with an estimated total of 304 million lakes, covering an 

area of approximately 4.2 million km2, dominated by several millions of SWBs 

with an area of less than 1 km2 (Downing et al., 2006; 2010). Given the high 

volume of SWBs, it is of vital importance to understand their role within the global 

carbon cycle by examining the burial rates of carbon within their sediments. Age 

control is required to calculate burial rates and is typically achieved using isotope 

(210Pb and 137Cs) dating (Heathcote & Downing, 2012). The majority of sediment 

cores from lakes for carbon sequestration studies have been >1m deep (Mackay 

et al., 2012).  

However, obtaining high resolution ages for sub-recent sediments with current 

dating techniques, encounters several limitations. The calculation of organic 

carbon (OC) burial rates in recent lake sediments (50-150 years) utilises 210Pb 

and 137Cs isotope dating, as 210Pb has a half-life of 22.26 ± 0.22years (Walker, 

2005; Chen et al., 2014; Kirchner, 2011). The use of 210Pb as a dating tool alone 

lacks sufficient accuracy and is typically integrated with 137Cs (Kirchner, 2011; 

Dong et al., 2012; Brothers et al., 2013). However even the combination of 210Pb 

and 137Cs dating can produce error ranges of 10-20 years within the past 100 

years (Brothers et al., 2013) and consequently does not provide high enough 

resolution dating for sub-recent events, therefore a methodology with sub-

decadal error ranges is needed. This study will test whether high resolution pollen 

analysis can be used to date sub-recent short sediment cores from SWBs. The 

study will also test, how far high resolution analysis of these short records can be 

used to accurately reconstruct vegetation and hydrological changes around 

SWBs. 

In order to test the potential of high resolution palaeoecological studies for dating 

sediments, four short sediment cores were taken from two types of SWBs (semi-

natural and 1m2 constructed) from Low Hauxley, Northumberland, UK. Three of 
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the four cores were analysed for palynology, testate amoebae and geochemical 

data. This study also uses vegetation data compiled of cultivated crop records 

from the surrounding fields and abundance counts of the macrophyte 

communities within the thirty constructed ponds in the field (Jeffries, 2008). This 

was compared with the short (<20 cm) pollen records to see if the vegetation 

dataset was reflected in the pollen assemblages of the different SWBs. 

Precipitation data from Boulmer weather station, Alnmouth, UK was used to 

investigate the hydrological sensitivities of different types of SWBs, which was 

combined with testate amoebae and Carbon/Nitrogen (C/N) ratios. Pollen surface 

samples from the four SWB sediment cores and vegetation mapping locations 

within the same site were analysed to understand the dynamics of the different 

SWBs and their pollen signals.  

The principle focus of this study is to determine whether multiple dates can be 

obtained through the comparison of high resolution palynological analysis of short 

sediment cores from SWBs and a vegetation monitoring dataset (1995-2013). 

Further to this is to identify whether testate amoebae records, C/N ratios and 

rainfall data support the interpretations made between the pollen and vegetation 

datasets. Pollen dispersal, transport and deposition affect pollen representation 

(Bunting, 2003; Fontana, 2005; Goring et al., 2013) in the sediment core while 

the size, type and location of the SWB have influence on the pollen-vegetation 

relationship (Waller et al., 2012). The high resolution changes in pollen signatures 

of short cores have shown vegetation trends (Waller et al., 2012). The use of an 

eighteen year macrophyte record of thirty constructed ponds in Hauxley Nature 

Reserve collected by Jeffries (2008) will provide the vegetation component to 

compare with pollen assemblages collected from sediment cores in SWBs also 

in Low Hauxley Nature Reserve. Observing the relationship between the pollen 

and vegetation records will determine if the short sediment cores from the SWBs 

have the capability of illustrating high resolution changes.  

This thesis will attempt to date short sediment cores from SWBs in Low Hauxley 

Nature Reserve using palynological and vegetation data. Supporting datasets of 

testate amoebae, precipitation and geochemical data will contribute to the 

understanding of the hydrological sensitivities of the different SWBs over a short 

(<20years) time period. The results will be explained in relation to carbon cycling, 

pollen dissemination, representation and relationship with vegetation.  
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2 Scientific background 

2.1 Small water bodies and carbon burial  

The research on carbon cycling, carbon sequestration, palaeohydrology, and 

ecohydrology has been extensive on large water bodies and peatlands however, 

there is limited research on SWBs (Turner et al., 2014; Loisel & Garneau, 2010). 

Accumulation rate, input of biomass, diagenesis (change of sediments through 

pressure), isotopic composition and water status can contribute to changes of the 

palynological signal within the lake (Meyers & Ishiwatari, 1993; Lehmann et al., 

2002; Smol, 2002). Changes in the carbon isotopic content of organic matter in 

sediments occur during the early stages of diagenesis, through selective 

degradation of organic matter components and microbial reworking, which can 

result in different levels of carbon in surface sediments (Meyers & Ishiwatari, 

1993; Lehmenn, et al., 2002). The input of biomass into a lake system can be 

divided into two sources, allochthonous (outside the water body) and 

autochthonous (within the water body such as algae, aquatic animals and plants) 

(Smol, 2002). Rates of accumulation in sediment and traps are different and have 

shown 30-40% organic matter depletion in sediments due to diagenesis (early 

stages 0-3yr) (Lehmann et al., 2002). Meyers & Ishiwatari (1993) found land-

derived and algal organic matter have different rates of diagenesis shown by C/N 

ratios fluctuating with depth.  

C/N ratios are used as a proxy to indicate change from where biomass has come 

from, whether it is algae or macrophyte related (Meyers & Ishiwatari, 1993; Smol, 

2002) and have been shown to be affected by allochthonous sources (Lehmen 

et al., 2002). Increases in C/N ratios through sediment cores indicates a high 

quantity of terrestrial organic matter has entered the lake and conversely 

decreases indicate high levels of algal organic matter (Kaushal & Binford, 1999). 

A C/N ratio of 4-10 indicates algae and >20 indicates terrestrial organic matter 

(Kaushal & Binford, 1999). There are two main states of SWBs; macrophyte and 

phytoplankton dominated, which is determined by the morphology of the lake 

(Meyers & Ishiwatari, 1993). Alternate equilibria occur in shallow lakes which refer 

to the switch between macrophyte (relatively clear water) or phytoplankton 

(generally turbid) dominated states which can be identified through C/N ratios 

(Smol, 2002). The C/N ratio and testate amoebae analyses can indicate the 
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eutrophic, ombrotrophic or minerotrophic status of the SWB, therefore indicating 

climate conditions. (Borgmark & Schoning, 2006; Andersdon & Schoning, 2010).  

The water status of the lake has shown to have an influential role on carbon burial 

through the effects of oxygenation of organic matter which is increased in anoxic 

conditions (Lehmenn et al., 2002). Carbon burial is propelled by the addition of 

nutrients which eutrophication provides and therefore, inland waters such as 

SWBs play an integral part of long-term carbon burial and storage (Heathcote & 

Downing 2012). Research has shown that carbon burial rates are higher in 

phytoplankton dominated lakes (82% permanently buried) than macrophyte 

dominated lakes (34% permanently buried) (Brothers et al., 2013). OC burial 

rates in small natural ponds along Druridge Bay, Northumberland, UK were some 

of the highest recorded (Gilbert et al., 2014) showing permanently submerged 

sediments have the highest %OC and temporary pond sediments in arable fields 

had the lowest %OC. This research supported findings from Downing et al., 

(2008) and Boyd et al., (2010).  

Changes in vegetation are influenced by ecological regime shifts which are abrupt 

changes in the functionality of a system (Rull, 2010) and are understood to have 

a possible impact on carbon cycling (Brothers et al., 2013). In the case of SWBs, 

this can be a change from a clear water regime of submerged macrophytes to 

turbid phytoplankton regimes, and could derive from anthropogenic land-use 

influences which could cause eutrophication (nutrient enrichment). 

2.2 Limitations of dating recent sediments 

Dating recent lake sediments (50-150 years) typically uses 210Pb and 137Cs 

isotopic dating to calculate the burial rate of OC as 210Pb has a half-life of 22.26 

+ 0.22 years (Walker, 2005, Kirchner, 2011 & Chen et al., 2014). The use of 210Pb 

as a dating tool alone should be used in conjunction with another dating method 

as sediment age information is not exact, which explains the integration of the 

time-independent tracer 137Cs (Kirchner, 2011; Dong et al., 2012; Brothers et al., 

2013; Tylmann et al., 2013). 137Cs is an anthropogenic induced radionuclide that 

shows peaks at 1963 (atomic weapons testing) and 1986 (Chernobyl accident), 

corroborating 210Pb dates (Kirchner, 2011). The assumption of 210Pb dating 

models that there is a constant rate of supply of 210Pb, have been known to be 

unrealistic as hydrological input can change the status of the lake water, such as 
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sediment resuspension in shallow zones and higher sedimentation rates 

influenced by the coring location in the lake (Tylmann et al., 2013). However, 

these two dating techniques do not provide high resolution dates for events 

occurring after the 1990’s due to a lack of time independent markers (Tylmann et 

al., 2013) and therefore, high resolution pollen analysis is being used. Matching 

recorded vegetation events with the occurrence of pollen in a sediment core 

assemblage has been performed successfully, but there are limited studies which 

have conducted this on cores <100 years (Taylor et al., 2006; Anderson et al., 

2010; Waller et al., 2012). 

2.3 Pollen representation and vegetation relationship  

In order to use palynology as a dating tool, the factors which influence the pollen 

vegetation relationship must be known in detail. The processes affecting pollen 

representation have been extensivley researched and models developing this 

information have been used to further understand the pollen vegetation 

relationship and consequently permit environmental reconstructions (Sugita, 

1994; Bunting et al., 2005; Waller et al., 2005; Turner et al., 2014). The factors 

which affect the species representation of vegetation communities in a pollen 

assemblage are the production, transport, deposition and preservation of pollen 

(Meltsov et al., 2011; Goring et al., 2013; Sugita, 2013). Pollen representation 

incorporates the production and dispersal biases, and calculates how much the 

pollen percentages over or under-represent the relative abundance of plant taxon 

(Prentice, 1985).  

The efficiency of pollen dissemination for each species must be known when 

interpreting a pollen spectrum (Davis, 1960). Each species interacts differently to 

dispersal factors, and the dispersal of each pollen grain is governed by how it is 

pollinated; either through entomophily (insect), anemophily (wind), hydrophily 

(water), epihydrophily (on water surfaces) or hydroautogamy (self) (Wiltshire, 

2006 & Goring et al., 2013). Anemophily (wind) is the dominant type of pollination 

in terms of the numbers of pollen taxa dispersed and transported from plants 

(Zhang et al., 2010). The size, shape and quantity of the pollen grains are vital in 

their anemophilious dispersal as it will determine the distance travelled. Large 

pollen grains which are heavy tend to have fast fall rates such as Abies and Picea 

(Gavin et al., 2005). Poaceae, also anemophilious, has poor dispersal ability 

especially over long distances, so the locality of the pollen from the plant 
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theoretically will not be far apart (Tweddle et al., 2005). Hydrophilious and 

epihydrophily are two of least common forms of pollen dispersion utilising water 

as the vector for pollen transport. The species having this ability vary in its 

importance within the ecosystem. It is believed that the freshwater plants of 

Lemnaceae (duckweed family) and Callitriche (water starwort) are hydrophilious 

but it is not yet fully proven how dissemination occurs within both plants (Cox 

1998). Despite dispersal methods, the majority of pollen grains are deposited 

near the parent plant (Wiltshire, 2006). Dispersal and deposition are the two main 

interacting factors which effect the representation of individual taxa in pollen 

diagrams (Brayshay et al., 2000; Soepboer & Lotter, 2009). Quantifying individual 

taxa representation raises the major problem encountered in most pollen-

vegetation studies, which is distinguishing between local and more distant pollen 

sources (McGlone & Moar, 1997).  

Pre sub-recent pollen assemblages cannot be directly related to plant abundance 

(Fontana, 2005). However, temporal and spatial variations of vegetation have 

been found to correlate between pollen assemblages and vegetation composition 

(Jackson & Williams, 2004). Consequently, the pollen assemblage is unable to 

directly represent the vegetation communities and successions which caused the 

pollen production in the first place, but do reflect broad community groupings 

(McGlone & Moar, 1997).  

Taking into consideration the production and dispersal characteristics of plant 

taxa, plants closer to the sampling point are considered to have a greater 

influence on the pollen signal than plants further away and therefore, map 

vegetation in more detail closer to the sampling point (Prentice, 1985; Sugita, 

1994; Bunting, 2003). The connectivity between every factor influencing pollen 

assemblages is complex and intricate and therefore must be taken into account 

when analysing any aspects or changes of a pollen diagram. 

Another point to note is the evenness within the pollen assemblage. Pollen 

percentages are sensitive to evenness and therefore, when interpreting the 

pollen assemblage for vegetation patterns, the pollen productivity of taxa must be 

understood (van der Knapp, 2009). Pollen productivity varies greatly between 

species and as such, individual pollen taxa do not represent the equivalent 

existence to the individual plant species and some taxa never enter the 

sedimentary record, despite its locality to the sediment sink (Jackson & Williams, 
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2004; Goring et al., 2013). Interspecific variation among competing taxa in the 

same site can heavily influence the pollen assemblage as the relative abundance 

of one taxon can alter another (Jackson & Williams, 2004). There have been 

attempts to overcome evenness in pollen representation calculated through 

various methodologies; two examples of which is RATEPOL software (van der 

Knaap, 2009) and Simpson evenness index (Meltsov et al., 2011). van der Knaap 

(2009) explained that counts for all individual pollen types must be divided by 

their pollen productivity estimates before estimating rates of change, but believes 

this objective is far in the future. 

2.4 Pollen source area and pollen modelling 

This study is focused on SWBs and it is therefore important to consider the role 

of the Pollen Source Area (PSA), as PSA can dramatically vary even with a small 

change in the size of the hollow sampled. The PSA, assuming a homogenous 

vegetation structure, is the area from which a certain proportion of the pollen 

deposited at a site originates (Nielsen & Sugita, 2005). Factors contributing to 

this change can be taxon, site or region specific (MacDonald & Edwards, 1991; 

Gavin et al., 2005). Jackson (1990) found that PSAs of small lakes not under a 

closed canopy are significantly larger than ones under canopy. Sugita’s (2007a; 

b) modelling for source areas predicts 2 m radius sites (small forest hollows) to 

have a 50-100 m Relevant Pollen Source Area (RPSA) and 50 m sites (small 

lakes) have a 300-400 m (Seppa & Bennett, 2003). RPSA is the distance from a 

pollen deposition point beyond which the relationship between vegetation 

composition and pollen assemblage does not improve (Sugita, 1994). Despite 

small lakes having a smaller PSA in comparison to the PSA of larger lakes, they 

retain the ability to palynologically record tree and shrub fluctuations, but little is 

known on what herbaceous, aquatic and other taxa groups illustrate in the pollen 

assemblage of small lakes. A large amount of research has been performed on 

source areas and pollen representation (e.g. Prentice, 1985; Fyfe, 2006; Sugita, 

2007a; 2007b; Matthias & Giesecke, 2014) first presented by Prentice (1983) in 

the unified theory of pollen analysis. Quantifying PSA showed that basin size 

affects pollen deposition, but further extensions to the model are required when 

applying to lake deposition (Prentice, 1985). The Prentice model of pollen 

dispersal and deposition assumes no mixing of pollen after deposition and the 

Sugita form of the Prentice model assumes mixing of pollen before entering the 
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sediment record (Waller et. al., 2012). There have been more key parametres 

included in modelling, such as pollen loading of a basin per year, distance-

weighted plant abundance and regional and local estimates of vegetation. These 

allow a more accurate explanation of the pollen assemblage of a selected site by 

determining the fluctuations of long and short distance pollen grains (Sugita, 

2007b). The development of pollen modelling is a fundamental part of the pollen-

vegetation relationship interpretations as the simulations have illustrated the point 

from which correlations between pollen loading for all taxa and vegetation 

abundance do not continue to improve (Sugita, 2007a, 2007b). 

Pollen modelling provides an insight into the behaviour and interactions of pollen, 

vegetation and the landscape in which it can be found. The simulations from 

pollen modelling aid the interpretations of pollen assemblages from small scale 

studies, as the simulation results provide insight into the sensitivities of landscape 

change (Fyfe, 2006). The Hull Pollen Deposition Modelling (HUMPOL) works with 

an integrated Geographical Information Systems (GIS), allowing a simulation of 

landscapes and vegetation communities (Fyfe, 2006). One of the clearest results 

from the simulations highlighted that cereal taxon in samples > 350 m were 

recorded in levels below 0.1 % showing that the likelihood of cereal pollen existing 

in sediment assemblages was extremely low. The simulations also showed 

woodlands and woodland ecotones were dominated by tree pollen and very little 

herbaceous taxa (Fyfe, 2006).  

2.5 Palynological studies on short sub-recent sediment cores  

Model simulations of pollen production from small ponds were completed using 

the Prentice model of pollen dispersal and deposition which assumes pollen is 

not remobilised after initial deposition. This was to show if and how coppicing 

patterns could be visible and revealed patterns in woodland management that 

correlated with pollen data available from northern Alpine forelands and 210Pb 

and 137Cs chronology (gained from the constant rate of supply model) (Waller et 

al., 2012). One of the main drawbacks of palaeolimnological research on SWBs 

with low sedimentation rates, is that benthic communities and wind induced 

currents in shallow lakes can cause bioturbation and other sediment mixing 

processes to occur which has not made studies favourable (Smol, 2002; Meyers 

& Ishiwatari, 1993). However, Waller et al’s., (2012) results indicate that sediment 

mixing in small hollows similar to this study does not has an adverse effect on the 
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pollen record. Another significant finding of Waller et al’s., (2012) research was 

that pollen grains indicative of open ground were low for all sites during periods 

of high tree presence near the hollow. This study was one of the first quantitative 

analyses focused on understanding pollen production affecting small hollows, 

finding that some taxa can be palynologically invisible under some coppicing 

regimes. Since this has been shown to affect small hollows, it is important to note 

the possibility of it occurring in a similar environment such as SWBs in close 

proximity to tall vegetation.  

2.6 Reconstructing hydrological changes using testate amoebae 

Testate amoebae (Protozoa: Rhizopoda) are single celled organisms which have 

a nucleus and cytoplasm encased within a shell built from proteinaceous, 

calcareous or siliceous material (Charman, (2001). The cytoplasm determines 

the intake of water and consequent encystment process following drought and 

also forms the pseudostome, used for movement, attachment or feeding 

(Charman, et al., 2000). Testate amoebae are extremely sensitive hydrological 

indicators mainly living in freshwater and have a short life span of approximately 

two weeks (Charman, et al., 2000, Booth, 2001; Mattheeussen et al., 2005). 

Rapid reproduction through mostly asexual binary fission results in 10-27 

generations per year (Charman, 2001). Even within the same population, there 

is high morphological variability of shell size, answerable to environmental factors 

such as food source, temperature and insecticides (Mitchel et al., 2008). They 

can be between the sizes of 20-200 μm and thrive off various food sources, such 

as protists, bacteria, fungi, organic matter and micro-metazoa (rotifers) (Mitchel 

et al., 2008). The variability in size at genus level can differ significantly (Charman 

et al., 2000), and this factor, coupled with limited identification sources highlights 

the complexity of testate amoebae investigations. Some testate amoebae 

species have restricted geographical distributions and further research is 

required to clarify their geographical extent (Bobrov et al., 1999; Woodland, 1998; 

Mitchell et al., 2008; Bobrov & Wetterich, 2012).  

Testate amoebae are a very useful proxy for reconstructing habitats (macrophyte 

or sphagnum dominated to minerotrophic or peatland) (Charman, et al., 2000, 

Booth, 2001; Mattheeussen et al., 2005). They have demonstrated their 

sensitivities to habitat changes on a micro-scale (bog hummocks to lawns) and 

macro-scale (different geographical regions) (Mitchel et al., 2000). Surrounding 
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vegetation and C/N Ratios influence trophic status and have been shown to affect 

the species distribution of testate amoebae (Charman, 2001). There has been 

increasing focus on what proxies can be used to indicate change in SWBs (Smol, 

2002) and changes in hydrological conditions in SWBs have been identified using 

testate amoebae as a proxy (Turner et al., 2014). Testate amoebae have become 

increasingly utilised alongside pollen analysis to support reconstructions of 

vegetation and moisture conditions (Mitchel & Charman, 2008; Payne et al., 

2011).  

An increasing wealth of information on their habitat preference and hydrological 

indicator values has permitted a greater use of them in multi-disciplinary dataset 

studies to support climatic and environmental findings (Charman et al., 2000; 

Charman, 2001; Alves et al., 2010). There has been little work on taxonomy 

recently which ceased with the two main identification glossaries of Charman 

(2000) and Clarke (2003). A large proportion of studies since have been focused 

on the use of testate amoebae as environmental indicators. The majority of 

research on testate amoebae has been conducted on peatbogs and wetlands 

most recently in Canada, Switzerland and New Zealand (Payne et al., 2011). 

There is an increasing amount of research on testate amoebae completed on 

British sites, often included in multi-proxy studies (Woodland, 1998). Testate 

amoebae exist in marine and lacustrine environments but, despite increasing 

research, little is known of lacustrine testate amoebae and few studies on fossil 

core assemblages have been completed (Patterson et al., 2012).  

The modern shell of testate amoebae and its fossil counterparts have been 

directly compared in previous studies, but problems occur during microscopic 

identification due to fossilisation effects and morphological variability (Charman, 

2001). Certain species have been shown to hold different decay rates in 

woodland soils and further research is required to identify what species do this 

and over what timescale (Woodland, 1998). It is important to be aware that some 

living testate amoebae can survive short term environmental fluctuations by a 

survival mechanism called encystment, whereby the cystoplasm seals their 

aperture and can be transported longer distances by wind and potentially animals 

(Charman et al., 2000). Research has not yet shown that this is the case for all 

species (Charman et al., 2000). Testate amoebae, which can encyst and excyst 

rapidly, have an advantage to survive longer in highly variable conditions as they 
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can feed during favourable conditions (Sullivan & Booth, 2011). Competing 

against these types of testate amoebae, are ones with wide tolerances but weak 

competitors for resources, which can result in these species being excluded as 

populations will reach carrying capacity (Sullivan & Booth, 2011). 

Trends in hydrology, such as peaks in wet periods have been identified in testate 

amoebae records, by wet indicator testate amoebae peaking in a similar trend 

(Woodland, 1998). Woodland (1998) modelled the mean water table depth 

tolerance for individual species illustrating a wide variance between genera. 

Centropyxidea, Arcellinida, Trinematidae, Euglyphida and Diffugiidea have been 

shown to exist in plankton, aquatic macrophyte, and aquatic sediment 

communities, which is not as selective as Hyalosphenidae and Plagiopyxidae 

(Alves et al., 2010). Woodland (1998) modelled the mean water table depth 

tolerance for individual species, illustrating a wide variance between genera. 

Other environmental changes known to affect their distribution is the surrounding 

vegetation, sediment grains size, nutrient input and C/N Ratios (Charman, 2001). 

There is very little known on the transport dynamics of testate amoebae therefore 

a limited amount of information is known on the interrelationships between pond 

environments which are in close proximity. However, this lack of transportation 

information is partly overlooked due to the speedy reproduction and encystment 

ability of testate amoebae (Charman, 2001).  

Studies on testate amoebae have begun to approach quantitative analysis rather 

than qualitative, to better understand the dynamics of testate amoebae and their 

habitat preferences (Bobrov et al., 1999). Multivariate statistical tests have shown 

testate amoebae to be sensitive to water table depth and the interpretation of 

results suggest that testate amoebae community dynamics are affected by short 

term environmental variables and high-intensity flooding events (Swindles et al., 

2014). Ecological relationships between plant species and testate amoebae 

which implied wet/dry phases have also been shown (Amesbury et al., 2013).  
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3 Aims, Research questions and Objectives 

The main aim is to identify whether recent sediments can be dated to a high 

temporal resoluation using the analysis and interpretation of different 

palynological records, observational data and geochemical analysis. The 

following research questions and subsequent objectives are: 

Research questions 

1. Do vegetation mapping and pollen surface samples from the same field-

site indicate that the location of vegetation to the pollen sink is important? 

2. Does the vegetation monitoring record identify the wet and dry years in the 

rainfall record? 

3. Can the vegetation monitoring record be identified in the SWB’s pollen 

records and therefore allow dating? 

4. Is there a relationship between testate amoebae, C/N ratios and recorded 

rainfall to see if the wet/dry years can be identified, and can this link 

support the pollen-vegetation dating technique? 

5. Do the different types of SWBs record a pollen signal that can be matched 

to the vegetation records and therefore allow dating? 

6. Can the crop record be identified in the pollen sedimentary record of any 

of the SWBs? 

7. Are there any similarities in pollen taxa assemblages in any of the different 

SWB sediment records? 

Objectives 

i. Evaluate the representation of pollen taxa in the surface sediment samples 

with the vegetation mapping locations.  

ii. Identify whether the vegetation record shows the wet and dry years by 

comparing it with rainfall data. 

iii. Identify the similarities in occurrence between the pollen assemblages 

from each SWB and the vegetation dataset. 

iv. Examine if the testate amoebae and C/N ratios indicate wet/dry years. 

v. Critically compare the pollen taxa occurrence in each SWB with the 

vegetation record to identify if there are any similarities indicating possible 

dates for sections of the sediment core. 

vi. Identify if any of the crop records are reflected in the SWB pollen records. 
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vii. Investigate the similarities and differences of the pollen assemblages from 

the different SWBs in terms their pollen taxa. 
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4 Study Site 

Hauxley Nature Reserve (55° 19’ 4’’ N; 1° 33’ 22’’ W) is at the northern end of 

Druridge Bay, within the Northumberland Rivers catchment. The site is within the 

South East Northumberland Coastal Plain, characterised by large mixed farming 

fields, restored and open cast coal mines and sandy bays (Natural England, 

2013). The predominant farming practices within the lowland of Northumberland 

are arable, taking up 76 % of the total area, of which tillage is accountable for 31 

% (wheat, barley, sugar beet, potatoes, vegetables, fruit and grass leys) (Swan, 

1994). The site was previously an open cast coal mine until the 1960s which was 

transformed into a nature reserve in 1983 back-filled and topped with a layer of 

clay and ~50 cm of topsoil (The Wildlife Trusts, 1999; Jeffries, 2011). Since the 

addition of the layer of topsoil, there has been no known or recorded 

anthropogenic reworking of the sediment on-site. The site is exposed to seasonal 

flooding and therefore, periods of wet and dry are common (Jeffries, 2008). 

Crataegus (hawthorn) and Prunus spinosa (blackthorn) hedges are along the 

east side of the field, and Alnus spp. (alder) and Salix spp. (willow) on the south. 

Pinus spp. (pine) trees grow to the west of the field which run the length of the 

field and are densely planted. The vegetation within the field is largely Poaceae 

spp. (grasses) and Cyperaceae spp. (sedges) with seasonal plants such as, 

Asteraceae spp. (daisy family), Fabaceae spp. (bean family), Plantaginaceae 

spp. (plantain family) and Ranunculaceae spp. (buttercup family). Within the 

summer of 2014 a vegetation survey of the field site showed high presence of 

Carex sp. (sedge), Juncus articulatus (jointleaf rush), Polygala sp. (milkwort), 

Ranunculus flammula (greater creeping spearwort), Stellaria sp. (chickweed) and 

a near continuous cover of Leptodictyum riparium (moss) in the understory.
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Figure 1: Location of the site in the United Kingdom and the SWBs where the sediment cores were sampled. (Getmapping plc, 2015 & ESRI, 2015).
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Figure 2: Location of the ponds within the field site. Reed Bed Pond: Blue, Semi-Natural Pond: Purple, Pond 8: Yellow, Pond 29 Orange.
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Three types of ponds were studied in Low Hauxley nature reserve, Semi-Natural 

Pond (SNP), Reed-Bed Pond (RBP) and constructed ponds (Figure 2).  SNP 

created in 1995 is in the south-east corner of the field would be National 

Vegetation Classification (NVC) S19 Eleocharis (spikerush) swamp, 

characteristic of British lowlands which can have standing or running water 50 cm 

deep (Rodwell, 1995). SNP has a slight inflow of water from the northern end 

which drains from the RBP. The RBP was created in 1995 by creating a ridge on 

the field site to impound water (

 

Figure 4) and is located in the north of the field with predominantly Phragmites 

(reed). Phragmites were not introduced into the pond and arrived naturally 

(Jeffries, unpublished data). There are two visible points where the water can flow 

out onto the field and can infiltrate the constructed ponds and SNP. The 

constructed ponds (P29 and P8) are two of thirty experimental ponds (1 m2 and 

30-40 cm deep) excavated in 1994 as part of a long term ecological study 
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(Jeffries, 2008) and a selection are shown in 

 

Figure 5. P29 and P8 were chosen for analysis and are both located in the area 

prone to flooding. These ponds have been inundated (floods join several ponds 

together) frequently (Jeffries, 2008) providing the opportunity for hydrophilious 

(water) pollination. 
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Figure 3: A-D: Semi-Natural pond (SNP), NVC S19. A: November, B: February, C: May 

and D: June 2014. 

 

Figure 4: A-D: The RBP is on a raised section of the field. A and B shows its position in 

relation to SNP in the bottom left of image A. C shows the intensity of Phragmites grown 

in the RBP and D illustrates a close-up image of the raised bed. 
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Figure 5: A, B, C and D are some of the experimental ponds taken November 2013. A 

has a high concentration of algae and is very homogenous with macrophyte vegetation. 

B shows how grasses are encroaching into the 1 m2 pond. C is prone to flooding and 

has expanded over its 1m2. D is heavily populated with macrophyte vegetation and has 

encroaching Cyperaceae and Poaceae from the edges. 
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5 Methodology  

5.1 Field, laboratory and data collection 

5.1.1 Sediment core sampling  

The sediment cores were excavated with a spade, which caused no compaction 

or slumping of the core (

 

Figure 6). The cores are relatively short: SNP 19 cm, RBP 9.5 cm, constructed 

P8, 5.5 cm and P29 6 cm. Piston corers, such as the Russian peat corers were 
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not used as they cause compaction and are unable to penetrate through roots 

adequately which would consequently distort the stratigraphy (Ellison, 2008).  

The four SWB cores were extracted in the same way via an access pit as 

demonstrated in 

 

Figure 6 A, B and C. The SNP core was taken from the pond in October 2013 

whilst it was dry and the RBP was extracted in September 2014. It was not 

possible to drain the water from the access pit of the RBP, as it was significantly 

larger than the constructed ponds. Thick rooting throughout the sediment made 

it particularly difficult to extract the core from the RBP. The P 29 and P 8 were 
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used in this study as the pond’s sediment was also being used in a PhD research 

study on carbon sequestration. 
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Figure 6: A-E: Method of extracting the sediment cores in the field. A: Access pit dug to 

drain pond and retrieve the pond sediment with no compaction. B: The sediment core 

sliced along each side ready for extraction. RBP (C) and P8 (D) sediment cores in the 

laboratory to be sub-sampled in 0.5 cm. E: The sediment layers (pictured in P8) of the 

pond and anthropogenic infill material along the base. 
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5.1.2 Sample preparation for palynological analysis 

The SNP, RBP, P 8 and P 29 cores were wrapped in aluminium foil to prevent 

contamination from modern pollen and stored in a fridge at 4°C until sub-sampling 

to avoid mould growth. In order to obtain high resolution pollen assemblages, the 

sediment cores were sub-sampled at 1 cm (SNP and P 29) and 0.5 cm (RBP and 

P 8) resolution. The SNP and P 29 cores were sub-sampled in the laboratory 

using a sterilised sharp blade and scissors. The RBP and P 8 (
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Figure 6 

 

Figure 6D and E) were sampled after SNP and P 29 and were partly frozen to 

ensure higher resolution (0.5 cm) could be obtained. This method allowed a sharp 

blade to cut through a thinner section of sediment without the structure of the sub-

sample being affected. The preparation of sub-samples for pollen analysis 

followed the standard palynological treatment as described by Faegri & Iversen 

(1989). Sub-samples from all the cores were weighed and Lycopodium spores 

were added to check on pollen recovery and to quantify pollen concentration 

(Stockmarr, 1971).  
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For the laboratory palynological analysis of the sediment core, two to four grams 

of sub-sample was weighed in a 50 ml centrifuge tube. If large pieces of organic 

matter were in the sample, they were weighed closer to 4 g since the sieving 

process would retain them leaving less sediment to process. One Lycopodium 

tablet was added to each sample and dissolved in 10 ml of 10 % hydrochloric 

acid (HCl) to remove carbonates. The tube was filled to 50 ml with distilled water 

and centrifuged for 3 minutes at 3000 rpm to collect the sediment in the bottom 

of the tube. The supernatant was discarded and 10 ml of 10 % potassium 

hydroxide (KOH) was added to remove humic acid and the sample deflocculated, 

mixed with a stirring rod and put in a water bath at 80°C for 3 minutes. The tube 

was shaken once to agitate the sediment and break up large particles. 

Immediately after the water bath the sample was put through a 250 μm sieve and 

washed through with distilled water. Some samples were sieved with a 125 μm 

mesh but microscopic analysis showed this did not aid the clarity of the samples 

so the sieving was maintained at 250 μm. After centrifuging for 3 minutes at 3000 

rpm the sample was washed with distilled water and centrifuging repeated until 

the supernatant was clear. Some samples had a very dark supernatant 

suggesting they contained high amounts of humic acid (Faegri & Iversen, 1989). 

Another set of 10 ml of 10 % of HCl and centrifuging was performed before the 

samples were put through hydrofluoric acid (HF) treatment. The HF process, 

which removes siliceous matter, was completed by a laboratory trained 

technician. After HF treatment, acetolysis treatment was carried out to sterilise 

the surface of the pollen grains and remove some organic matter. Samples were 

then dehydrated with Ethanol (EtOH) and tert-butyl alcohol (TBA) was added to 

the sample. Silicone oil was added into the glass vials to cover the sample, 

covered with a paper towel and placed in a fume cupboard to evaporate. Once 

the TBA had evaporated more silicone oil was added if needed. Samples were 

embedded in silicone oil and mounted on glass slides for microscope analysis 

(Moore & Webb, 1978). Microscopic analysis was conducted using a Leica 

Microscope with 200x 400x and 1000x magnification and images were taken with 

the in-built camera (ICC50 HD).  

5.1.3 Sample preparation for testate amoebae analysis 

The preparation of testate amoebae followed standard palynological procedures, 

including HF treatment (Faegri & Iversen, 1989) and were recorded 
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simultaneously with pollen counts. As testate amoebae counts were around 20 

per sub-sample a laboratory test was completed on testate amoebae preparation 

to identify whether more amoebae tests survived the less chemically intensive 

procedures. The preparation was a simple alkaline digestion (Charman, et al., 

2000) involving one Lycopodium tablet per sample and boiling the sample in 

100ml distilled water for 8 minutes to disaggregate. They were then washed 

through a 300 μm sieve and back-sieved through a 15 μm mesh. The remains 

were washed into 50 ml centrifuge tubes, centrifuged at 3000 rpm for 5 minutes 

and stored in distilled water. However, after microscopic analysis of these 

samples was performed, there was no significant difference in the number, types 

or quality of the amoebae tests, so the information from the first procedure was 

used for analysis. Payne et al., (2011) found similarities between both 

preparations and the differences were not substantial unless using the data for 

transfer functions. This supports the approach of using the palynologically-

prepared testate amoebae counts in this study for qualitative analysis and is 

shown not to be detrimental to the palaeoecological signal.  
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5.1.4 Compilation of the vegetation datasets 

This section explains how the vegetation datasets were compiled and provides 

detail on how the monitoring took place. There were four sections to the 

vegetation dataset; annually monitored macrophyte vegetation of thirty ponds 

from 1995-2013 (Jeffries 2008), observational data from the field site in Low 

Hauxley nature reserve (Jeffries, unpublished data), crop records from 1996-

2011 and vegetation mapping of four locations within the field site in 2014. 

5.1.4.1 Annually monitored thirty ponds (1995-2013) 

Thirty experimental ponds were constructed at the field site in 1994, and 

vegetation monitoring began in 1995 (Jeffries, 2008). This has resulted in a 

comprehensive knowledge of the vegetation from within the ponds perimeters, 

but excludes the surrounding areas. Therefore, the vegetation dataset cannot be 

used to examine the sources of pollen beyond the extent of the ponds. The 

annually monitored macrophyte vegetation coverage was recorded within a 1 m2 

quadrat with 10 cm grid wire intervals providing 81 sample points for each pond 

(Jeffries, 2008). Each of the thirty pond’s vegetation assemblages were recorded 

once a year in late May/early June, depending on whether the ponds dried out 

quickly. To get an overview of the vegetation in the field the thirty ponds 

vegetation data were amalgamated. Since the dataset had point sample values 

for each species in every pond for eighteen years, the dataset was too large and 

unnecessarily detailed for this study. Therefore, an average of the coverage of 

each plant species in all of the thirty ponds was calculated. These averages were 

entered into Tilia (1.7.16) (Grimm, 1988) and converted into percentages. 

Stratigraphically constrained cluster analysis (CONISS) (Grimm, 1987) was used 

to select the stratigraphical zones of vegetation change. The vegetation data was 

displayed in a percentage diagram like the pollen data to allow clear comparison. 

5.1.4.2 Ponds close to Pond 8 

To investigate if ponds within the same field were sensitive to vegetation changes 

and displayed large differences to the vegetation dataset representing the whole 

field, only vegetation counts close to P8 were used. The ponds close to P8 were 

5, 6, 7, 8, 9, 10 and 11 in which the yearly averages of the vegetation occurrence 

were calculated and plotted into a separate Tilia graph (Figure 11). It is worth 

noting that Jeffries (2008) eighteen year macrophyte vegetation dataset provides 
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detail on what types of vegetation were in the constructed ponds but does not 

record the vegetation in or around the field. 

5.1.4.3 Observational data 

The observational data by Jeffries (unpublished data) recorded the occurrence of 

certain vegetation abundances within the field site of Low Hauxley Nature 

Reserve. The high abundance of Epilobium were recorded in several years 

around the SNP SWB, and Phragmites was also noted, however no date was 

recorded. 

5.1.4.4 Crop records (1996-2011) 

The crop records were sourced from the owner of the fields which provides crop 

names and the year they were planted in the field next to the study site. There 

are seven years (1994, 1995, 1999, 2007, 2012, 2013, 2014) which do not have 

any crop information. This crop record section of the vegetation datasets, 

observational data and macrophyte vegetation monitoring, contain calendar 

dates and abundances of when taxa were present in and around the field site 

which were compared with taxa in the pollen assemblage. The remaining section 

of the vegetation dataset was the vegetation mapping which took place in 2014 

and is detailed in section 5.1.6.  

 

5.1.5 Modern pollen rain  

Modern pollen rain was measured over 9 months; January to September (2014). 

Eight pollen traps, four Tauber-style and four Behling-Style (Pollen Monitoring 

Programme, 2003; Giesecke et al., 2010; Jantz et al., 2013) were constructed 

following the designs in Figure 7 A and B respectively. These were distributed 

randomly over the field site in four locations; one of each style was positioned by 

the side of one another to capture the modern pollen rain. There were two 

different types of traps to identify which style worked better in this environment. 

Although only two traps were required, six extra traps were set up to see if there 

was any difference in the pollen rain within the same field and also as a 

precautionary measure if some traps were destroyed by floods. The traps 

recorded the flowering season between the end of January to September (2014). 

The traps were sampled at the end of September and were checked twice before 

the end of the summer season to make sure there was no damaged or 
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obstruction. Both the Behling and Tauber traps were repaired once in March 2014 

as the covering mesh was destroyed potentially by sea birds. They were left for 

four months over the summer and when checked again, there were a very large 

amount of terrestrial gastropod molluscs (slugs) in all of the Tauber and two of 

the Behling traps. These samples were not suitable to be processed due to the 

high level of contamination. Therefore, only the one Behling trap was processed 

and had very low counts of pollen/spore.  Therefore, to get an idea of the modern 

pollen rain the surface sediment samples (1 cm) from the SNP, RBP P8, and P29 

were used. These were the sediment samples from the cores already extracted 

and consequently underwent the standard palynological preparation procedure. 

 

Figure 7: A: Tauber trap design (Pollen Monitoring Programme, 2003) and B: Cross-

sectional view of the Behling trap design (Jantz et al., 2013). 

 

5.1.6 Vegetation mapping 

The additional vegetation mapping took place in July 2014 and was completed 

as part of the modern pollen rain section of this thesis. Figure 8 shows a 

schematic for the field site with mapping locations and the mapping strategy for 

the vegetation, which was adapted from Bunting (2003). The central point was 

the pollen trap and there were two concentric rings around it (first ring expanding 

2m and the second 4m (Figure 8). The vegetation in each concentric ring was 

very homogenous and only one quadrat was needed to sample the vegetation. 

The 1 m2 quadrat with 10 cm grid wire intervals provided 81 sample points. Each 

A 

B 
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vegetation type was recorded by counting how many crosshairs it covered and 

was then converted into percentages. The plant nomenclature followed Stace 

(1997). This process was completed around all four pollen trap locations and an 

extra quadrat was recorded in the 4m concentric ring at vegetation mapping 

location 3 as there was a clear change in vegetation types. 

This methodology provided distance measurements of the vegetation types 

around each pollen trap which aimed to identify the distance weighted abundance 

of pollen taxa. However, since the pollen traps did not yield the information 

expected, the vegetation mapping data was used to compare with the pollen 

surface samples from the sediment cores from SNP, RBP, P 8 and P 29. To make 

the vegetation data collected through this methodology comparable to the pollen 

data from the surface sediment samples, the counts from each quadrat around 

the same mapping location were added together and made a percentage so there 

was one value for each of the four locations in the field (see Figure 8 for 

locations).  



 

 

 

3
3 

 

Figure 8: Schematic of the field site with locations of the vegetation mapping points (same as pollen trap locations) and a diagram of sampling 

strategy for mapping the field vegetation (adapted from Bunting, 2003). 
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5.1.7 Carbon and nitrogen concentrations 

The C/N ratios of the SWB sediments are used as a proxy to indicate change 

from whether the biomass has originated from algae or macrophyte related 

biomass (Meyers & Ishiwatari, 1993; Smol, 2002). Carbon and nitrogen 

concentrations were determined using a FLASH 2000 CHNS/O Analyser. The 

sub-samples were weighed to 4-5g dry-weight, wrapped in aluminium and put 

through the analyser. A blank sample was put through the analyser every ten, 

followed by a triplicate sample to check on accuracy. Carbon and nitrogen values 

were shown in ratios and displayed on a line graph so the fluctuations could be 

clearly identified throughout the sediment depths. C/N ratios indicate where 

biomass has come from, algal or macrophyte, therefore comparing the ratio 

fluctuations with vegetation assemblages could potentially infer and/or backup 

possible dates within the sediment core profiles.  

5.1.8 Rainfall record: Boulmer weather station 

The rainfall dataset was obtained from the British Meteorological weather station 

at Boulmer, Alnwick (Ordnance Survey NU 253 142) and covers 1994-2014. This 

is the closest weather station to Low Hauxley and is 11.0 miles North of Low 

Hauxley at 55° 25’ 22’’ N, 1° 36’ 3’’ W. The data was displayed as a line graph 

that showed annual fluctuation of rainfall and was visually compared with the 

fluctuations in wet indicator species in vegetation and testate amoebae. The data 

was also part of the compilation of datasets (section 5.2.4) to support 

interpretations. 
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5.2 Data processing 

5.2.1 Palynological analysis 

A pollen percentage diagram was completed for SNP, RBP, P 8 and P 29 using 

TILIA and TILIA GRAPH (Grimm, 1990). Pollen and spores were identified using 

the Northumbria University pollen reference collections and the following 

literature: Moore & Webb (1978), Faegri & Iversen (1989), Beug (2004), Willard, 

1989; Wichlen et al., 1999; Blackmore et al., 2003; Tweedle et al., 2005; Zanni & 

Ravazzi, 2007; Demske et al., 2013. Pollen grains and spores were counted to > 

300 per slide (excluding Lycopodium) apart from samples which had an 

insufficient number of grains (not enough in the sediment sample) and were not 

included (SNP 1, SNP 4, SNP 12 & SNP 19). The pollen and spore counts from 

each slide (each sub-sample depth) were entered into a Tilia data sheet and taxa 

assigned an individual code and grouped. Pinus was given an individual code so 

the percentage calculation could be separate from the other taxa and calculated 

as part of the total pollen sum. This was because the number of Pinus pollen in 

the sub-samples were over-represented and would cause the other pollen taxa 

not to be displayed clearly in the percentage diagram. CONISS was used to 

define the pollen stratigraphical zones (Grimm, 1987). The pollen concentrations 

for each sub sample were calculated using the Lycopodium (spike medium) 

counts and sample quantity. Once these four data sheets were completed, a Tilia 

graph of the pollen percentage data and concentrations was constructed (Figure 

18, Figure 19, Figure 20 & Figure 21). The pollen sum used to calculate the 

percentages displayed in the diagram is the total pollen sum excluding Pinus. The 

pollen taxa were grouped into trees and shrubs, herbs, crops, aquatics, and 

vascular plants. The pollen taxa within each group where chosen by their plants’ 

known ecological preferences such as Phragmites and Lemna minor (common 

duckweed) requiring wet habitats (Swan, 1993; Preston et al., 2002).  
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5.2.2 Testate amoebae analysis 

The morphology of testate amoebae can differ between geographical locations 

(Bobrov et al., 1999; Mitchell et al., 2008) as there is not a unanimous 

identification key for taxonomic identification, therefore species separation 

remains difficult. Even within the same population there is high morphological 

variability of test size relatable to environmental factors such as food source, 

temperature and insecticides (Mitchel et al., 2008). Therefore, since there is 

limited testate amoebae research in the UK especially in pond environments, 

species level identification was limited. 

 

Figure 14 shows the species identified in this research and there is a key 

explaining their habitat preferences. This information was compiled from several 

testate amoebae identification keys (Corbet, 1973; Jax, 1985; Charman et al., 

2000; Montoya et al., 2010; Glime, 2013). 

To qualitatively compare testate amoebae assemblages from each SWB, the 

counts were entered into Tilia, each testate amoebae assigned a code and 

grouped according to their habitat preference. Percentages were calculated from 

the total sum of testate amoebae and were displayed in a percentage diagram 

(Figure 15, Figure 16 & Figure 17). CONISS was also performed to delimit zones 

and shown on the graph. Displaying the testate amoebae in the same format as 
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the pollen data allowed clear visual comparison of the occurrences throughout 

each pond sediment core in relation to the pollen occurrences. 

5.2.3 Principle Components Analysis (PCA) 

Multivariate data analysis in the form of PCA analysis was performed on the three 

(SNP, RBP and P 8) pollen and testate amoebae assemblages (Figure 26) and 

the eighteen-year vegetation record. This was to explain what environmental 

variables were contributing to the distribution of taxa within the dataset and 

identify similarities in the structure of each dataset from the SWB types. These 

similarities, identified by clustering of variables in the datasets were compared 

between PCA analyses to explain different representation of taxa in SWB types 

within the same field. The clusters identified from these PCA analyses would then 

aid the explanations and justifications of matching certain depths with the years 

by knowing the associations between specific pollen and testate amoebae. 

PCA transforms the dataset from a set of correlated variables to a set of 

uncorrelated variables derived from sets of linear combinations of the original 

dataset in attempt to describe the variation, reduce dimensionality and represent 

the data graphically by detecting structure (Everitt & Dunn, 2001). The PCA was 

performed for the vegetation data by first averaging each species abundance in 

the thirty ponds over one year and then normalising the data in Plymouth 

Routines In Multivariate Ecological Research (PRIMER) 6, (6.1.13) (Clarke & 

Warwick, 2001) to reduce the dominant contribution of abundant species. The 

data was then transferred into PAlaeontological STatistics (PAST) 3.02 (Hammer 

et al., 2001) to compute the PCA. There were then three PCA analysis computed 

for each of the SWB (SNP, RBP and P8). Since the pollen and testate amoebae 

data were derived from the same SWB sediment core, they were kept together 

for the analysis to see if clustering of taxa would indicate if certain environmental 

variables were affecting specific groups of taxa. The combined pollen and testate 

amoebae percentage data were entered into PAST to display the multivariate 

ordination as a PCA scatter plot.  

5.2.4 Pollen surface samples  

The aim of this section of the project was to identify if the SWB types recorded a 

similar pollen assemblage, and to further explore the relationship between the 

locations of pollen deposition to the vegetation mapping locations. The pollen 

counts for the first 1 cm of each sediment core were converted to a percentage. 
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This was completed for all SWB’s surface sediment samples (SNP, RBP, P8 and 

P29) and displayed in one table ( 

Table 1). This permitted the comparison of taxa occurrence between the pollen 

surface samples with the four vegetation mapping locations.  

5.2.5 Vegetation mapping 

The results for the four vegetation mapping locations were displayed in a table 

(Table 2). The sample point counts were converted to percentages for each taxon 

to compare with the pollen surface samples. The detailed nature of the vegetation 

mapping recorded species and genus level for the majority of vegetation. 

However, some of the pollen surface samples only had family level identification 

and therefore a percentage of each family occurrence at all four locations of 

vegetation mapping were calculated, to allow comparison.  

5.2.6 Comparison of the pollen surface samples and vegetation mapping 

locations 

To compare the SWB’s pollen surface samples ( 

Table 1) and vegetation mapping locations (Table 2), the percentage occurrence 

of taxa in both the pollen and vegetation, were explained in relation to the 

distance of the sampling point to the surface sample (Figure 8) each other. The 

percentage of each pollen taxa in the surface sediment samples was discussed 

in relation to each surface sample to identify the differences in pollen 

representation between surface samples. Then the pollen taxa in the four 

different surface samples were compared with the four vegetation mapping 

locations, to identify which pollen taxa were represented in which location. The 

pollen taxa which were not present in the surface samples but present in the 

vegetation mapping were also noted. These comparisons gave insight into the 

pollen representation of certain taxa and would then be discussed in relation to 

their dispersal ability and grain morphology. 

5.2.7 Synthesis of different datasets to identify datable events 

This project aims to retrieve possible dates for the SWB sediment cores through 

matching the occurrence of pollen taxa and vegetation. The four sediment cores 

from four different SWBs in the same field provide the opportunity to critically 

compare the pollen assemblages and assess the ability of high resolution pollen 

analysis on short sediment cores. In order to see the performance of high 
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resolution pollen analysis on short SWB sediment cores, the pollen assemblages 

were compared. To compare the similarities in pollen taxa fluctuations between 

the SWBs, the percentage pollen diagrams for each SWB were used. The similar 

percentage occurrence of the same taxa was highlighted in rings and joined 

together with lines to clearly show the similarities in the pollen records (Figure 

31).  

A brief description of the vegetation monitoring record was entered into a table 

with the corresponding year, along with the rainfall and crop record for the same 

year. The matches of the pollen assemblages with the vegetation record were 

entered into the same row to highlight the links between the datasets. This 

showed the date at which the vegetation occurred along with the depth at which 

the pollen occurred in the sediment core. Also in the table were the C/N ratios 

and descriptions of the testate amoebae at that depth with supporting information 

to corroborate the depth and date match.  
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6 Results 

This section firstly presents the results of the modern pollen surface samples and 

vegetation mapping for 2014 followed by the annually monitored macrophyte 

vegetation of thirty constructed ponds collected by Jeffries (2008). This data is 

displayed by showing the assemblages from all the thirty ponds, the vegetation 

recorded in P8 and the vegetation of the ponds close to P8. The next section 

presents the observational rainfall data from Boulmer weather station, Alnmouth, 

U.K. followed by the C/N ratios for each SWB (SNP, RBP P8 and P29). The 

subsequent sections display results from the SWBs which include testate 

amoebae assemblages (SNP, RBP and P8) and pollen assemblages (SNP, RBP, 

P8 and P29). Following this, the crop records from the surrounding fields are 

explained. The PCA of testate amoebae and pollen for the SNP, RBP and P8 are 

then presented with the PCA of the vegetation monitoring (Jeffries, 2008) and 

critically compared. 

6.1 Pollen surface sediment samples and vegetation mapping 

This section provides the results of the pollen surface samples and vegetation 

mapping locations which gives an insight into the connections between pollen 

and vegetation occurrence within the field.  

6.1.1 Pollen surface sediment samples 

The pollen surface samples are displayed in percentage occurrence in the first 1 

cm for all of the four SWBs in  

Table 1. The greyed out cells represent the absence of taxa for that surface 

sample and illustrates a varied distribution across all SWBs. The tree taxa, Abies 

(fir), Pinus and Salix (willow) are represented in all of the surface samples and 

only Acer is present in one. Alnus (birch), Betula pendula, are not present in the 

SNP. Cyperaceae and Poaceae are present in all SWB samples, with the SNP 

having the highest percentage occurrence of 27.39%. The RBP has the highest 

percentage occurrence of Poaceae at 28.74% and Phragmites at 10.53% than 

the other SWBs. Phragmites is not recorded in P29. Asteraceae does not occur 

in the SNP but does in the other three, the highest in P8 at 4.29%. Brassicaceae 

(mustard family) and Chenopodium (goosefoot family) are evenly represented 

among all four surface sediment samples. Epilobium occurs in SNP and RBP at 

0.87% and 0.13% respectively. Lemna minor occurs in very low percentage 
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(<3.91%) in all but P29 surface sample. There are some pollen taxa which only 

occur in one surface sediment sample. The taxa only recorded in the SNP are 

Athyrium cf. filix-femina (ladyfern) (1.30%), Potentilla rupestris (rock cinquefoil) 

(0.43%), Schoenoplectus (bulrush) (1.74%), Sparganium-type (0.87%) and 

Typha (cattail) (1.30%). The taxa only recorded in the RBP are Montia (lettuce) 

(0.94%) and Typha latifolia (broadleaf cattail) (0.27%). Only the P8 records Beta 

vulgaris-type (beetroot) (1.13%), Cardamine (bittercress) (0.57%) Lycospora at 

1.42% and Typha minima (dwarf bulrush) (0.28%). There are two crop taxa 

evident in the surface samples, Secale cereale (rye) and Beta vulgaris-type (only 

in P8). Secale cereale is evenly represented in all samples with the highest being 

in the SNP, RBP, P8 then P29. Indeterminable grains only occur in the SNP 

(3.04%) and RBP (1.62%).  

6.1.2 Vegetation mapping 2014 

The vegetation mapping displayed in Table 2 shows each mapping location and 

the percentage total of each location. Each of the four mapping locations within 

the same field has a different collection and percentage coverage of vegetation 

types. There are no tree or crop taxa recorded in the vegetation mapping as they 

were completed around the pollen trap locations at <4m. Within each mapping 

location the changes in vegetation coverage between 2m and 4m quadrats can 

be significantly large. VM3 had two quadrats recorded in the 4m concentric ring 

due to a very heterogeneous coverage. There is a collection of taxa which did not 

occur in the same two locations (VM1 and VM2) but did in the other two (VM3 

and VM4) Caryophyllaceae, Ranunculaceae and Rosaceae (rose family) are not 

recorded in VM1 or VM2 but are in VM3 and VM4 at low coverage (<2.91%). 

Leptodictyum riparium occurs in the same pattern but has a substantially higher 

coverage in VM4 (10.53%) than VM3 (5.64%). Asteraceae is the highest 

abundance in VM2 at 22.01%, the next highest being only 8.13% in VM4. 

Cyperaceae is the highest in VM4 at 34.45% (predominantly from Carex ortubae 

at 31.58%) and VM1 at 22.12% (all from Eleocharis). There is a large difference 

between these two locations as VM2 does not have any and VM3 only has 1.09%. 

There is no Schoenoplectus recorded in any locations. Fabaceae is recorded in 

all locations but at various percentage coverages. VM4 at 36.84% is the highest 

followed by VM3 (17.82%), the VM2 (14.15%) and VM1 (3.10%). Epilobium 

palustre was not recorded in VM2 and was the highest in VM4 (1.44%). VM1 and 
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VM3 recorded very low percentage coverages of 0.44% and 1.9% respectively. 

Poaceae is high in VM1 (24.34%), VM2 (28.30%) and VM3 (37.09%) but very low 

in VM4 (2.87%). Phragmites contributes 0.18% to VM3 and 1.44% in VM4 and is 

not recorded in VM1 and VM2. Lemna minor only occurred in VM 3 at very low 

0.18%. Ranunculaceae is only recorded in VM3 (2.91%) and (1.91%).  

Table 1: Pollen surface samples of the SNP, RBP, 8 and P29 where the percentage of 

each grains in the first 1 cm layer of sediment is displayed with the palynological taxon 

name. The grey filled cells are the taxa which did not occur in the sediment sample and 

the names in bold are the taxa which can be compared with the vegetation mapping data. 

Palynological taxon SNP % RBP % P8 % P29 % 

Abies 0.43 0.54 0.28 0.99 

Acer 1.30    

Alnus  1.21 3.40 1.48 

Asteraceae  0.13 4.39 0.99 

Athyrium cf. filix-
femina 

1.30    

Beta vulgaris-type   1.13  

Betula pendula  2.56 3.40 0.74 

Brassicaceae undiff. 0.87 0.13 1.27 0.74 

Cardamine   0.57  

Caryophyllaceae 1.74   0.25 

Chenopodium 0.87 0.40 0.57 0.99 

Cyperaceae undiff. 27.39 8.91 7.37 3.69 

Epilobium 0.87 0.13   

Fabaceae    0.99 

Lemna minor 3.91 2.02 0.14  

Lycospora   1.42  

Montia  0.94   

Poaceae 3.91 28.74 6.09 6.16 

Phragmites 5.65 10.53 1.27  

Pinus 34.78 30.63 59.92 71.43 

Plantago  0.13 0.28  

Potentilla rupestris 0.43    

Ranunculus    0.25 

Rosaceae 0.87 0.40   

Rumex 1.30 6.75 0.28  

Salix 3.04 0.94 3.97 4.93 

Schoenoplectus  1.74    

Secale cereale 2.61 1.75 1.13 0.99 

Sparganium-type 0.87    

Typha 1.30    

Typha latifolia  0.27   

Typha minima   0.28  

Indeterminable 3.04 1.62   

Unknown 1.74 1.21 2.83 5.42 
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Table 2: Vegetation mapping 2014 data. The four vegetation mapping locations with the percentage total for each taxon in each quadrat are displayed. 

For comparison with the pollen surface samples, the total percentage of each family are displayed. Only the grey-filled cells are the families which also 

occur in the pollen surface samples.  

 Vegetation mapping 1 Vegetation mapping 2 Vegetation mapping 3 Vegetation mapping 4 

Description Low variety of vegetation 
taxa. Multiple storeys. 

Same variety of species in 
Vegetation mapping 1. 

Three sections of vegetation types. 
Half of VM3 was the same and two 
quarters were both different. 

Glauca sedge dominant 
around the mapping 
location. 

Vegetation Family 2m 4m VM1 
Total 

% 

TOTAL 
Family 

% 

2m 4m VM2 
Total 

% 

TOTAL 
Family 

% 

2m 4m 
Q1 

4m 
Q2 

VM3 
Total 

% 

TOTAL 
Family 

% 

2m 4m VM4 
Total 

% 

TOTAL 
Family 

% 

Lemna Araceae 0 0 0.00  0 0 0.00  1 0 0 0.18  0 0 0.00  

 Araceae    0.00    0.00     0.18    0.00 

Jacobea Asteraceae 10 0 4.42  5 0 1.57  1 0 0 0.18  9 0 4.31  

Cirsium arvense  Asteraceae 0 0 0.00  25 40 20.44  24 0 0 4.36  0 0 0.00  

Onopordum 
acanthium  

Asteraceae 0 0 0.00  0 0 0.00  3 0 0 0.55  0 0 0.00  

Erigeron Asteraceae 0 0 0.00  0 0 0.00  3 0 0 0.55  0 1 0.48  

Achillea  Asteraceae 0 0 0.00  0 0 0.00  1 0 0 0.18  2 1 1.44  

Taraxacum  Asteraceae 0 0 0.00  0 0 0.00  1 0 0 0.18  0 1 0.48  

Centaurea   Asteraceae 0 0 0.00  0 0 0.00  1 0 0 0.18  3 0 1.44  

  Asteraceae    4.42    22.01     6.18    8.13 

Myosotis laxa  Borginaceae 0 0 0.00  0 0 0.00  3 0 0 0.55  0 0 0.00  

Myosotis 
scorpioides  

Borginaceae 0 1 0.44  0 0 0.00  1 0 0 0.18  0 0 0.00  

  Borginaceae    0.44    0.00     0.73    0.00 

Lychnis flos-
cuculi  

Caryophyllaceae 0 0 0.00  0 0 0.00  6 0 0 1.09  0 0 0.00  

Stellaria media Caryophyllaceae 0 0 0.00  0 0 0.00  1 0 0 0.18  1 0 0.48  

  Caryophyllaceae    0.00    0.00     1.27    0.48 

Carex glauca Cyperaceae 0 0 0.00  0 0 0.00  4 0 0 0.73  5 0 2.39  

Carex ortubae Cyperaceae 0 0 0.00  0 0 0.00  1 0 0 0.18  0 66 31.58  
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Vegetation Family 2m 4m VM1 
Total 

% 

TOTAL 
Family 

% 

2m 4m VM2 
Total 

% 

TOTAL 
Family 

% 

2m 4m 
Q1 

4m 
Q2 

VM3 
Total 

% 

TOTAL 
Family 

% 

2m 4m VM4 
Total 

% 

TOTAL 
Family 

% 

Eleocharis  Cyperaceae 0 50 22.12  0 0 0.00  1 0 0 0.18  0 1 0.48  

  Cyperaceae    22.12    0.00     1.09    34.45 

Equisetum 
arvense   

Equisetaceae 50 0 22.12  20 30 15.72  1 0 0 0.18  1 0 0.48  

  Equisetaceae    22.12    15.72     0.18    0.48 

Trifolium 
pratense 

Fabaceae 0 0 0.00  0 0 0.00  0 0 0 0.00  10 0 4.78  

Trifolium repens Fabaceae 5 0 2.21  0 0 0.00  1 1 0 0.36  0 0 0.00  

Trifolium  Fabaceae 0 0 0.00  8 15 7.23  1 38 0 7.09  0 3 1.44  

Trifolium 
campestre  

Fabaceae 0 0 0.00  0 0 0.00  24 0 0 4.36  25 0 11.96  

Vicia  Fabaceae 0 0 0.00  12 0 3.77  1 0 0 0.18  0 0 0.00  

Vicia cracca  Fabaceae 1 1 0.88  0 0 0.00  1 0 0 0.18  0 0 0.00  

Lotus 
corniculatus  

Fabaceae 0 0 0.00  10 0 3.14  31 0 0 5.64  1 38 18.66  

  Fabaceae    3.10    14.15     17.82    36.84 

Cicendia 
filiformis  

Gentianaceae 0 0 0.00  0 0 0.00  1 0 0 0.18  1 0 0.48  

 Gentianaceae    0.00    0.00     0.18    0.48 

Juncus effusus  Juncaceae 0 0 0.00  0 0 0.00  3 0 0 0.55  0 0 0.00  

Juncus inflexus  Juncaceae 0 0 0.00  0 0 0.00  64 0 37 18.36  0 1 0.48  

Juncus 
articulatus  

Juncaceae 1 50 22.57  0 0 0.00  3 0 0 0.55  0 0 0.00  

Juncus 
conglomeratus 

Juncaceae 0 0 0.00  0 0 0.00  1 0 0 0.18  0 1 0.48  

  Juncaceae    22.57    0.00     19.64    0.96 

Prunella Lamiaceae 0 0 0.00  0 0 0.00  3 1 0 0.73  1 0 0.48  

Epilobium 
palustre  

Lamiaceae 0 1 0.44  0 0 0.00  2 0 0 0.36  0 3 1.44  

  Lamiaceae    0.44    0.00     1.09    1.91 

Euphrasia Orobanchaeae 0 0 0.00  0 0 0.00  1 0 0 0.18  1 1 0.96  

Odontites 
vernus  

Orobanchaeae 0 0 0.00  0 0 0.00  1 0 0 0.18  1 0 0.48  
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Vegetation Family 2m 4m VM1 
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% 
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Family 

% 

2m 4m VM2 
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% 

Total 
Family 

% 

2m 4m 
Q1 

4m 
Q2 

VM3 
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% 

TOTAL 
Family 

% 

2m 4m VM4 
Total 

% 

TOTAL 
Family 

% 

Rhinanthus 
minor 

Orobanchaeae 1 0 0.44  0 0 0.00  1 0 0 0.18  0 0 0.00  

  Orobanchaeae    0.44    0.00   
 

  0.55    1.44 

Plantago 
lanceolata 

Plantaginaceae 0 0 0.00  25 30 17.30  6 16 0 4.00  0 1 0.48  

Veronica  Plantaginaceae 0 0 0.00  0 0 0.00  1 0 0 0.18  0 1 0.48  

  Plantaginaceae    0.00    17.30     4.18    0.96 

Holcus  Poaceae 50 0 22.12  20 10 9.43  3 0 37 7.27  2 0 0.96  

Poa Poaceae 0 0 0.00  10 50 18.87  68 64 28 29.09  1 0 0.48  

Agrostis 
stolonifera  

Poaceae 0 5 2.21  0 0 0.00  3 0 0 0.55  0 0 0.00  

Phragmites  Poaceae 0 0 0.00  0 0 0.00  1 0 0 0.18  0 3 1.44  

  Poaceae    24.34    28.30     37.09    2.87 

Rumex  Polygonaceae 0 0 0.00  3 5 2.52  4 0 0 0.73  0 0 0.00  

  Polygonaceae    0.00    2.52     0.73    0.00 

Ranunculus  Ranunculaceae 0 0 0.00  0 0 0.00  3 12 0 2.73  0 3 1.44  

Ranunculus 
lingua  

Ranunculaceae 0 0 0.00  0 0 0.00  1 0 0 0.18  0 1 0.48  

  Ranunculaceae    0.00    0.00     2.91    1.91 

Argentina 
anserina  

Rosaceae 0 0 0.00  0 0 0.00  1 0 0 0.18  0 1 0.48  

Filipendula 
ulmaria  

Rosaceae 0 0 0.00  0 0 0.00  1 0 0 0.18  0 0 0.00  

  Rosaceae    0.00    0.00     0.36    0.48 

Galium palustre  Runiaceae 0 0 0.00  0 0 0.00  1 0 0 0.18  0 0 0.00  

  Runiaceae    0.00    0.00     0.18    0.00 

Leptodictyum 
riparium  

Moss 0 0 0.00  0 0 0.00  31 0 0 5.64  2 20 10.53  

  Moss    0.00    0.00     5.64    10.53 
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1.1.1.1 Comparison of the vegetation recorded in 2014 at the four mapping 

locations with the pollen surface samples. 

With reference back to Figure 8 the pollen surface sample results do reflect the 

vegetation mapping locations. Cyperaceae percentages are high at VM1 and 

SNP which are the closest together on the field site. Similarly, Poaceae is present 

in all pollen surface samples and vegetation mapping locations. Phragmites 

highest presence is in the RBP pollen surface sample and only occurs in the two 

vegetation mapping locations (VM3 & VM4) closest to that SWB. Ranunculus is 

also only present in one location for the mapping and surface samples which is 

VM3 and P29 which are relatively close. The SNP pollen surface sample 

singularly records taxa more wet indicator taxa.  
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6.2 Vegetation assemblages from the constructed ponds  

6.2.1 Macrophyte vegetation assemblage of the thirty constructed ponds 

The following results are from the vegetation within all of the thirty constructed 

ponds.  There are four zones in the graph for the thirty ponds (Figure 9Error! 

Reference source not found.), 1a, 2a, 3a, and 4a split by CONISS.  

Zone 1a contains 1995-1999 where the aquatic habitat group percentages 

dominate. In 1995, the year in which the ponds were constructed, Filamentous 

algae (41.6%) and Leptodictyum riparium (54.8%) have the highest percentages. 

In 1996 Callitriche has its only occurrence in the record at 15.1%. In 1997 there 

is 35.8% of Agrostis/Alopecurus which appears as a peak in the whole record. 

Similarly peaking during the same year is Myosotis spp., Rumex crispus and 

Ranunculus lingua but none exceeding 10%. A peak in Chara vulgaris occurs in 

this zone during 1998 at 16%, its second highest in the assemblage and 

Leptodictyum riparium has its lowest percentage occurrence of <20%. Juncus 

inflexus and Glyceria fluitans illustrate an increase from 1998, and Eleocharis 

palustris from 1999. Between 1997 and 1999 in zone 1a, Agrostis/Alopecurus 

continues to decrease and a sharp increase in Leptodictyum riparium at 29.2%.  

Zone 2a is a relatively small zone, covering 2000 and 2001 which is dominated 

by vegetation indicative of an aquatic habitat. Agrostis/Alopecurus exhibits <3% 

coverage while Eleocharis palustris has a constant coverage similar to Juncus 

inflexus and Ranunculus aquatilis. In 2000, Chara vulgaris and Glyceria fluitans 

has their highest peaks at 25.4% and 19.1% respectively.  

Zone 3a, covering 2002-2011 is the largest zone. The percentages of 

Agrostis/Alopecurus fluctuate, with the highest percentages being in 2002 

(17.6%) 2007 (19.2%) and 2010 (22.5%). Its lowest percentage during 2005 

(7.8%) occurs with a peak in Eleocharis palustris (22.8%) and Ranunculus 

aquatilis (11.8%). There is no Callitriche sp. or Chara vulgaris present in this 

zone, which were present in the previous zone 2a. Filamentous algae peaks once 

at 2004. Leptodictyum riparium percentages remain relatively consistent.  

Zone 4a contains 2012-2013 where there is a wide distribution of damp to aquatic 

habitat and aquatic habitat vegetation. Agrostis/Alopecurus has a very low 

percentage of 4.8%., Filamentous algae peaks in 2012 at 13.7% and 

Leptodictyum riparium percentages remain high at 54.2%. 
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6.2.2 Macrophyte vegetation assemblage of Pond 8 

Figure 10 displays the vegetation assemblage of Pond 8. Zone 1 extends from 

1995-2006 and illustrates more wet habitat vegetation such as Callitriche, Chara 

vulgaris, Ranunculus aquatilis and filamentous algae. There is damp to aquatic 

taxa present but only peaks in Agrostis and Juncus articulatus. Zone 2a illustrates 

a sharp increase in Leptodictyum riparium which has a constant presence 

throughout the whole zone, which spans 2006-2013. The presence of vegetation 

which prefer wet or dry habitats are more pronounced in the diagram but largely 

represent a similar patter as all of the ponds records represented as one (Figure 

9).  

6.2.3 Macrophyte vegetation assemblage of ponds close to P 8 

Displaying only the vegetation close to P8 (Figure 11), highlights the small and 

sensitive changes in vegetation throughout the SWBs. The data within this 

diagram were taken from ponds close to P8 which were 5, 6, 7, 8, 9, 10 and 11. 

These are subject to being joined together via flood waters and therefore pollen 

grains are subject to water-borne transportation. Changes in the percentage 

coverage of all the vegetation are more noticeable in Agrostis/Alopecurus, 

Eleocharis palustris, Schoenoplectus lacustris and Filamentous algae. There are 

two main zones 1a and 2a which shows a shift from aquatic habitat species high 

percentage abundance in zone 1, to damp to aquatic habitat species in zone 2. 

Although most taxa remain a similar signal to that of Figure 9, the transition 

between habitat types (very wet during the colonising years to cyclic wet/dry 

years) can be identified clearer. There is not a considerable amount of change in 

percentages of different vegetation over the years. However, displaying the data 

from a selection of ponds within the thirty does highlight the specific changes in 

vegetation present, but no major changes. 
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Figure 9: Macrophyte vegetation percentage diagram of the vegetation from all thirty constructed ponds within the field collected by Jeffries (2008). The 

yearly averages of the vegetation occurrence were calculated into percentages and plotted on this graph. Cardamine, Carex glauca, Carex ortubae, 

Equisetum arvense, Mentha aquatic, Myosotis, Plantago major, Potentilla anserina, Pulicaria dysenterica, Ranunculus repens, Rumex crispus, Trifolium 

repens, Alisma plantago aquatic, Callitriche, Schoenoplectus lacustris, and Unid. seedling was exaggerated by factor 8. R
e
s
u
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Figure 10: Percentage diagram for the vegetation assemblage from Pond 8 1995-2013 obtained from the same vegetation dataset collected by Jeffries 

(2008). Carex glauca, Cardamine, Equisetum arvense, Myosotis spp., Plantago major, Rumex crispus, Glyceria fluitans and Schoenoplectus lacustris 

are exaggerated by factor 8. The vegetation is grouped into damp to aquatic and wet habitat preferences. The two zones are split using CONISS. 
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Figure 11: Percentage diagram for the vegetation close to Pond 8 obtained from the same vegetation dataset collected by Jeffries (2008). The ponds 

close to pond 8 are 5, 6, 7, 8, 9, 10 and 11 in which the yearly averages of the vegetation occurrence were calculated and plotted into this Tilia graph. 

Cardamine, Equisetum arvense, Myosotis spp., Pulicaria dysenterica, Ranunculus repens, Rumex crispus, Trifolium repens, Alisma plantago aquatic, 

Glyceria fluitans, Schoenoplectus lacustris and Unid. seedling was exaggerated by factor 4.
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6.3 Rainfall record: Boulmer weather station 

The precipitation data from Boulmer weather station (Figure 12) fluctuates 

between 499.3 mm (1996) and 949.4 mm (2012) per year which were the lowest 

and highest recorded rainfall. Between 1996 and 1998 there was a sharp 

increase in rainfall, similar to 2003 and 2005. After 2005 there was a sharp 

decrease, 938.7 mm to 587.9 mm, the most rapid annual decline over the 20-

year period. From 2008 there was an annual cyclic decrease and increase in 

rainfall.  

 

Figure 12: Total rainfall (mm) per year at Boulmer weather station, Alnmouth, 11 miles 

North of Low Hauxley (Met Office, 2015). 

Also from the Met Office (2015) there are records from previous weather events 

(intermittent from 1990-2015), particularly of flooding and record temperatures in 

the UK. This is more of a general description of the weather in the UK, but there 

are some, which refer to the North East of England and can be used in 

conjunction with (Figure 12) to have a clearer understanding of the weather 

affecting the field site during certain years. During 2003 there were record 

temperatures in January and August and was generally a warm, dry and sunny 

year. In 2005 there was heavy rain and flooding across northern England. The 

following year in 2006, the UK had record temperatures and below average 

rainfall across England. The next heavy rainfall affecting the north east of the UK 

was in September 2008 and 2012. In 2011 and 2013, a persistent lack of rainfall 

and warm temperatures were recorded for England.   
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6.4 C/N ratios of SNP, RBP, P 8 and P 29 

The C/N ratios (Figure 13) of SNP vary from the highest at 26.03 (19 cm) to 17.01 

(16 cm). The sharpest increase occurs between 16 cm (17.01) and 12 cm (24.21). 

Between 11 cm and 5 cm the C/N ratios fluctuate between 22.25 and 22.71 

respectively which is the least range through the whole core. Between 4 cm 

(20.65) and the surface of the core 1 cm (24.97) there are two sharp increases 

and decreases of C/N ratios. The RBP C/N ratios generally increase from the 

base of the core to the surface. Ratios do not fall below 18.02 (9.5 cm) and do 

not exceed 26.49 (1.5 cm). There is one sharp decrease at 4 cm to 22.97 from 

24.50 to 24.65 but is still not a major change in C/N ratio. The base of P8 at 5.5 

cm has the lowest value of 15.04 increasing to the highest value at 22.16 (4 cm.). 

Within the centre of the core there is a decrease from 22.16 (4 cm) to 17.36 (3 

cm) increase (18.89 at 2.5 cm) and decrease to 16.78 (1.5 cm). P29 has a general 

increase with no major fluctuations possibly cause by low sampling resolution in 

the 6 cm core. There are no similarities in the trends illustrated between any of 

the SWBs regarding their C/N ratios, showing each SWB states over the years 

have been different. The consistently highest ratios (>20) are in the SNP followed 

by the RBP and the two constructed ponds are the lowest (P29 19.01). 
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Figure 13: Carbon/Nitrogen ratios for each SWB plotted against the depth (cm). A: SNP at 1 cm intervals. B: RBP at 0.5 cm. C: P8 at 0.5 cm and D: 

P29 at 0.5 cm. 
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6.5 Sediment core testate amoebae assemblages 

In this section the testate amoebae assemblages from SNP, RBP and P 8 are 

displayed. The descriptions of the lithology for each pond are described in the 

pollen assemblages section. 

6.5.1 Key for testate amoebae 

The identification key for the testate amoebae (Figure 14) shows the images of 

the testate amoebae found in this study and were then identified using a selection 

of reference material from Corbet, (1973); Jax, (1985); Charman et al., (2000); 

Montoya et al., (2010) and Glime, (2013). Also shown in the key is the teeth from 

Chironominae (subfamily of Chironomidae), tardigrade eggs, a non-identified 

non-pollen palynomorph and the reworked Lycospora spore.   

 

Figure 14: A-I Light Microscope illustrations of testate amoebae in the SWB sediments. 

A: Arcella. B: Assulina. C: Nebela. D: Centropyxis. E: Hyalosphenia F: Bullinaria G: 

Euglypha H: Pyxidicula. I: Placocista. J-N: Non-Pollen Palynomorphs present throughout 

the sediment cores of all ponds. J: Unknown. K & L: Teeth from insect in the 

Chironominae, indicative of a fishless environment (Smol, 2002) M: Non-identified (also 

in Montoya et al., 2010). N: Possibly Tardigrada egg morphotypes as found in Montoya 

et al., (2010). O: Lycospora from reworked from the Carboniferous as the site is on a 

previous open cast coal mine. 
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Arcella: Associated with very wet conditions, most often with standing water (Charman 

et al., 2000). Identified in three different habitats; in aquatic sediment, in aquatic 

macrophytes and in plankton (Alves et al., 2010) 

Assulina: Dry to damp conditions. A. muscorum is regarded as cosmopolitan and exists 

in greater numbers in dry conditions whereas A. seminulum is hygrophilous (growing in 

damp conditions) also occurring in bog hummocks (Charman et al., 2000). 

Bullinaria: Regarded by most authors as extreme xerophile (extremely dry conditions). 

Indicator of a dry habitat (Charman et al., 2000). 

Centropyxis: Most taxa within this genus are typical of hygrophilous environments in 

submerged and wet mosses and tolerate planktonic, aquatic macrophytes and aquatic 

sediment habitats (Charman et al., 2000; Alves et al., 2010). 

Euglypha: Moderately wet preferable to standing water (Charman et al., 2000). 

Hyalosphenia: Unable to identify down to species level due to limited literature 

descriptions. Most species within the genus prefer damp to wet conditions (Charman et 

al., 2000). Identified in aquatic macrophytes and not in any other habitats (Alves et al., 

2010). 

Nebela: Unable to identify down to species level due to limited literature descriptions. 

Most species within the genus prefer damp to wet conditions (Charman et al., 2000).  

Placocista: P. spinosa type is typical of bog pools and/or very wet conditions (Charman 

et al., 2000). 

Pyxidicula operculata: There is little information on the ecology of this species but it is 

reported to be most common on aquatic vegetation in ponds and lakes (Jax, 1985).   
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6.5.2 Semi-natural pond testate amoebae assemblage  

The three zones in the SNP testate amoebae assemblage (Figure 15), zones, 1a, 

2a and 2b are spilt by CONISS. Zone 1a has a wide distribution of taxa habiting 

dry, wet and aquatic vegetation habitats. Zone 2a illustrates the highest 

percentage of Pyxidicula operculata with only 12 cm having the coexisting 

presence of Centropyxis. There is an increasing amount of dry indicator species 

towards the upper part of the zone at 7 cm. Zone 2b has a high occurrence of 

Centropyxis at 6 cm rapidly decreasing as Pyxidicula operculata increases. 

Placocista, indicative of wet environments, shares the same pattern as 

Centropyxis in zone 2b. Dry species of Assulina and Trigonopyxidae occur 

together at 7 cm and 4 cm, near lithology changes. Bullinaria occurs at 5 cm 

between the presence of Assulina and Trigonopyxidae. 

6.5.3 Reed bed pond testate amoebae assemblage  

The RBP testate amoebae assemblage (Figure 16) shows two prominent zones, 

1a and 2a split by CONISS at 4.75 cm. Zone 1a has a low presence of dry testate 

amoebae with only Heleopera from 8.5-7.5 cm. There are no semi aquatic 

indicators. Arcella is the most prominent test indicating wet conditions and as 

Arcella decreases, Placocista occurs. Centropyxis has a steady occurrence from 

8.5-5.5 cm. Zone 2a illustrates a sharp increase in Centropyxis at 4 cm with no 

presence of Arcella. The highest peak of Arcella (2.5 cm) is accompanied by a 

low presence of Centropyxis. Pyxidicula operculata only occurs twice (6.5 cm and 

8 cm) at <20% and occurs with Centropyxis, Placocista, Arcella and Heleopera 

at 12 cm.  Dry species of Heleopera, Trigonopyxidea and Trinema are present 

with wet and aquatic vegetation indicators. 

6.5.4 Constructed pond 8 testate amoebae assemblage 

P8 testate amoebae (Figure 17) zone 1a is the smallest zone having mostly 

aquatic vegetation tests. Zone 1b illustrates an increase in Heleopera, dry 

indicator, as Pyxidicula operculata decreases. Within Zone 2a Arcella, a wet 

indicator, increases gradually peaking at 0.5 cm. Centropyxis and Pyxidicula 

operculata occur simultaneously but not at their highest presence when together. 

Heleopera peaks at 1.5 cm with very low occurrence of any other testate 

amoebae. 
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Figure 15: Testate amoebae percentage diagram of SNP, taken from the same core as the pollen for SNP. There are three zones, 1a, 2a and 2b as 

suggested by CONISS. There are four groups for the testate amoebae, dry, semi aquatic-wet, wet and on aquatic vegetation. 
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Figure 16: RBP Testate amoebae percentage diagram of taken from the same core as the pollen for RBP. The testate amoebae sum is the total sum 

of all the testate amoebae. There are two zones, 1a and 1b as suggested by CONISS. There are four groups for the testate amoebae, dry, semi 

aquatic-wet, wet and on aquatic vegetation. 
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Figure 17: P8 Testate amoebae percentage diagram taken from the same core as the pollen for P8. There are three zones split by CONISS, 1a, 1b 

and 2a. There are three groups for the testate amoebae on this graph, dry, wet and on aquatic vegetation. 
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6.6 Sediment core pollen assemblages 

6.6.1 SNP pollen assemblage 

The SNP lithology section illustrates four changes (Figure 18). The top depth (1-

4 cm) is made up of organic matter, mosses and grasses at a Munsell colour of 

2.5y 3/1, dark brown. From 4-17 cm the core progresses into a dense root system 

mixed with a fine clay sediment texture (Munsell colour 2.5y 4/1, dark reddish 

brown). The bottom depth from 17- 19 cm changes very quickly in texture from 

the section above and is a very thick, dense clay texture (Munsell colour 2.5y 5/1, 

mud brown). There are 41 different pollen taxa in the assemblage excluding 

Lycospora. 

The record can be subdivided into four zones, 1a, 1b, 2a and 2b. Zone 1a has 

peaks of taxa from different groups, which is at the very base of the core. Zone 

1a has a peak of Pinus and Cyperaceae undiff. at the change in lithology at 17 

cm. Poaceae undiff. slightly increases as Cyperaceae undiff. decreases at 15 cm 

in zone 1b. Brassicaceae and Secale cereale increase in percentage in zone 1a 

and ends at 16 cm in zone 1b. Lemna minor in the aquatics group peaks with 

Phragmites with the absence of Schoenoplectus at 16 cm. Zone 2a has an 

increase of Pinus peaking at 9 cm with Cyperaceae undiff. Within the herbs 

group, Epilobium has its highest percentage abundance between 12-8 cm. The 

Brassicaceae and Zea mays peak at 8 cm in the crops group and Avena-type 

peaks twice at 13 cm and 2 cm. Brassicaceae undiff. was put into the crops group 

in all percentage pollen diagrams, as Brassica was recorded in the crop record 

and could potentially represent that record. Progressing into zone 2b there is a 

decrease in Pinus at 4 cm (change in lithology). The aquatics group continue to 

fluctuate, and Lemna minor and Phragmites are present when Schoenoplectus 

is absent at 5 cm, similar to 16 cm.  

There are peaks in Lycospora at 17 cm, 15-12 cm, 10 cm and 6 cm. At 17 cm 

there is the first peak of Lemna minor and a further three at 12 cm, 10-7 cm and 

5 cm. These three peaks occur after the four Lycospora peaks. There are Pinus 

and Cyperaceae undiff. peaks at 9cm and fluctuate in a similar pattern throughout 

the core. The pollen concentration peaks three times at 12 cm, 8 cm and 5 cm 

which coincide with low Pinus.  
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Figure 18: SNP: percentage pollen diagram with pollen zones based on CONISS. Depth (cm), lithology, pollen percentage data, pollen concentration 

and pollen sum are displayed and the dotted shading indicates x4 exaggeration for taxa with low abundance.  
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6.6.2 Reed bed pond pollen assemblage 

The lithology of the RBP has two main sections of lithology. The largest section 

(9.5-2 cm) constitutes of dense sediment and roots which changes to mosses 

and roots in the top section of sediment (2-0.5 cm). There are six zones, 1a, 2a, 

2b, 2c, 3a and 3b in the RBP pollen assemblage (Figure 19). There are 30 

different pollen taxa in the assemblage excluding Lycospora.  

Within Zone 1a the least present are the aquatics within only Typha latifolia 

present. Zone 2b illustrates a peak in Pinus and Cyperaceae undiff. at 6.50 cm. 

There is a continuous presence of all tree taxa throughout this zone. Herbaceous 

taxa have a varied distribution. In the crops group, Brassicaceae undiff. and 

Avena-type peak at 9 cm and 8.5 cm respectively, and Brassica has a continuous 

presence. Zone 2b is one of the smallest, signified by peaks in Pinus, Eleocharis, 

Poaceae undiff., Urtica, Avena, Secale cereale and Typha latifolia. Zone 2a has 

lower tree percentages than the other zones, especially Pinus. In Zone 3a 

Poaceae undiff. has sharp fluctuations, of particular note at 2 cm where it 

decreases at the change in lithology. Lemna minor peaks at 3 cm in this zone 

with the third appearance of Phragmites. Phragmites peaks at 2 cm with no other 

aquatic taxa. Brassicaceae undiff. has its second peak at 3 cm and Brassica has 

very low percentages compared to zone 1a and 1b. Zone 3b is the smallest zone 

in the RBP pollen assemblage and CONISS splits the very upper sample (0.5 

cm) on its own. Pollen concentration peaks, Phragmites and Lemna minor 

decreases and Poaceae undiff. increases.  

There are three Lycospora peaks at 9 cm, 7.5 cm and 4.5 cm. Pinus and 

Cyperaceae undiff. share their largest peak at 6.5 cm. Phragmites does not enter 

the pollen record until a small peak at 8 cm and 7 cm and occurs in low numbers 

until after 3 cm, peaking at 2 cm where the lithology changes.  
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Figure 19: RBP: percentage pollen diagram with pollen zones based on CONISS. Depth (cm), lithology, pollen percentage data, pollen concentration 

and pollen sum are displayed and the dotted shading indicates x4 exaggeration for taxa with low abundance. 
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6.6.3 Constructed pond 8 pollen assemblage 

There are three main changes in lithology in P8. The uppermost section from 0.5-

2.0 cm is dense roots and sediments progressing into fine sediment and roots 

2.0-3 cm. From 3 cm to the base at 5.50 cm there are peaty matted roots. There 

are 19 different pollen and spore taxa in the assemblage excluding Lycospora.  

The pollen percentage diagram for P8 is split into zones 1a, 1b, 2a and 2b (Figure 

20). Between zones 1a and 1b there is one major fluctuation of Abies and Pinus 

at 4 cm (change in lithology) which coincides with a Cyperaceae peak and a 

trough in Poaceae undiff. and Lemna minor. In zone 1a, Lemna minor singularly 

peaks at 4-5.5 cm. Zone 2a and 2b has a significant increase in Salix and slight 

fluctuations in Pinus but no major changes similar to zone 1. There is a slight 

increase in the amount of herbaceous taxa. All crop taxa (Beta vulgaris-type, 

Brassicaceae undiff. and Secale cereale) peak in zone 2b, similar to zone 1b. 

The aquatics group do not share any similarity in presence. Lycospora has a 

continuous presence throughout the core after peaking at 4 cm. Pinus and 

Cyperaceae fluctuate in the same way. P8 records the least amount of crop pollen 

grains giving a signal of Beta vulgaris-type, Brassicaceae undiff. and Secale 

cereale.  

6.6.4 Constructed pond 29 pollen assemblage 

P29 was the first of the constructed ponds in this study to be sampled and was 

sub-sampled to 1 cm (Figure 21). There are 20 different pollen taxa in the 

assemblage excluding Lycospora. The pollen profile displays small fluctuations, 

especially in the Pinus and Poaceae undiff. There are no changes in lithology for 

P29 sediment core which has a make-up of fine sediment and roots from 6-1 cm.  

There are two zones, 1a (6-4.5 cm) and 2a (4.5-1 cm). Zone 1a displays a gradual 

increase in pollen concentration but does not reach its highest concentration in 

this zone. There is low percentage presence of the majority of the pollen taxa 

within this zone and there are no crops present. A gradual decrease in Lycospora 

from the base of the core can be identified. Zone 2a has the highest peak in pollen 

concentration at 4 cm and displays a general increase in presence of most pollen 

taxa. Pinus and Abies peak at 3 cm with a reflected decrease of Poaceae undiff. 

at the same level. Lycospora continues a very low presence from 4-2 cm and 

appears to be non-existent at 1 cm. 
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Figure 20: Constructed Pond 8 percentage pollen diagram with pollen zones based on CONISS. Depth (cm), lithology, pollen percentage data, pollen 

concentration and pollen sum are displayed and the dotted shading indicates x4 exaggeration for taxa with low abundance.
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Figure 21: Constructed pond 29 percentage pollen diagram. Caryophyllaceae, Persicaria maculosa, Urtica, Secale cereale, Lemna minor and Typha 

are exaggerated by factor 4. CONISS (Grimm, 1987) splits the graph into two zones, zone 1 (4.5 cm – 6 cm) and zone 2 (1 cm – 4.5 cm).
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6.7 Crop records from surrounding fields 

The crop records were collected from the local farmer who owned the fields 

surrounding the study site (Table 3). There were five years which did not have 

any records and were labelled as Unknown, but the remaining years indicate what 

pollen signal could be expected from the local area. Brassica rapa and Secale 

cereale were the two most planted crops over the nineteen years and there was 

only one year, 2001 which had records of two crops, Brassica rapa and Zea 

mays.  

Table 3: The crop records (1996-2014) of the surrounding fields to the study site, sourced 

from the local farmer owning the fields.  

Date Crop record 

2014 Unknown 

2013 Unknown 

2012 Unknown 

2011 Secale cereale 

2010 Avena sativa 

2009 Triticum aestivum 

2008 Brassica rapa 

2007 Unknown 

2006 Secale cereale 

2005 Solanum tuberosum 

2004 Brassica rapa 

2003 Solanum tuberosum 

2002 Secale cereale 

2001 
Brassica rapa and Zea 
mays 

2000 Zea mays 

1999 Unknown 

1998 Secale cereale 

1997 Solanum tuberosum 

1996 Brassica rapa 

 

6.8 PCA analysis of pollen, testate amoebae and vegetation data 

The PCA analysis of pollen assemblages from SNP, RBP and P 8 are illustrated 

as scatter plots and explained.  

6.8.1 PCA of macrophyte vegetation from all thirty constructed ponds 

The PCA of the vegetation dataset (Figure 22), has a percentage variance of 

30.94% on PC1 and 19.12% variance on PC2. Component 1 represents the dry 
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to wet scale, positioning the majority of wet habitat species on the negative end. 

The colonising and aquatic flora of Callitriche, Chara Vulgaris, Ranunculus 

aquatilis, Alisma plantago aquatic, Glyceria fluitans and Filamentous Algae are 

closely grouped at the negative end of component 1. Eleocharis palustris, and 

Cardamine are also near this group. Component 2 denotes the occurrence of 

vegetation over the years with the least occurring positioned on the top positive 

section of the axis and most prevalent on the negative end. The 95% ellipses do 

not group any taxa. However, on the either side of PC1 the taxa are split into two 

groups. 

6.8.2 PCA of SNP pollen and testate amoebae 

The SNP PCA (Figure 23) component 1 explains 13.82% variance and does not 

illustrate any strong groupings of the pollen and testate amoebae sub-samples. 

Component 1 appears to represent wet to dry, with wet on the left moving along 

to a drier environment to the right. The group of taxa on the far right of component 

1 are indicative of a drier habitat, associated the closest with 1 cm depth and 

appears the most defined group which is separated the greatest distance in the 

PCA plot. The testate amoebae and pollen taxa comprising of this group are 

Hyalosphenia (wet) shown in the lower right group with Sparganium -type, 

Rumex, Potentilla rupestris, Typha, and Rosaceae. No other sample depths are 

associated closely with these taxa. Cyperaceae undiff. and Centropyxis (wet, 

aquatic vegetation) are plotted closely with each other on the scatter graph at the 

negative end of component 2. These are closest to sample depths of 6 cm, 13 

cm and 14 cm, similar to that of Lycospora, Poaceae, Ranunculus and 

Schoenoplectus. On the opposite side of component 2 to this group is Lemna 

minor, Phragmites and Pyxidicula operculata (wet, aquatic vegetation) which are 

close together near the sample depth 9 and 10 cm. 

6.8.3 PCA of RBP pollen and testate amoebae 

Component 1 explains 18.15% of the variance between the pollen and testate 

amoebae (Figure 24). Component 2 (13.90% variance) shows separation 

between the sample depths illustrating the upper half of the core (0.5 cm-5 cm) 

is on the opposing side to the lower half (5 cm-9.5 cm). Sample depth 3 cm is an 

outlier and is closest to Nebela (damp-wet), Brassicaceae, Ranunculus cf. Caltha 

and Utricularia at the negative end of component 1. Centropyxis (wet, aquatic 

vegetation) and Cyperaceae are at the negative section of component 2 but are 
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not in the same area as Lycospora. Pyxidicula operculata (wet, aquatic 

vegetation) is closely associated with Epilobium, Poaceae, Secale cereale, 

Trifolium and Polygonum. 

6.8.4 PCA of P8 pollen and testate amoebae 

The PCA of P 8 sub-samples (Figure 25), pollen and testate amoebae showed a 

broad distribution of all taxa and sample depths. Component 1 explained a 

relatively large proportion of variance at 26.25% which appears to represent the 

age of the samples, with the younger at the negative end of the scale (0.5-3.0 

cm) to the older at the positive end (3.5-5.5 cm). Component 2 explains 16.02% 

of the variance and does not indicate any strong representation of environmental 

variances. Heleopera, Arcella and Centropyxis are associated with these 

samples. Lycospora, Pinus, Abies, Cyperaceae and Bullinaria testate amoebae 

(dry) are closely associated with each other in the lower left of the graph. Lemna 

minor and Pyxidicula operculata (wet, aquatic vegetation) show similar 

relationships to the SNP PCA. Centropyxis and Cyperaceae have been closely 

related in the PCA for the SNP and RBP but there is no association in the P8 

PCA. The results of the P8 PCA are similar to the RBP PCA, in that the upper 

depths of P8 (0.5 cm-3 cm) are associated to the opposite side of the PCA than 

the lower half (3.5 cm-5.5 cm).
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Figure 22: PCA plot of the vegetation from all 30 ponds dataset computed on normalised percentage data and displaying component 1 and component 

2.
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Figure 23: PCA plot of the SNP pollen and testate amoebae dataset computed on normalised percentage data and displaying component 1 and 

component 2. The pollen names are in black and the testate amoebae are in blue.
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Figure 24: PCA plot of the RBP pollen and testate amoebae dataset computed on normalised percentage data and displaying component 1 and 

component 2. The pollen names are in black and the testate amoebae are in blue.
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Figure 25: PCA plot of Pond 8 pollen and testate amoebae dataset computed on normalised percentage data and displaying component 1 and 

component 2. The pollen names are in black and the testate amoebae are in blue.
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6.8.5 Comparison of the PCA results from the vegetation and pollen 

records 

Figure 26 displays the vegetation, SNP, RBP and P8 PCA plots on one page to 

allow easier visual comparison. The PCA of the macrophyte vegetation from all 

thirty ponds do show a broad grouping of the wet and dry taxa but cannot be 

identified in any of the pollen PCAs. The similarity between Cyperaceae undiff. 

and Centropyxis on the SNP and RBP PCA, indicate a useful link which can be 

used to see if their habitat and environmental preferences are similar. The RBP 

and P8 illustrate that the upper and lower halves of their sediment cores are being 

affected by different variables. However, there are no similarities between their 

pollen taxa or testate amoebae and cannot be used for comparison.  

 



  

 
 

7
7 

 

Figure 26: PCA plots. A: PCA of the vegetation dataset computed on normalised percentage data and displaying component 1 and component 2. B: 

SNP PCA of pollen and testate amoebae computed on normalised percentage data and displaying component 1 and component 2. C: RBP PCA of 

pollen and testate amoebae computed on normalised percentage data and displaying component 1 and component 2. D: P8 PCA of pollen and testate 

amoebae computed on normalised percentage data and displaying component 1 and component 2. For Figures B, C and D the pollen names are in 

black and the testate amoebae are in blue.
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7 Discussion 

The following sections will discuss the approaches taken to achieve absolute 

dates for the SNP and relative dates for the RBP and P8, and the mechanisms 

that have affected this dating technique. In the first section the modern pollen rain 

and vegetation mapping will explore pollen representation and how this can be 

used to interpret the pollen records in sediment cores. There are two separate 

dating sections, absolute and relative. The absolute dating section compares 

existing dates and events in the vegetation (Jeffries, 2008), rainfall (Met Office, 

2015) and crop record, with the testate amoebae and pollen assemblages to 

identify potential dates for sections of the SWB sediment cores. The different 

types of reworking which affected the pollen and testate amoebae signal, and 

how this was beneficial in supporting dating interpretations will be discussed. The 

relative dating section compares all of the SWB’s pollen records and discusses 

them in relation to findings from the pollen representation of the modern samples 

and vegetation. The limitations in some approaches used for dating, such as 

reworking, pollen representation in different size and type of SWBs and 

observational records will be discussed in the relevant sections. To conclude this 

section, a discussion of how palynology can be used as a tool for aiding 

calculations of sedimentation rates and carbon burial is presented. 

 

7.1 Modern pollen surface sample and vegetation mapping 

Modern pollen and vegetation mapping have been widely used to assist the 

interpretations of fossil records (Giesecke et al., 2010; Bunting & Middleton, 2005; 

Wilmshurst & McGlone, 2005). However, pollen assemblages in the modern 

samples have been shown to be highly influenced by the pollen production of the 

surrounding vegetation, transport medium and distances as well as methods of 

deposition (Lisitsyna et al., 2012; Goring et al., 2013). The problems of wildlife 

and contamination, which occurred in this study as indicated by the pollen traps, 

are not uncommon (Sjogren et al., 2015). Statistical analyses were therefore 

limited and more of a qualitative approach was taken in comparing the pollen-

vegetation relationships.  
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In the modern pollen surface sediment samples, tree taxa occurred in all four 

SWB surface samples, apart from Acer occurring only in SNP and Betula pendula 

occurring in RBP, P8 and P29. This was unlike the majority of low-growing plants, 

which only occurred in one or two surface samples. This was also evident in 

modern pollen samples collected by Ranta et al., (2008). Tree pollen, released 

from height and transported by anemophily, is reflective of local and regional 

sources (Ranta et al., 2014). All four pollen surface samples had >30% Pinus 

reflected the particularly high pollen production of Pine trees and widespread 

dispersal capacity of their pollen grains due to grain morphology (Zanni & 

Ravazzi, 2006).  

The pollen signal represented the vegetation of the surrounding fields as shown 

by the presence of crop pollen. Zea mays, Avena and Secale cereale were known 

to have been growing nearby the site (<1000 m). Cultivated grass pollen is 

typically larger than the wild grass pollen, and has particularly defining features 

such as annulus diameter (sometimes protruding with a sharp outer boundary), 

surface sculpturing and grain shape (Tweddle et al., 2005). However, the 

dispersal ability of these large grains is known to be poor and long distance 

transport is unlikely (Tweddle et al., 2005). Secale cereale (>40 μm) is a large 

cultivated pollen grain which is present in all of the pollen surface samples. Beta 

vulgaris-type was the only other possible crop signal identified in the surface 

samples. 

When comparing the modern pollen surface sample and vegetation mapping 

location, Cyperaceae and Poaceae were present in all vegetation mapping 

locations (apart from Cyperaceae in VM2) and pollen surface sediment samples. 

This is because Cyperaceae and Poaceae are two of the most abundant sources 

of pollen (McGlone & Moar, 1997). Poaceae and Cyperaceae contain many 

species, each with their own unique characteristics in relation to pollen, which 

contribute to uncertainties in pollen and vegetation correlations (Sjöfren et al., 

2015). The dispersal properties of pollen from low-growing vegetation, especially 

anemophilous pollen taxa are different than trees and can limit pollen dispersal 

to very short distances, therefore primarily coming from local sources (McGlone 

& Moar, 1997; Ranta et al., 2014; Sjöfren et al., 2015).  
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Three of the four vegetation mapping locations recorded Cyperaceae, (VM1 

22.12%, VM4 34.45% and VM3 1.09%) and all four surface sediment samples 

recorded Cyperaceae pollen (highest in SNP 27.39%). VM1 and SNP are the 

closest in distance (Figure 8) and shows that pollen representation is affected by 

the distance of the vegetation source. The RBP was the closest to VM4 which 

recorded the highest Cyperaceae (34.45%, 31.58% from Carex ortubae) but was 

not strongly reflected in the surface sediment sample (8.91%). The RBP was on 

a raised bed above the VM4 location and also had Phragmites growing in the 

SWB. These two factors coupled with the fact that Cyperaceae, particularly Carex 

ortubae is low growing (Swan, 1993), and its pollen dispersal being limited, 

explains why there were less Cyperaceae pollen in the RBP surface sediment 

sample despite records of high abundances nearby. On the other hand, there 

was moderate representation of Cyperaceae in the SNP pollen surface sample 

(27.39%) which was closest to the second highest vegetation mapping (22.12%). 

Eleocharis was the only contributing plant to the vegetation mapping record and 

is of lower pollen frequency but good representation (Randall, et al., 1986). The 

pollen vegetation relationship of Cyperaceae appears to represent the dispersal 

characteristics.  

Waller et al. (2012) found that the pollen from the vegetation directly above the 

site of deposition should be strongly represented in the pollen assemblage. 

Phragmites was known to be growing in the RBP during the later years, after 

1995 (Jeffries, unpublished data). Phragmites is strongly represented in the 

pollen surface sample located closer to the source, with the highest presence 

being in the RBP pollen surface sample (10.53%). There is very little information 

about the pollen dispersal of Phragmites australis, apart from observed distance 

of tens of metres over the landscape (Fér & Hroudová, 2009).  

The pollen source area of smaller lakes is less than larger ones (Seppa and 

Bennett, 2003), and the extensive pollen modelling completed on small lakes, 

shows that pollen taxa diversity is known to be low (Fyfe, 2005; Sugita, 2007a). 

The diversity of pollen taxa in the surface samples of the two semi-natural SWBs 

(SNP and RBP) is higher than the two smaller constructed ponds (P8 and P29). 

The pollen percentages of the majority of taxa in the SNP and RBP, particularly 

Epilobium, Lemna minor, Phragmites, Rosacaceae and Rumex are very similar, 

but are very low or non-existent in P8 and P29. The effect of distance from the 
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pollen source to deposition is also potentially illustrated by the occurrence of 

Ranunculus, as it is present in one vegetation mapping location (VM3), and only 

in one pollen surface sediment sample (P29). 

Epilobium pollen dispersal can be by entomophily (insect) or autogamy (self). 

Low pollen production has been identified in Epilobium due to developments in 

their biotic pollination systems shifting to autogamy (Randall et al., 1986; 

Daghlian et al., 2012). Coupled with this shift to autogamy, some species of 

Epilobium have been recorded to have viscid pollen threads (Waser & Price, 

1982) which would also result in low distribution, and a weak representation in 

surface sediment samples and sediment pollen assemblages. Pollen grain 

morphology within the genus of Epilobium can range from 56.3 μm - 120.8 μm 

thus being poorly dispersed, transported and consequently not strongly 

represented in the pollen record. 

 

In summary, the modern pollen surface samples and vegetation mapping indicate 

that the location of vegetation to the pollen sink is important. Pollen grain 

morphology and dispersal techniques for different taxa all show an effect on the 

representation in the surface sample, particularly shown by Carex ortubae, 

Eleocharis and Epilobium. Site-specific factors, such as Phragmites growing only 

in the RBP SWB, show the unique effect that vegetation growth location has on 

the pollen signal. These interpretations from the modern pollen section can be 

utilised to interpret the pollen vegetation relationship in the SWB sediment cores 

and vegetation monitoring record.  
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7.2 Compilation of datasets for absolute dating  

7.2.1 Vegetation monitoring record comparison with rainfall record 

The vegetation monitoring data (Jeffries, 2008) was compared with the rainfall 

data to identify if the record showed wet and/or dry years (Met Office, 2015). 

Figure 27 displays the vegetation monitoring data with the high and low rainfall 

years explicitly indicated. There are four wet years (>890 mm per year) in 1998, 

2005, 2010 and 2012, and three dry years (<600 mm per year) in 1996, 2003 and 

2006. There were no consistent vegetation occurrences suggestive of wet or dry 

environments in these years. This vegetation data collected by Jeffries (2008) 

was recorded once a year, which could have been during a dry month and would 

therefore not reflect the average high rainfall of that year. Therefore, the 

vegetation in this dataset cannot be entirely expected to reflect high rainfall years. 

This interpretation of the vegetation and rainfall records was intended to be use 

for identifying possible trends in the pollen assemblages of the SWBs. There were 

no taxa indicative of a wet or dry year in the vegetation monitoring record which 

could be identified in the RBP, P8 or P29 pollen record and comparison of these 

two records could not be taken any further. However, the SNP pollen record did 

illustrate some similarities with the vegetation monitoring record and is discussed 

in section 7.2.5. 
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Figure 27: Vegetation record from thirty constructed ponds (Jeffries, 2008) with rainfall record per year (mm) (Met Office, 2015). Red lines indicate the 

wettest years (>890 mm per year) in 1998, 2005, 2010 and 2012, and blue lines indicate the driest years (<600 mm per year) in 1996, 2003 and 2006. 
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7.2.2 Reworking of sediment in the SWBs 

Reworking was identified in the sediment cores as a result of bioturbation or 

during significantly wet periods (possible flood events) indicated by the signal of 

a reworked (Carboniferous) spore, Lycospora. Bioturbation was visible at the 

base of all SWB sediment cores where the roots of the colonising vegetation were 

establishing themselves in the sediment. The sediment in this benthic 

environment would also be mixed by birds, particularly Ardeidae (herons), 

Laridae (gulls) and Phasianus (pheasants). The SNP and P8 illustrated changes 

in the lithology at the base 19-17 cm and 5.5-4 cm respectively, but no change in 

the RBP lithology was evident. This mixing of sediment was evident in the base 

of the pollen profiles, predominantly by the increased presence of Lycospora, 

which coincided with the SNP and P8 change in lithology. Lycospora is an 

abundant miospore known to be common in the Carboniferous period, primarily 

Pennsylvanian (Bek, 2012). The constructed ponds were dug into the infill 

material from an open cast coal mine, indicating this as the most probable source 

of Lycospora, since this was the only location in the field where the infill material 

was exposed.  

Percentages of Lycospora spore illustrated an increase during significantly wet 

periods (potential flooding of the field-site) in the SNP from 0% to <2.0%. The 

field site is known to flood and join SWBs together (Jeffries, 2008), particularly 

the two constructed ponds and the SNP (Figure 8), which means that pollen 

grains can be transported with the flow of water between the SWBs. 

Consequently, when Lycospora appears in the record of the SNP, it could have 

been flooded in from the constructed ponds. A change in lithology 6-4 cm in the 

SNP was visible which was after a peak in Lycospora. The RBP was on a raised 

bed and thus was not flooded with the other SWBs. These two types of re-working 

naturally altered the pollen record of all the SWBs which was taken into account 

when interpreting the results. 

7.2.3 Testate amoebae records indicative of wet periods 

The sensitivities of testate amoebae to hydrological changes (Mitchel et al., 2000) 

and their individual preferences to different aquatic habitats such as aquatic 

sediments, macrophytes and mosses (e.g. Sphagnum), as well as rivers, lakes 

and reservoirs (Alves et al., 2010), can indicate and support interpretations of 

substantial habitat changes within SWB sediment cores. The comparison 
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between the testate amoebae and observational rainfall records identified 

potential wet years (two in the SNP at 13 cm reflecting 1997 and 6 cm reflecting 

2005 or 2010 or 2012 and one in the RBP at 5 cm reflecting 1997 or 2005). These 

depths however, could not be matched to any of the four specific wet years and 

suggestions were made based on the approximate known date of construction 

(1995). It must be stressed that the dashed red lines on Figure 28 purely indicate 

the possible years for each depth and are not a certain conclusion with the testate 

amoebae results. The C/N ratios at the same depths of the identified wet period 

did not largely reflect any particular environmental changes, but were >20 

suggesting terrestrial input of organic matter. This input of terrestrial organic 

matter could have been a result of high rainfall. Figure 28 illustrates the testate 

amoebae assemblages for the SNP and RBP with the rainfall record and also the 

C/N ratios for both SWBs. The homogeneity of P8 testate amoebae assemblage 

did not illustrate any specific wet or dry events. The results from the PCA between 

the pollen and testate amoebae assemblages (Figure 26, B, C & D) identified 

significant ecological and environmental similarities between taxa, which 

contribute to understanding why the testate amoebae records of the SNP and 

RBP illustrated wet years. 

The four wet years marked on Figure 28 D could not be directly matched in the 

SNP (Figure 28 A) or the RBP (Figure 28 B) but estimations were made to assign 

possible ages. Estimations were primarily based on the association and 

ecological characteristics of the testate amoebae Centropyxis and Pyxidicula 

operculata and their occurrence in the SNP and RBP. Inferences of habitat 

preferences of each testate amoebae and known associations with vegetation 

types were collected from literature (Jax, 1985; MacArthur & Wilson, 1967; 

Corbet, 1973; Holcova, 2007; Pchelin, 2011; Glime, 2013; Swindles et al., 2014). 

These approximations, of what years the two depths in the SNP and one depth 

in the RBP could be, were marked on Figure 28 by red dashed lines.  

The PCA was completed to identify environmental groupings within the pollen 

and testate amoebae assemblages of each SWB (Figure 26, B, C & D), and to 

see if these could be correlated with the wet/dry phases in the climate record to 

support dating interpretations. The results from the PCA of pollen and testate 

amoebae for the SNP, RBP and P8 did not consistently identify any similarities 

between the pollen and testate amoebae, but a correlation between Cyperaceae 



 
Discussion 

86 
 

undiff. pollen and Centropyxis testate amoebae in the SNP and RBP was evident, 

which demonstrated they inhabited the same environment. 

The testate amoebae Centropyxis lives on sediment and aquatic macrophytes 

but the exact plant families it favours are unknown (Charman et al., 2000; 

Mattheeussen et al., 2005; Alves et al., 2010). Peaks in Centropyxis was closely 

associated with high abundances of Cyperaceae on all PCAs. Along with water 

levels, lakeside vegetation has been identified to control testate amoebae 

distribution (Holcova, 2007), which appeared to be the interaction with 

Cyperaceae undiff. and Centropyxis. The PCA particularly showed separation 

between Pyxidicula operculata and Centropyxis, in which their characteristics and 

habitat preferences will be explained in detail in the following sections. Swindles 

et al., (2014) also identified that Pyxidicula operculata and species within 

Centropyxis were not closely associated. The ecology may be complex, since this 

relationship was found in tropical studies (Swindles et al., 2014) and also 

observed in this northern hemisphere SWB study. 

The PCA of P8 did not show any results which were similar to the SNP or RBP 

and are not discussed any further. 

Within the SNP, Pyxidicula operculata had the consistently highest populations 

throughout the whole core with only two, 13 cm and 6 cm, where it was not 

recorded. Pyxidicula operculata is known to be a pioneer species which has the 

ability to colonise new habitats quickly but does not maintain high populations 

under competition (Jax, 1985). High population growth rates in relatively young 

habitats, which remain relatively unchanged have also been observed by Jax 

(1985), showing that high oscillations and no equilibrium level for Pyxidicula 

operculata populations were shown. Centropyxis has an opportunistic nature 

(Holcova, 2007) and shows peaks in abundance at 13 cm and 6 cm in the SNP 

which coincide with the absence of Pyxidicula operculata. Pyxidicula operculata 

has been shown to tend towards r-strategy, which is part of R and K selection 

that was introduced by MacArthur & Wilson in 1967. This concept of R and K 

selection distinguishes between species which are weak competitors and 

therefore have high populations and colonise new habitats quickly, and species 

which are good competitors and consequently have low populations and utilise 

resources effectively on a long-term basis (Jax, 1985). The young SWBs (<20 
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years) are known to have been temporarily flooded during times of high rainfall 

(Jeffries, unpublished data). The competition between Pyxidicula operculata and 

Centropyxis in the SNP is suggestive of wet periods at 13 cm and 6 cm, but with 

only two depths and four wet rainfall years, a certain match cannot be concluded. 

The C/N ratios for the SNP depths at 13 cm and 6 cm (Figure 28 C) were 23.63 

and 22.10 respectively, and did not reflect wet periods. 

In the RBP Arcella and Centropyxis are the most predominant taxa. The 

abundance of Arcella in the sediment core of RBP could be due to their ability to 

form new shells, where the new shell is filled by the organism (exuviation) or cast 

off empty (Pchelin, 2011). Arcella communities are more typically associated with 

standing water (Glime, 2013). It was noted by Patterson et al., (2002) that strains 

of Centropyxis and Arcella (in particular Centropyxis aculeate and Arcella 

vulgaris) dominate marginal environments where the majority of other testate 

amoebae are not found. This characteristic is evident in the RBP testate amoebae 

assemblage. The competition and ability of Centropyxis to cope under stressed 

conditions (Patterson et al., 2002; Holcova, 2007) are visible at 5 cm where no 

other testate amoebae occurred. This assemblage may represent a wetter 

environment, but attempting to match it to a date with certainty via the rainfall 

record was unsuccessful. Similar to the C/N ratios of the SNP, the RBP C/N ratio 

was 23.46 at 5 cm also did not indicate particularly wet periods.  

One of the most recent studies on testate amoebae by Swindles et al., (2014) 

suggested that a large proportion of variance between testate amoebae data 

remained unexplained possibly due to inter-connectivity between unmeasured 

environmental and geochemical factors such as water, nutrient status, light and 

temperature. It has also been suggested that short term environmental variability 

may be an important factor in the community dynamics of testate amoebae 

(Woodland et al., 1998; Swindles et al., 2014). The distribution and occurrence 

of the other testate amoebae in the SNP and RBP sediment cores do not have 

any similarities. Corbet (1973) highlighted that there are many different factors 

such as, size, test construction, microclimate, temperature, moisture, pH, 

distribution patterns, light, oxygen and food, that affect the occurrence of testate 

amoebae species. The very low percentage abundance and stochastic 

distribution of Assulina, Bullinaria, Trignonopyxidae. Euglypha, Nebela, 

Hyalosphenia in the SNP and Heleopera, Trignonopyxidae, Trinema, Apogromia, 
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Nebela and Difflugia in the RBP, did not indicate to any other specific wet or dry 

conditions. 

The testate amoebae assemblages of Arcella, Centropyxis and Pyxidicula 

operculata of the SNP and RBP indicated wet periods within the sediment cores. 

These wet periods and the known associations of testate amoebae with pollen 

taxa could be used in conjunction with the pollen assemblages to support the 

implication of dates to sections of the SNP and RBP sediment cores.  
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Figure 28: Testate amoebae record of the SNP and RBP (A and B respectively) with red lines highlighting the wetter conditions within the SWB 

sediment cores. The C/N ratios for SNP and RBP (C and E respectively) have a red circle marking on the corresponding depth at which the wet 

testate amoebae signal was identified. D: Total rainfall per year (mm) (Met Office, 2015) with the four wettest years (1997, 2005, 2010 and 2012) 

circled in red. The dashed red lines from each sediment core (A and B) to the rainfall graph (D) represent the possible year that depth could be. 
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7.2.4 Pollen and testate amoebae as indicators for wet periods and 

possible flood events  

In the SNP the presence of Lycospora and peak in Lemna minor are suggested 

to be indicative of very wet environmental conditions, possibly flooding, which 

could be correlated with the rainfall record (Figure 29). It was assumed that 

Lycospora had entered the SWB’s sediment from the exposed infill material in 

the constructed ponds (see reworking section) when the SWBs were flooded 

(Jeffries, 2008). Lycospora peaked at 17 cm, 14-12 cm, and 6 cm followed by 

high proportions of Lemna minor at 16 cm, 10-7 cm and 5 cm. When the flood 

event occurred Lycospora would enter the SNP and settle to the bottom of the 

SNP while it was full of water. Lemna minor would then grow and the pollen grains 

would be transported through the water column to settle on the sediment. Lemna 

minor lives in wet communities and requires open water surfaces to exist (Cox, 

1985). The C/N ratios at each depth where Lemna minor occurred suggested 

terrestrial input for the organic matter source as the ratios ranged between 22.59 

and 23.35. This does not discount the possibility that these were flooded years, 

as the Lycospora in-wash events would transport terrestrial matter.  

The indication that these depths were representative of a wet environment comes 

partly from the correlation with the rainfall records and is supported by results 

from the testate amoebae record but there is no definitive match. The presence 

of Centropyxis at 13 cm and 6 cm were suggestive of very wet environments (see 

section 7.2.2) coinciding with two of the three Lycospora peaks. The four peaks 

in rainfall occurred in 1997, 2005, 2010 and 2012 (Figure 28 D). The previous 

weather events explained the years of 2005 and 2012 experienced particularly 

heavy rain and flooding in the North East of England, which is also reflected in 

the average annual rainfall (Met Office, 2015). It is suggested that the first peak 

in rainfall in 1997 is reflected in the SNP sediment core by the presence of Lemna 

minor, Lycospora and Centropyxis between 14-12 cm. The second peak however 

could not be determined to be any of the three dates (2005, 2010 or 2012). The 

Lycospora peak at 17 cm was suggested to be reflective of the bioturbation 

reworking of sediments during the establishment of the SWB since the other 

SWBs also illustrated this Lycospora signal at the base of the sediment cores. 
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Figure 29: SNP pollen percentage diagram illustrating the Lycospora and Lemna minor peaks with red circles. The sections highlighted in grey are the 

suggested wet environmental conditions (indicated by Lycospora) which illustrate the subsequent rise in Lemna minor. The first at 17 cm was during 

SWB establishment and bioturbation reworking of sediments. The second two Lycospora peaks at 13 cm and 6 cm correlated with the peaks in 

Centropyxis (marked by blue lines) and high rainfall years, suggested to be 1997 and 2005 respectively. 
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7.2.5 Vegetation monitoring in the sediment pollen record 

This section will discuss the matches between the sedimentary pollen record of 

the SNP and the vegetation monitoring record. Table 4 presents the depths in the 

SNP sediment core where the pollen assemblage potentially reflected part of the 

vegetation record (Jeffries, 2008) and observational record (Jeffries, unpublished 

data). The RBP and P8 pollen assemblages did not have any pollen taxa 

occurrence which could be matched with the vegetation records.  

There were no similarities between the PCA results of the vegetation monitoring 

record (Jeffries, 2008) and pollen records (Figure 26, A, B, C, & D) but 

fluctuations in the SNP pollen assemblage (Figure 18) could be identified (Table 

4). The vegetation monitoring record and observational data column briefly 

explain the most significant fluctuations in plant occurrences with the 

corresponding date for that year (Table 4) which will be discussed in the following 

sections. These were entered on the same row, establishing potential dates for 

that section of the sediment core. These pollen-vegetation matches were 

supported by justifications of individual pollen characteristics, detailed in the 

modern pollen section (7.1).  

The first pollen-vegetation match was identified at 15 cm in the SNP pollen 

assemblage with the presence of Poaceae undiff. and Ranunculus, which broadly 

matched with the occurrence of Agrostis/Alopecurus and Ranunculus lingua in 

the vegetation monitoring record (1997). Agrostis/Alopecurus are two different 

genera in the Poaceae family. The results from the modern pollen and vegetation 

mapping (Ranunculus mapped close to the site of deposition) coupled with 

Ranunculaceae growing low to the ground (Swan, 1993) and pollen dispersal 

being local indicates that this pollen signal likely reflects 1997.  

Not only individual peaks but also short intervals could be matched between the 

pollen assemblage and vegetation monitoring in the SNP sediment core. 

Between 9 cm and 7 cm, Poaceae undiff. showed one of its lowest percentages 

in the whole sediment core. This was also evident in the vegetation record from 

1999 and 2001 shown by low abundance of Agrostis/Alopecurus and a peak of 

Chara vulgaris in 2000 and increase in Ranunculus aquatilis and Leptodictyum 

riparium in 2001 as the latter three all inhabit aquatic environments (Swan, 1993). 

The rainfall record shows an increase in the average annual rainfall between 
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1999 (704.0 mm) and 2001 (770.6 mm). Throughout this time period, Poaceae, 

indicative of a drier environment (Tweddle et al., 2005) decreased in the 

vegetation record. The increases of taxa indicative of a wetter environment 

between 1999 and 2001 in the vegetation record and the increase in rainfall 

during the same time period suggests wetter conditions prevailed during these 

years. Therefore, the results from the pollen assemblage, vegetation and rainfall 

record suggests that 9-7 cm reflects 1999-2000. 

Another match between the presence of Agrostis/Alopecurus in the vegetation 

and Poaceae undiff. pollen was identified between 2002 and 2003 at 7-6 cm in 

the sediment core, where both increased in abundance. Similar to 1997 at 15 cm, 

where Agrostis/Alopecurus peaked and Ranunculus aquatilis decreased, this 

also occurred between 2002 and 2003 and was reflected in the sediment core at 

7-6 cm. In 2005 this was shown again, as Agrostis/Alopecurus decreased and 

Ranunculus aquatilis peaked in the vegetation record. A similar pollen 

assemblage was identified at 6-5 cm as shown by slightly lower proportions of 

Poaceae undiff..  

Lastly, the abundance of Epilobium (4-0 cm) could be linked with the 

observational data (Table 4). Epilobium was known to be in high abundance 

around the SNP from 2009 (Jeffries, unpublished data). However, this 

observational data was not methodically collected but gives information on 

changes and events observed by the field scientist, such as recent Epilobium and 

Phragmites occurrence in the field. Phragmites was known to have entered the 

RBP in the later years of the pond’s life but an indication to which year were not 

provided. The Phragmites pollen signal in the SNP pollen assemblage was in 

constant abundance from 4 cm to the top of the core, similar to Epilobium, 

confirming these depths were reflecting the later years. Knowing that the 

vegetation record is reflected in the SNP pollen assemblage, this can be used to 

match the pollen assemblages of the RBP and P8 sediment cores, relative to 

each other (discussed in section 7.3). 

Given that these pollen vegetation matches do not indicate substantial similarities 

between the two records, it can be concluded that the SNP pollen record does 

partially reflect the vegetation record but cannot singularly be used for substantial 

dating. 
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Table 4: The vegetation monitoring record (Jeffries, 2008) and observational data 

(Jeffries, unpublished data), which describes the vegetation composition during that year 

is presented in the two left columns. The two right columns show the SNP pollen record 

and depth (cm) where there is a possibility that the pollen taxa in the sediment record 

reflect the vegetation monitoring record.   The greyed-out cells do not have any possible 

matching information between the vegetation and pollen record. 

Date Vegetation monitoring (Jeffries, 
2008) and observational data 
(Jeffries, unpublished data) 

Depth 
(cm) 

SNP pollen record 

2013 
Observational data of Epilobium in 
high abundance around the SNP SWB 
(Jeffries, unpublished data). 

 

Epilobium continues to be 
present from 4 cm to the top 
of the core. 

2012 

Eleocharis palustris, Carex glauca and 
Carex ortubae present simultaneously. 
Epilobium palustre present. 
Schoenoplectus lacustris and 
Filamentous algae present. 

 

2011 

Vegetation monitoring does not record 
Epilobium palustre and there is a 
decrease in Eleocharis palustris. Small 
peak in Leptodictyum riparium. 

 

2010 

Observational data of Epilobium 
palustre in high abundance around the 
SNP SWB (Jeffries, unpublished data) 
and also recorded in the vegetation 
record. Eleocharis palustris present 
with a small increase in Carex glauca. 

 

2009 

Observational data of Epilobium in 
high abundance around the SNP SWB 
(Jeffries, unpublished data) and also 
present in the vegetation dataset. 
Small increase in Eleocharis palustris 
and Carex glauca. 

 

2008 
Slight dip in Agrostis/Alopecurus and 
Eleocharis palustris. Increase in 
Leptodictyum riparium. 

  

2007 Slight increase in Agrostis/Alopecurus.   

2006 

Slight increase in Agrostis/Alopecurus 
and presence of Carex glauca. 
Decrease in Eleocharis palustris and 
small peak in Chara vulgaris and 
Glyceria fluitans. 

  

2005 

Decrease in Agrostis/Alopecurus, 
peak in Eleocharis palustris and 
Ranunculus aquatilis peaks at its 
highest. Increasing Schoenoplectus 
lacustris. 

6 - 5 

Slight decrease in Poaceae 
undiff.. Lemna minor and 
Phragmites both have high 
presence at this depth. 

2004 
Decreasing Agrostis/Alopecurus, Peak 
in Ranunculus aquatilis. 

  

2003 
High presence of Agrostis/Alopecurus, 
Eleocharis palustris. A decreased 
presence of Ranunculus aquatilis. 

7 - 6 Increase in Poaceae undiff.. 
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2002 
Increase in Agrostis/Alopecurus, 
presence of Carex glauca. No Chara 
vulgaris. 

2001 
Increase in Leptodictyum riparium and 
Ranunculus aquatilis. Decrease in 
Chara vulgaris. 

9 -7 
Poaceae undiff. very low 
presence, one of the lowest 
in whole sediment core. 

2000 
Chara vulgaris peaks at its highest in 
all the years. Agrostis/Alopecurus very 
low presence. 

1999 

Beginning of Eleocharis palustris 
which continues to the top of the core. 
Agrostis/Alopecurus very low 
presence. 

1998 
Chara vulgaris peaks at its second 
highest. Lowest amount of moss 
(Leptodictyum riparium) over all years. 

 
 

1997 

Agrostis/Alopecurus, Compositae 
seedling, Pulicaria dysenterica, 
Rumex crispus and Ranunculus lingua 
peak. 

15 
Poaceae undiff. second 
highest presence in whole 
core. Ranunculus present. 

1996 
Pond just created. Callitriche's only 
presence. Chara vulgaris and 
Ranunculus aquatilis presence. 
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7.2.6 Crop record identified in the sediment pollen record 

The following section discusses the identification of crop records (Table 3) in the 

SNP pollen assemblage, which is illustrated in Figure 30. The pollen signal of 

different SWB types within the same field show that despite the SWBs being near 

the same vegetation, some pollen taxa are recorded differently. The list of crops 

which were sourced from the farmer owning the fields surrounding the study site 

(Table 3), were compared with the crops groups in all of the SWB pollen 

assemblages, but only four possible similarities were identified in the SNP pollen 

assemblage.  

In 2000 and 2001 Zea mays and Avena sativa in 2010 are known to have been 

growing nearby the site (<1000 m) but this pollen record was only visible in the 

SNP and no other SWB studied. These large grains’ dispersal ability is known to 

be poor and the chance of long distance transport is very low (Tweddle et al., 

2005) (see section 7.1.) and partly explains why these grains were only recorded 

in the SNP pollen assemblage. Another reason for this pollen signal only being 

present in the SNP could be due to the type and size of the SWB. The constructed 

pond P8 is 1m2 in size, which is a limited area to catch pollen grains therefore 

ponds of that size are estimated to record less pollen taxa than larger lakes, since 

their PSA is lower than that of larger lakes (Sugita, 1994). Coupled with the poor 

dispersal ability of the crop grains, the chances of dispersal into that pond are 

very low.  

In 2001 Brassica rapa and Zea mays was planted in the fields nearby. In the SNP 

a peak in Brassicaceae and Zea mays is observed at 8 cm, suggesting that this 

layer corresponds to the year 2001 (Figure 30). This is supported by the presence 

of Secale cereale at 11-9 cm and 6 cm which was recorded in 2002 and 1998. 

However, there were some uncertainties involved as the match in pollen record 

to Brassica rapa was made with Brassicaceae undiff. During pollen identification, 

especially with the SNP sediment samples, a number of Brassicaceae grains 

were damaged on the exine which limited identification below family level. The 

corrosion of pollen grains might have also been an artefact of oxidation or 

reworking at times when the sediment was not fully submerged in water (e.g. 

during a dry year). The timescale of this deterioration of pollen grains in the 

sediment through oxidation is unknown and could be 1-2 years of exposure or 

several tens of years (Lowe, 1982; Bunting, 2008). This interpretation of Brassica 
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rapa and Zea mays in 2001 being represented in the SNP at 8 cm was 

substantiated by the presence of Secale cereale above (6 cm) and below (11-9 

cm) the pollen signal can probably be correlated to 2002 and 1998, respectively, 

in the crop record (Table 3). In 1996, the date of pond construction, there was 

Brassica rapa recorded in the crop record. At the base of the SNP sediment core, 

there was Brassicaceae present between 19-16 cm which was the only presence 

before the Brassicaeceae peak at 8 cm to 2001.  

The four years 1996, 1998, 2001 and 2002, that have been assigned to pollen 

assemblages in the SNP sediment core match the years from the comparison of 

vegetation monitoring record and pollen assemblage. The first match at 11-9 cm 

represents 1998, and was in-between two identified vegetation monitoring 

records and pollen assemblage matches at 15 cm (1997) and 9-7 cm (1999-

2001). The years 1999-2000 were identified by low proportions of Poaceae in 

both the pollen (9-7 cm) and vegetation record (Table 4). Therefore, the presence 

of Brassicaceae undiff. and Zea mays pollen in the pollen assemblage and crop 

record of Brassica rapa and Zea mays at 1998 fits in with the implication that 9-7 

cm represents 1999-2001. The final date implied from the pollen assemblage at 

6 cm reflecting the crop record in 2002 did match the inferred date from the 

vegetation and pollen record (7-6 cm 2002-2003). 
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Figure 30: SNP percentage pollen diagram illustrated with green circles around the pollen taxa in the crops group, which could potentially reflect the 

crop and year on the right-hand side of the diagram. D
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7.3 Comparison of pollen records between all SWBs for relative 

dating 

The comparisons between the pollen records of the different SWBs show that 

there were some similarities in the occurrence of taxa which were used for relative 

dating. Figure 31 shows three pollen percentage diagrams from SNP, RBP and 

P8, which illustrate similarities in Pinus, Epilobium, Lycospora and Phragmites. 

P29 could not be used for comparison as the sampling resolution of 1 cm for 6 

cm of sediment is not high enough. Figure 31 illustrates the four similarities 

identified between the pollen assemblages of the SNP, RBP and P8. There was 

a high amount of reworking in the constructed ponds from annual sampling by 

Jeffries (2008) and bioturbation (section 7.2.2) which could be seen in the pollen 

assemblage of P8 but still illustrated some similarities with the SNP and RBP 

pollen assemblages (Figure 31).  

There were similar fluctuations in the pollen percentages of Pinus in all of the 

SWBs. Pinus pollen grains are large, easily transported over long distances due 

to their grain morphology, are highly abundant (Zanni & Ravazzi, 2006), and 

therefore have a higher opportunity to enter the sedimentary record. High pollen 

percentages of Cyperaceae undiff. were identified at the same depths as the 

peaks in Pinus pollen but due to their consistent presence in all SWB sediment 

cores, no specific comparable peaks could be identified.  Cyperaceae is one of 

the largest flowering plant families (Wichelen et al., 1999), occurring widespread 

in the margin of ponds and wet lowlands (Swan, 1993) and are an indicator of 

wet conditions (Anupama et al., 2014). They appeared to enter the pollen record 

successfully and as prolific as Pinus, explaining why these two pollen signals 

were comparable between SWB types. Cyperaceae pollen grains were also well 

represented in SWB surface sediment samples which were close to the 

vegetation mapping locations but not registered in the mapping locations. 

Therefore, the source of Cyperaceae through the whole sediment profiles of the 

SWBs must be originating from the same source which was not covered during 

mapping.  

Similarities in Epilobium were identified in the SNP and RBP pollen assemblages 

but did not occur in P8. The dispersal ability of Epilobium, (section 7.1) and PSA 

of P8 being small explains why it did not enter the sedimentary record. Epilobium 
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occurred in the SNP 12-8 cm and in the RBP 7-5.5 cm which were near the centre 

of both sediment cores. A Pinus peak in the centre of all SWB pollen 

assemblages coincided with the Epilobium peak in the SNP and RBP 

demonstrating the ability to relatively date the sediment cores. Inferring an 

approximate date to the Epilobium and Pinus peaks in the SNP, RBP and P8 

sediment cores could not be concluded from the observational data by Jeffries 

(unpublished data) because Epilobium was recorded in high abundance during 

2009, 2010 and 2013. 

The presence of Lycospora (see section 7.2.2) can be identified at the base of 

the SNP (19-17 cm), RBP (9.5-7 cm) and P8 (5.5-3.5 cm), which is highly likely 

to be due to reworking of the sediments during the early stages of their formation. 

The Phragmites were known to have entered the RBP in the later years of the 

SWB’s life by field observations (Jeffries, unpublished data), but an exact date is 

not known. The increased abundance of Phragmites pollen in the RBP pollen 

assemblage (3-0.5 cm) suggests that this signal is from the Phragmites growing 

in the RBP, which is also identified in the modern pollen samples. The SNP and 

P8 show an increased presence of Phragmites at the top of the core (5-1 cm and 

3-0.5 cm respectively) which also suggests that this pollen signal was being 

contributed to from the RBP’s Phragmites. The pollen signal of Lemna minor 

occurred at the beginning of this Phragmites peak, which suggested to reflect 

three possible years of 2005, 2010 or 2012 (see section 7.2.4).  

The different SWBs’ pollen assemblages from the SNP, RBP and P8 had 

illustrated that relative dating is possible. The blue lines indicated on Figure 31 A 

correspond to the absolute dates obtained for the SNP pollen assemblages. 

Utilising these dates in relation to the relative matches of the pollen records 

between SWBs, can approximate ages for the RBP and P8. The presence of 

Phragmites at the top of the sediment cores was suggested to be 2002/2005. 

Derived from the testate amoebae assemblage for the RBP, 5 cm is suggested 

to be either 1997 or 2005; relative dating using the crop record indicates that 5 

cm in the RBP is more reflective of 2005 than 1997. The matches between pollen 

and vegetation monitoring, crop record and pollen, testate amoebae, rainfall and 

Lycospora/Lemna minor indicate that 6-5 cm was reflective of 2002 or 2005. 

However, the inability to correlate the testate amoebae records and 
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Lycospora/Lemna minor peaks with specific years of high rainfall, especially 

2005, 2010 or 2012, concludes that a definitive date cannot be inferred. The 

presence of Lycospora at the base of the RBP and P8 sediment cores correlate 

to 1997 in the SNP. Epilobium presence in the RBP at 7-5.5 cm suggests a 

correlation to 1998. From the Pinus peaks in all three SWBs it can be inferred 

that 5 cm in P8 corresponds to 1998.   
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Figure 31: A: SNP Pollen assemblage with the inferred absolute dates, indicated with the blue lines, B: RBP Pollen assemblage and C: P8 pollen 

assemblage. Points 1-4 refer to the pollen taxa with a similar occurrence (circled in red) in each SWB pollen assemblage and are connected by red 

lines.  

D
is

c
u

s
s
io

n
 



Discussion 

103 
 

7.4 Concluding argument for dating the SNP  

The pollen and testate amoebae assemblages from the SNP sediment core 

matched with some results from the vegetation monitoring, crop and rainfall 

records. The arguments supporting each of these individual interpretations 

collectively support the assignment of certain sections of the sediment core to 

specific years.  

Table 5 presents the inferred dates for the sections of the SNP sediment core. It 

is suggested with moderate certainty that the reworking within these SWBs are 

responsible for the pollen and testate amoebae signal to be mixed over a few 

centimetres. Wet periods derived from the testate amoebae depths in the SNP 

and RBP could be matched to the rainfall record but the C/N ratios did not 

substantially indicate wetter environmental conditions. However, using the habitat 

information for testate amoebae together with the pollen record, allows the 

identification of wetter conditions. The two significantly wet periods in 2010 and 

2012 which could not be identified could be due to two main factors, Firstly, the 

very recent age of the sediment core and secondly, that the palynological signal 

was not recorded in the sedimentary record as a consequence of reworking.  
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Table 5: Table illustrating the inferred dates for sections of the SNP sediment core. The 

depth (cm) shown in relation to the date inferred from each dataset which was supported 

by the other records. Veg-Pol: Vegetation monitoring record compared with the pollen 

assemblage. Crop-Pol: The crop record compared with the pollen assemblage. TA-RF: 

Testate amoeba compared with the rainfall and Lyc-Lem is the Lycospora and Lemna 

minor indicating high rainfall. ** Refers to the remaining two dates which were 

unaccounted for and therefore that inferred date was more uncertain. Age A/D is the 

concluding ages inferred for depths of the SNP sediment core. 

Depth 
(cm) 

Veg-Pol 
Crop-

Pol 
TA-
RF 

Lyc- 
Lem 

Age/AD 

0      

1      

2      

3      

4      

5 

2005 

   

2002-2005 
6 2002 

2005 
** 

2005 
** 

7 

1999-2001 

    

8 2001   2001 

9 

1998 

  

1998 10    

11    

12      

13   1997 
1997 

1997 14    

15 1997    

16      

17  1996   1996 

18      

19      
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7.5 Palynology as a tool for reconstructing carbon burial rates 

7.5.1 Estimations of the sedimentation rate for the SNP 

The sedimentation rate of a lake or pond is important factor to know when 

calculating the store of carbon, as an uneven input of sediment and reworking 

can affect burial (Mackay et al., 2012). Figure 32 illustrates an increase in 

sedimentation over the past 20 years, where five possible age points were 

identified for the SNP, 1996, 1997, 1998, 2001 and 2002-2005, the latter with a 

higher uncertainty. The identified reworking in the SNP pollen and testate 

amoebae assemblages resulted in slightly different depths for what was 

acknowledged to be the same time period (1997 and 1998). The uncertainties 

surrounding each date inferred for the SNP must be taken into account when 

attempting to use the sedimentation rates for carbon sequestration estimations. 

The accuracy of dating the RBP and P8 were limited to relative dating and could 

not be used to estimate sedimentation rates.  

The calculation of carbon burial rates is affected by compaction during sediment 

sampling (Pitmann et al., 2013). The sampling method used to extract the 

sediment cores in this study accounted for compaction. Consequently, the 

sampling method and the proxies used to obtain dates was a successful 

combination to work as a tool in obtaining dates for short sub recent SWB 

sediment cores.  

The estimations of the sedimentation rate in these SWBs are not affected by the 

typical problems encountered for larger lakes such as sediment focusing (fine-

grained sediments settling in deeper sections of the lake) or wind-induced 

currents which are major changing factors to carbon burial rate calculations 

(Mackay et al., 2014). The rate of sediment accumulation and the subsequent 

calculation of carbon burial within that sediment can affect the estimations for the 

whole SWB. Therefore, these inferred dates achieved for the SNP and the 

estimations of the sedimentation rate could be used to estimate carbon burial 

rates in the SWB but must be used as estimations only, since the chronology is 

not entirely robust. 
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Figure 32: Estimations of the sedimentation rate for the SNP SWB sediment core based 

on the absolute dating interpretations inferred from results of the pollen, testate 

amoebae, vegetation, crop and rainfall records.   
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8 Conclusions  

This thesis has demonstrated an application of high resolution pollen analysis on 

short sub-recent (<20 years) SWB sediment cores. The main findings are: 

 Success in dating the SNP SWB to an arguable level of certainty for each 

date inferred which were 1996 at 17 cm, 1997 at 15-13 cm, 1998 at 11-9 

cm, 2001 at 8 cm, and 2002-2005 at 6-5 cm. 

 It is evident from the modern pollen surface samples and vegetation 

mapping that the location of vegetation to the pollen sink is important and 

the type of vegetation (low growing vegetation) and pollen grain 

morphology affects dispersal and pollen representation.  

 The vegetation monitoring record did not consistently identify wet or dry 

periods, as a possible consequence of data collection, and there were no 

similarities identified between the vegetation record and pollen 

assemblages of the RBP, P8 or P29 SWB sediment pollen record.  

 The SNP pollen record did partially reflect the vegetation record and the 

inferred dates correlated with the testate amoebae, crop and rainfall 

records. 

 The comparison of the SNP pollen assemblage with the crop record 

revealed four possible dates 1996, 1998, 2001 and 2002 at 17 cm, 11-9 

cm, 8 cm and 6 cm respectively. These dates correlated with the inferred 

dates from the comparison between the vegetation monitoring record and 

pollen assemblage, testate amoebae and rainfall record and Lycospora-

Lemna minor reworking observation. 

 Wetter environmental conditions were inferred due to the testate amoebae 

assemblages in the SNP and RBP, which also correlated, within 1 cm of 

sediment, with the pollen signal of Lycospora and Lemna minor. 

 The interpreted reworking of sediment in the SNP, indicated by Lycospora, 

and subsequent rise in Lemna minor pollen, and Centropyxis testate 

amoebae signal correlated with the rainfall record. It was suggested 13 cm 

reflected 1997 but a definitive match at 6 cm to either 2005, 2010 and 2012 

could not be made. 
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 The C/N ratios suggested terrestrial input during peaks in Lemna minor 

supported the inference of wetter environmental conditions/possible 

flooded periods  

 The similarities between the SWBs revealed that relative dating for the 

RBP and P8 could be achieved by using the dates obtained for the SNP 

sediment core. 

 The 1m2 constructed SWBs were not suitable for the calculation of 

sedimentation rates, and consequently carbon burial rates as there is a 

minimum size required. 

 The estimations of the sedimentation rate in the SNP could be used to 

estimate carbon burial rates in the SWB but must be used as estimations 

only, since the chronology is not entirely robust. 

 The results from this research has shown the ability to obtain dates for 

recent sediments in SWBs which can be applied to other SWBs around 

the world, and can be used to investigate carbon cycling and asses their 

impact on the carbon budget.  

8.1 Further research 

It is suggested that investigations using a similar methodological approach to 

obtain dates as used in this study, should not use sediment cores <19 cm 

from SWBs which have a high amount of vegetation growing within the pond 

or be the same size or smaller than 1m2. The effects of pollen grain 

morphology, dispersal and the size and type of SWB limits the use of 

palynology for the reconstruction of absolute dates. It is proposed that future 

research focuses on coring short sub-recent (<20 years) sediment cores in 

SWBs similar to the SNP using a similar methodology, to test if dates can be 

reconstructed in another SWB.  
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