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INVITED ARTICLE

Dyes as guests in ordered systems: current understanding and future directions
Mark T. Sims

Department of Chemistry, University of York, York, UK

ABSTRACT
The optical properties of dyes dissolved in liquid crystals have led to their proposed use in a
diverse range of practical applications. Such guest–host systems are typically required to fulfil a
range of criteria relating to their absorption properties, degree of alignment and stability, but
concurrently satisfying these requirements has proven a barrier to their widespread use. In this
article, many of the proposed applications and their requirements are discussed, and an outline of
some of the most prevalent classes of dye proposed in the context of guest–host systems is
given, along with a summary of recent reports of dyes that exhibit thermotropic mesophases.
Theoretical approaches to describing the alignment within guest–host systems are outlined, and
possible strategies for the future rational design of guest–host systems are discussed.
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1. Introduction to guest–host systems

The anisotropic properties of a system comprising a
guest dye dissolved in an aligned liquid-crystalline host
were first reported in 1968,[1] arising from the combi-
nation of the bulk liquid crystal host alignment and the
anisotropic shape and absorption characteristics of the
dye molecules. Such a system is shown schematically in
Figure 1. In this first report, the ability to switch the
bulk absorption characteristics of a guest–host mixture
with the application of an electric field was noted, and
unsurprisingly, this ability to readily switch the bulk
optical characteristics of a material led to immediate
suggestions for such guest–host systems to be used in
display applications.[2,3]

White and Taylor published the first report of the
construction of such a device,[4] and it was realised
that these devices offer potential benefits over other
modes of liquid crystal display, because the use of

guest–host systems potentially negates the need for
backlights and polarisers, offering bright, low-power
displays.[5] Subsequently, a variety of different modes
of guest–host display device were proposed and tested,
[6,7] such as the dual layer device shown in Figure 2,
and have been discussed in detail elsewhere.[5]

Aside from the obvious potential for use in display
applications, the desirable optical properties exhibited
by guest–host systems have resulted in their proposed
use in a diverse range of other applications. The spon-
taneous ordering of guest–host systems, combined with
their polarised absorption has led to suggestions for
their use as precursors for high performance thin-film
polarisers.[8] The incorporation of dyes that undergo
photochemical isomerisation into guest–host systems
gives scope for their use in optical storage devices,[9]
as well as their use in optically controlled diffraction
gratings that exhibit high efficiency and rapid response
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times,[10] and use as active components for the photo-
alignment of liquid crystals.[11–13] The use of multiple
cells with a variety of surface alignment orientations
containing guest–host mixtures can yield devices with
complex polarised absorption properties, and such sys-
tems have been proposed for use in security devices.
[14] Electrically switched guest–host devices have also
been suggested for use within applications outside of
displays, such as in smart windows using polymer-
dispersed liquid crystal hosts that enable the transmit-
tance of the windows to be electrically controlled.[15]
Incorporating fluorescent dye molecules into these
smart windows, and using the windows themselves as
waveguides, potentially enables light absorbed by the
windows in their absorbing state to be used for solar
energy conversion.[16] Combining the optical proper-
ties of chiral nematic liquid crystals with the absorption
properties of guest dye molecules has also lead to
electrically switched laser protection devices being
developed.[17]

One particular application that has been the subject of
a significant amount of research in recent years is that of
liquid crystal lasers.[18] These systems utilise the wave-
length-selective reflection observed in chiral nematic
liquid crystals along with a fluorescent dye molecule as
a guest, enabling lasing along the helical axis of the of the
host. The very small size of these systems gives scope for
arrays of lasers to be contained within a cell, providing
higher outputs than individual discrete lasers,[19] and the
tuneable nature of the selective reflection of the chiral
nematic host enables the lasing of the different individual
discrete lasers to be tuned to different wavelengths.[20]
Such devices potentially offer the prospect of laser projec-
tion displays as well as lasers that are continuously tune-
able across the full range of the visible spectrum.
Incorporation of the lasing mixtures into emulsions has
led to paintable lasing materials which may be applied to
flexible substrates,[21] and the inherent self-organising
nature of the liquid crystals within these devices means
such systems may be very cheap to produce, such as by
inkjet printing,[22] offering the prospect of disposable
lasers.[23]

Outside of the context of their use in devices and
technologies, guest–host systems and the principles
underlying their properties are of great relevance to
many biological studies probing the structure, orienta-
tion and order in membrane systems through the use
of polarised absorption and emission spectroscopy.
[24,25] As well as utilising dyes to probe the nature
of the orientational order in membranes, guest dyes
may be used, for example, to probe properties such as
electric potentials across cell membranes, which relies
on a detailed understanding of the alignment of the dye
molecules within these ordered systems.[26,27]

Despite being applied in very different contexts to
the applications of guest–host liquid crystal systems
described above, many of the underlying principles of
molecular alignment and optical anisotropy within
these systems are common to both areas of research.
It is therefore important that the properties of aniso-
tropic guest–host systems are well understood, but
despite the attention they have received, there still
remains a need to develop widely applicable quantita-
tive structure–property relationships for these systems.

In this article, desirable properties of guest–host
systems are outlined, before typical properties of guest
dyes from different classes in liquid crystal hosts, as
well phases exhibited by dyes themselves, are discussed.
Current theoretical approaches concerning the align-
ment of dyes in liquid crystals are presented, before
potential routes towards the rational design of guest–
host systems are discussed.

Figure 1. (colour online) Schematic diagram of an alignment
guest–host system showing the absorbance of light perpendi-
cular to the director, n, and the transmittance of light parallel
to the director.

Figure 2. (colour online) Schematic representation of a double
layer guest–host display in the absorbing ‘off’ state (left) and in
the transmitting ‘on’ state (right).
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2. Desirable features of guest–host systems for
technological applications

From the work cited in the introductory section above,
it is evident that guest–host systems have the potential
for practical use in an extremely wide range of applica-
tions, but although the proposed uses are diverse, the
guest–host systems themselves are typically required to
exhibit very similar characteristics. Optical anisotropy
is the key feature in common with all the applications
outlined above, and thus a guest–host system must
exhibit a strong absorbance, ideally at a wavelength of
choice, as well as exhibiting a high degree of anisotropy
as shown schematically in Figure 1.

The optical characteristics of the dye(s) used are
therefore critical, and it is a combination of the absorp-
tion coefficient and the concentration (often limited by
the solubility) of a dye within a host that gives rise to
the absorbance exhibited by a mixture. The optical
anisotropy of a guest–host mixture is determined by
the bulk alignment of the transition dipole moments
(TDMs) of the dye molecules, itself arising from a
combination of the alignment of the dye molecules
within the host, and from the alignment of the TDMs
within the dyes. This anisotropy is typically determined
through the use of polarised UV–visible absorption
spectroscopy, for which an experimental set-up for its
determination is shown schematically in Figure 3. In
such an experiment, the absorbance of polarised light
of a sample is measured with the director of the host-
orientated parallel (A‖) and perpendicular (A?) to the
electric vector of the incident polarised light, from
which the dichroic ratio, R, may be determined as A‖/
A?. The dichroic ratio may then be related to the
dichroic order parameter, Sϕ, of the system according
to Equation (1), which may take values between 1 for a
system in which the TDMs are perfectly aligned with
the director, and −0.5 for a system in which the TDMs
lie perpendicular to the director. A system of randomly
oriented TDMs will have a dichroic order parameter
of 0.

Sϕ ¼ R� 1
Rþ 2

¼ Ak � A?
Ak þ 2A?

(1)

Ideally, the dichroic order parameter of a system will
be as close as possible to 1, although measured order
parameters are typically much lower. The minimum
acceptable value of the order parameter is dependent
on the specific application in question, but generally
speaking, a system with a dichroic order parameter of
<0.6 may be considered to have poor alignment,
whereas a system with an order parameter >0.8 may
be considered to be highly aligned. A threshold value of
0.75 has been proposed for certain modes of display
device,[28] but it is highly desirable for the optical
anisotropy to be greater than this.

For many applications, it is also desirable for a
guest–host mixture to exhibit a long useable lifetime
in addition to the optical properties described above.
Many of the proposed applications involve exposure of
the systems to visible radiation (e.g. in displays, polari-
sers, smart windows and lasers) and thus the photo-
chemical stability of a mixture is of paramount
importance. Further, the electrical switching of guest–
host systems (in displays and smart windows) and the
presence of ionic dopants in some systems [29,30]
mean that their electrochemical stability is also impor-
tant. The stability of a dye molecule may be strongly
dependent on its chemical environment, so the stability
of a guest–host system may depend on the nature of
the host mixture as well as that of the dye.

In the context of biological systems, the optimisa-
tion of properties such as dichroic alignment may
not always be as critical as in other applications, but
a detailed understanding of the behaviour of dye
molecules within the oriented host is important for
the interpretation of experimental data. Hence, the
understanding of the features discussed in this sec-
tion, particularly in terms of alignment, are relevant
to the study of orientationally organised biological
systems.

3. Dye classes in guest–host systems

3.1. Azo dyes

Much work has been reported on comparing the
behaviour of different dye classes in guest–host mix-
tures, following the proposed use of the systems for
display devices. Azo dyes containing the azo (–N=N–)
linkage group are the largest class of commercial dyes,
and they produce coloured compounds due to the
electron delocalisation that arises from aromatic sub-
stituents appended to both ends of the azo group.
Their widespread use in a range of applications is

Figure 3. (colour online) Schematic diagram of the experimen-
tal set-up for measuring the polarised absorbance of an aligned
guest–host sample.
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principally due to the ease and versatility of their
synthesis, enabling a wide range of structures and
resultant colours to be obtained, as well as due to
the intense colours they exhibit.[31] After having
been used in the first report of the guest–host effect,
[1] azo dyes have subsequently been widely studied as
candidates for use within guest–host systems. Their
use has been largely due to the rod-like shape of the
chromophore, which generally results in both good
alignment of the molecules within a liquid–crystalline
host and good alignment of the TDMs within the
dyes.[4,32] The range of accessible synthetic modifi-
cations enables the optical properties of azo dyes to be
tuned by using a variety of substituents. Early studies
yielded azo dyes with a range of absorption maxima
and colours, which exhibit order parameters of >0.7 in
nematic hosts.[7] Further work incorporating ester
groups into the structures yielded azo dyes with
order parameters of >0.8.[33] As well as their good
optical and alignment properties, the solubilities of
azo dyes in liquid–crystalline hosts tend to be high,
[34,35] enabling devices using azo compounds to
exhibit intense colours and high-contrast ratios.
However, despite the positive characteristics outlined
here, azo dyes are generally considered to be imprac-
tical for applications in commercial devices due to
their poor stability. The stability within the azo dye
class has been shown generally to be better for red and
yellow dyes than for blue and violet dyes, although
there is still a tendency for all of the dyes to degrade
over time.[28,32,36,37]

3.2. Anthraquinone dyes

Anthraquinone dyes are another important class of com-
mercial dyes, and they are based upon the fused ring
chromophore shown in Figure 4. A range of substituents
may be used around the structure to obtain a full range of
colours, although typically the colours of anthraquinone
dyes are weaker than those of azo dyes.[31] In the context
of guest–host systems, anthraquinone dyes are attractive

due to their stability. In particular, their light-fastness
properties are generally superior to those of azo dyes,
[31] resulting in a significant amount of research into
anthraquinone dyes in the context of liquid crystal
applications.

The molecular structure of the anthraquinone
chromophore does not lend itself as readily to creat-
ing rod-like structures as the azo chromophore does.
This possible drawback is evident from order para-
meters in the region of 0.6 in nematic hosts obtained
for anthraquinone dyes with a range of colours,
obtained from using various hydroxyl and amine
substituents in the 1-, 4-, 5- and 8-positions.[28]
Synthesis of anthraquinones with a wider range of
amine-based substituent groups resulted in order
parameters of up to 0.7 being achieved for com-
pounds with a range of colours in nematic hosts.
[38] It was subsequently found that the use of sul-
phide substituents yielded materials exhibiting order
parameters higher than 0.8 in nematic hosts in some
cases.[39] More rod-like anthraquinones have been
investigated by adding substituents in the 2-, 3-, 6-
and 7-positions, providing relatively high order para-
meters in nematic hosts, but the high degree of
alignment displayed by these compounds is still not
obtained as readily with as wide a range of colours as
that obtained with azo dyes.[39,40]

The solubility of anthraquinone dyes in liquid crys-
tal hosts has generally been found to be lower than that
of azo dyes,[34] especially in the case of sulphide-sub-
stituted anthraquinones.[41] Greater solubility has
been observed for asymmetric dyes compared with
symmetrically substituted dyes, but at the cost of ease
of synthesis.[39,42–44]

3.3. Other dyes

Although studies of azo dyes and anthraquinone dyes
dominate the literature relating to guest–host systems,
particularly in the context of display applications, a
significant body of work has also been carried out on
the behaviour of other chromophores in liquid crystal
hosts, albeit to a lesser extent. Examples of the typical
properties of some of these different dye structures
alongside those of azo and anthraquinone dyes are
summarised in Table 1.

More recent work in the context of liquid crystal
lasers has prompted further comparisons of dyes in the
context of guest–host systems, but with slightly differ-
ent requirements than those in displays. For laser
applications, the order parameter of a dye is not as
crucial to its practical use as it is for display applica-
tions, although the orientation of the TDM of a dye can

Figure 4. Structure and atom numbering of the anthraquinone
chromophore.

2366 M. T. SIMS

D
ow

nl
oa

de
d 

by
 [

N
or

th
um

br
ia

 U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

4:
05

 0
5 

D
ec

em
be

r 
20

17
 



affect the lasing wavelength,[55] and the order para-
meter can determine the efficiency of the laser.[56] For
lasing to occur in a liquid crystal laser, a high molar
absorption coefficient, a high quantum yield of emis-
sion and a high degree of stability and solubility are all
important characteristics,[55] and as such, studies have
focused on different dye classes to those above, such as
merocyanines,[57] pyrenes,[58] anthracenes [55] and
pyrromethenes.[57] Some examples of structures from
these dye classes are shown in Figure 5.

4. Dyes as thermotropic liquid crystals

The formation of lyotropic liquid crystal phases from
certain dye structures is well known and covered exten-
sively in the field of chromonic liquid crystals,[59,60]

but the formation of thermotropic liquid crystal phases
from dye molecules has, until recently, been virtually
unreported. Early reports on studies of tetrazine dyes
identified liquid-crystalline phases exhibited by the
dyes themselves,[61,62] and although devices tend not
to utilise dyes alone as the anisotropic medium, the
solubility of these compounds was found to be parti-
cularly high (10–20 mol%) in other nematic hosts.[45]

Much more recently, there have been reports of
dyes from other classes exhibiting mesophases them-
selves, including compounds based on the typically
much more stable benzothiadiazole,[63] anthraqui-
none [64] and indigo [65] chromophores, and exam-
ples of these are shown in Figure 6. Such studies
demonstrate the potential for a high degree of com-
patibility between guests and hosts, potentially

Table 1. Examples of structures from different dye classes proposed for use in guest–host systems, along with typical reported
properties in nematic hosts.

Reported properties

Dye classes Example structures Sϕ Stability Notes

Azo [7,33–37]
N
N N

N N

0.7–0.8+ Poor High solubility

Anthraquinone [28,39,41]

O

O

S

S

R

R

S

S

R

R 0.6–0.8 Good Low solubility

Tetrazines [45,46]

N N

NN
R2R1

0.5–0.8 Moderate Weak absorbance
High solubility

Naphthalimides [47–50]

N

O

O

R2
R1

0.4–0.6 Good Fluorescent

Perylenes [51,52]

R1

R2 R4

R3

≤0.7 Good Fluorescent

Acenequinones [53] O

O

R1

R4

R2

R3

0.7+ – Fluorescent

Benzothiadiazoles [54]

NN
S

R2R1
0.7+ – Fluorescent
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providing a route to overcoming solubility difficulties
such as those outlined for anthraquinones above,
enabling mixtures exhibiting intense colours to be
formulated, and enabling chromophores previously
discounted for use in guest–host systems on solubility
grounds to be considered.

5. Dye alignment models and theoretical
approaches

As described above, optimisation of the dichroic order
parameter of a guest–host system is critical when

choosing guest and host species for use in many
guest–host applications, and both the molecular align-
ment of the dye within the host and TDM alignment
within the dye need to be optimised for a system to
exhibit a high degree of optical anisotropy.

Quantitatively, these two contributions to the
dichroic order parameter, Sϕ, of a guest–host system
may be expressed by Equation (2), where Sθ is the
order parameter of the long molecular axis of the dye
within the host, and Sβ is the order parameter of the
TDM within the dye.[66] The angular brackets denote
an ensemble average value of P2 (cos θ) values from
which Sθ is derived, arising from a range of angles, θ,
between the long molecular axes of the dyes and the
host director. In contrast, whereas the TDM is typically
assumed to be fixed at a single angle, β, against the long
molecular axis of the dye.[28] This relationship
between the contributions to the order parameters
arises from the closure relation of Wigner functions
used to describe the translation of the molecular frame
into the laboratory frame,[67–69] and Equation (2)
only strictly holds for uniaxial molecules in a uniaxial
phase; as such, any contributions from molecular and
phase biaxiality are assumed to be zero. The relative
orientations relating to this model are shown in
Figure 7. This model is valuable in terms of rationalis-
ing observed order parameters, for example, enabling
the negative dichroism of some azo and anthraquinone
dyes to be rationalised and providing estimates for
values of β.[70–72]

Sϕ ¼ SθSβ ¼ P2 cos θð Þð Þ P2 cos βð Þð Þ (2)

The contributions from the molecular and TDM align-
ments may be related directly to the absorbance, A, of
an aligned sample, discussed above, typically using

Figure 5. Examples of structures from different dye classes proposed for use in liquid crystal lasers.

Figure 6. Examples of benzothiadiazole (top), anthraquinone
(middle) and indigo (bottom) dye structures that exhibit thermo-
tropic liquid crystal phases (SmA = smectic A, SmC = smectic C,
N = nematic).
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Equation (3),[28,73–75] where ψ is the angle between
the host director and the electric vector of the polarised
light, ε is the molar absorption coefficient of the dye
and c is the concentration of dye in the sample of path
length, l. However, this expression may be given in the
much simpler and more intuitive form shown in
Equation (4).

A β;ψð Þ ¼ εcl
Sθ
2
sin2βþ 1� Sθ

3
þ SθSβcos

2ψ

� �
(3)

A β;ψð Þ ¼ εcl
1
3

2SψSθSβ þ 1
� �

(4)

Equations (3) and (4) appear to provide an approach to
determining the order parameter, Sϕ (=SθSβ), based on
the cos2 ψ dependence of A, by measuring the absor-
bance of an aligned sample at many values of ψ and by
fitting the resultant absorbances to a cos2 ψ function.
This approach theoretically results in a more accurate
order parameter than that obtained from Equation (1),
for which just two absorbance values, measured at
ψ = 0° and ψ = 90°, are used. Such an approach may
be appropriate for a non-birefringent sample, but
most liquid crystal hosts exhibit birefringence, and

consequently the absorbance of an aligned sample
may not simply vary as a function of cos2 ψ.[76–78]
However, at ψ = 0° and ψ = 90°, the electric vector of
the polarised light is aligned with one of the two optical
axes of a birefringent sample, such that Equation (1)
holds under these two conditions.

For a more thorough theoretical description of the
contributions to the dichroic order parameter, a logical
step is to incorporate terms arising from molecular
biaxiality, as it is well established that some degree of
molecular biaxiality is usually present even in uniaxial
phases,[79] and chromophores commonly comprise
planar structures that may be expected to exhibit a
greater degree of biaxiality than typically more rod-
like host molecules. In the context of the cone model
shown in Figure 7, the additional terms result in an
asymmetric distribution of the TDM (red) about the
long molecular axes (blue).

If the Wigner functions arising from molecular
biaxiality are considered, Equation (5) is obtained,
where Sxx − Syy is the biaxial order parameter of the
dye molecules,[69,79,80] and α is the Euler angle
describing the orientation of the TDM in the xy plane
of the molecular frame. For rod-like dye structures that
exhibit relatively high order parameters, it is immedi-
ately apparent that the term arising from molecular
biaxiality need not be considered as the sin2 β term
will be very small. However, in the case of dyes that
exhibit negative dichroism, this term will be larger, and
may be significant in terms of the overall order
parameter.

Sϕ ¼ SθSβ þ 1
2

Sxx � Syy
� �

sin2β cos 2α
� �

(5)

Regardless of the specific assumptions imposed, split-
ting the dichroic order parameter into contributions
from the molecular and TDM alignments is appealing
from a theoretical standpoint as the two independent
contributions may be considered separately.

6. Rational design of guest–host systems

The real barrier to the widespread practical application
of dyes in liquid crystals appears to be the combination
of the different properties that must be optimised con-
currently. For example, some azo dyes may be consid-
ered to fulfil the desired absorption and optical
anisotropy characteristics, but lack the stability
required, whereas some anthraquinone dyes may fulfil
the stability requirements, while falling short of the
alignment or optical requirements.

In the context of alignment, an intuitive approach to
dye design is simply to consider molecules of higher

Figure 7. (colour online) Schematic visualisation of the orienta-
tions of the host molecules (green) the dye molecules (blue)
and the transition dipole moments of the dyes (red) in a guest–
host system relative to the director, n.
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aspect ratio when improvements in alignment are
required. Indeed, this is a common theme in the guest–
host literature,[75,81,82] and unsurprisingly guest–host
systems comprising more rod-like dye structures do tend
to exhibit higher order parameters than those using less
rod-like dyes. However, elongation of dye structures can
come at a cost, for example, in terms of switching times
and solubility.[82] Relatively recently, it has been shown
experimentally that increasing the rod-like nature of a dye
is not necessarily the only way to increase the order
parameter. The incorporation of triptycene end groups
on to an anthraquinone dye has been demonstrated to
result in an increase in its dichroic order parameter,[83]
as shown in Figure 8, and this effect is thought to be due
to the ‘internal free volume’ of the substituent triptycene
groups.

This example of the complex behaviour observed for
just one of the many properties of dyes which must be
optimised, suggests that rational-design approaches that
enable ‘screening’ of candidate dyes, and/or guest–host
systems as a whole, are highly desirable and may be pre-
ferable tomore trial-and-error-based synthetic approaches.

The simulation of molecular alignment in anisotropic
phases using molecular dynamics (MD) simulations has
become increasingly accessible with ever increasing
computational resources and the development and
assessment of force fields for liquid crystal simulations.
[84,85] There are now multiple reports of simulations of
guest molecules within liquid crystal hosts, providing
favourable comparisons with results of electron
paramagnetic resonance [86–88] and nuclear magnetic
resonance [89,90] experiments, as well as providing
assessments of the validity of mean field models of
molecular alignment.[91]

The increase in computational resources has also
made electronic structure calculations more accessible
with time. Density functional theory (DFT) calculations

on relatively large molecules are now routine, and time-
dependent density functional theory (TD-DFT) calcula-
tions have been shown to predict the absorption proper-
ties of many dyes well. Some studies have reported
calculations of dye TDM orientations in the context of
liquid crystal applications,[92–95] and more recent stu-
dies in more diverse fields have also focussed on the
orientations of electronic TDMs. For example, in the
contexts of chromophores in organic light-emitting
diodes,[96] protein fluorescence,[97] and energy transfer
in chlorophyll,[98] time-resolved spectroscopy has been
combined with electronic structure calculations enabling
assessment of the validity of the calculations.

Combining the results of an MD simulation of
anthraquinone dye molecules in a nematic host with
those of TD-DFT calculations of the dye has enabled
the calculation of a dichroic order parameter for a dye
in a liquid crystal host without any direct input of
experimental data, using Equation (2).[99] A snapshot
of the MD simulation is shown in Figure 9. In this
study, the high experimental dichroic order parameter
was primarily attributed to the high degree of align-
ment between the TDM and the long axis of the dye,
also shown in Figure 9. Some equivalent studies have
also been carried out for biological systems, combining
MD simulations and electronic structure calculations
to determine the orientation of probes in a phospholi-
pid membrane,[100,101] and in the context of design-
ing fluorescent probes to mimic the alignment
behaviour of biological molecules.[102]

A further comparative study of five anthraquinone
dyes proposed for use within guest–host systems has

Figure 8. Two 1,5-diamine substituted anthraquinone dye
structures and their order parameters in a nematic host.[78].

Figure 9. (colour online) A snapshot of a liquid crystal guest–
host MD simulation (left) showing the dye molecules in orange
and the host molecules in translucent grey. The visible TDM
(red) and long molecular axis (blue) are also shown overlaid on
the DFT-optimised structure of the dye (right).
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provided insights into structure–property relationships
of the dyes.[103] Variations in dye colour have been
rationalised in terms of the electronic properties of the
dye substituents, and reported trends in absorption
anisotropy have been rationalised in terms of TDM
orientations and molecular aspect ratios, determined
from the results of DFT and TD-DFT calculations.
Electronic structure calculations of oxidised and
reduced forms of the dyes studied also enabled redox
potentials of the dyes to be calculated, providing a good
match with experimental values.[103] Such calculations
may be used to provide indications of the stability of
compounds proposed for use within guest–host sys-
tems, again without direct input of experimental data.

In principle, this range of computational techniques
enables such screening to be carried out, and may
provide a method of targeting synthetic approaches
towards likely candidate dye molecules for use within
guest–host systems.

7. Conclusions

In the decades following the discovery of the optical
anisotropy of systems comprising dyes dissolved in
aligned liquid crystal hosts, their potential applications
and relevance have been shown to extend well beyond
the display applications with which they have typically
been associated. Although the scope for these systems
appears wide, the applications typically require similar
characteristics to be displayed by the guest–host mix-
tures, suggesting that if current barriers may be over-
come, a wide range of proposed devices may be
realised.

Advances in synthetic chemistry have enabled
increasingly exotic host and dye structures to become
accessible, providing advances, for example, in synthe-
sising multiple classes of thermotropic liquid crystal
dyes. However, the range of currently accessible struc-
tures also highlights the need for quantitative design
parameters and structure–property relationships to be
developed in order for efficient synthetic studies to be
carried out.

In principle, the selection of computational techni-
ques outlined in the previous section enables a range of
properties of guest–host systems including colour,
alignment and stability to be predicted. The ever
advancing capabilities of classical and quantum chemi-
cal calculations allied with synthetic advances provides
an extremely promising combination of techniques to
be used in the molecular and material design of guest–
host systems for a wide range of applications. Although
research into guest–host systems appears less prevalent
in recent years than it was following the initial report

on their properties, the recent proposals of so many
diverse applications for these systems combined with
this combination of current computational and syn-
thetic methods provide an attractive area for further
research.
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