
URL:
This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/33220/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

www.northumbria.ac.uk/nrl
The effect of glycaemic index of breakfast cereal on children's cognitive performance

J. Ingwersen, M. A. Defeyter, A. Scholey, D. Kennedy & K. A. Wesnes

British Psychological Society Developmental Conference
Edinburgh, September 2005
Background

• Rising demand on cognitive and intellectual performance

• Imbalanced diet

• The effects of *diet* on cognitive performance

• The effects of *breakfast* on children's cognitive performance
• Iowa Breakfast Studies.
 Tuttle et al (1949; 1950; 1952; 1954)

• Indicate that the consumption of breakfast can enhance cognitive performance

• Surge of research into the effects of breakfast on cognitive performance
Background

- Skipping breakfast has detrimental effects (e.g. Smith et al, 1994)

- Consumption of breakfast has positive effects (e.g. Pollitt et al, 1998)

 - 9- to 16-year-olds
 - Cheerios, Shreddies, glucose drink or no breakfast
 - Computerised tests of attention and memory
 - Prior to and at 30, 90, 150 and 210 minutes after breakfast
Background

- **Glucose Drink & No Breakfast:**
 Decline in Focused Attention and Episodic Memory

- **Cheerios & Shreddies:**
 Decline seen in Focused Attention and Episodic Memory was significantly reduced

- **Breakfast in the form of cereal can have a positive effect on cognitive performance in school children**
Background

• Breakfast compared to no breakfast

• Composition of breakfast

• The brain’s main source of energy is glucose

• Increased blood glucose has positive effect on cognitive performance (e.g. Martin & Benton, 1999; Sünram-Lea et al., 2002)
• The body’s main source of glucose is carbohydrates

• Carbohydrates exerts its effects on blood glucose in two ways
Background

- **High Glycaemic Index (GI > 70)**
- **Low Glycaemic Index (GI < 40)**

Fig. 1: Blood glucose response after intake of high and low GI carbohydrates
Present Study

Aims

a) Does the glycaemic index of breakfast have an effect on cognitive performance?

Prediction: low rather than high GI breakfast more beneficial to performance, particularly in late morning.

b) Are the effects found across all cognitive functions or restricted to particular processes?
Participants

- 6- to 11-years (N = 64)
 Mean age 9:3 (range 6:8 -11:7); 38 females, 26 males

- Three age groups:
 - 7-year-olds (N = 18)
 Mean age 7:2 (range 6:3-7:11); 10 females, 8 males
 - 9-year-olds (N = 23)
 Mean age 9:1 (range 8:2-9:11); 10 females, 13 males
 - 11-year-olds (N = 23)
 Mean age 11:0 (range 10:0-11:7); 18 females, 5 males
Procedure

- Two consecutive days
- High GI: Coco Pops
 (35g with 125ml semi-skimmed milk)
- Low GI: All Bran
 (35g with 125ml semi-skimmed milk)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Breakfast</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>9:00</td>
<td>9:30</td>
<td>9:40</td>
<td>10:40</td>
<td>11:40</td>
</tr>
</tbody>
</table>
Procedure

Cognitive Drug Research (CDR)
Computerised Assessment Battery (Wesnes et al, 2003)

- Word Presentation
- Immediate Word Recall
- Picture Presentation
- Simple Reaction Time
- Digit Vigilance
- Choice Reaction Time
- Spatial Working Memory
- Numeric Working Memory
- Delayed Word Recall
- Delayed Word Recognition
- Delayed Picture Recognition

Fig. 2: CDR Test Battery
Analysis of Data

- Focused Attention
- Sustained Attention
- Working Memory
- Episodic Memory
- Speed of Memory
Analysis of Data

- Change from Baseline

 Test 1/2/3 - Baseline

- \((3 \times 2 \times 3)\) ANOVA

 (assessment x breakfast x age group)
Results

• Older children perform better than younger children

• Decline in performance throughout the morning
Results

Episodic Memory

Main effect of Breakfast
\(F(1,61) = 5.313, \ p < 0.05 \)

Significantly smaller decline in performance after consumption of low GI All Bran compared to high GI Coco Pops

Fig. 3: Performance on Episodic Memory
Results

Sustained Attention

Breakfast * Assessment Time
$F(2,122) = 3.820, p < 0.05$

Significantly decline in performance on Test 3 after consumption of high GI Coco Pops compared to low GI All Bran

Fig. 4: Performance on Sustained Attention
Aims

a) Can the Glycaemic Index of breakfast affect children’s cognition?

b) Are the effects found across all cognitive functions or restricted to particular processes?
Discussion

- Significantly less decline on Episodic Memory and Sustained Attention across the morning after consumption of Low GI (All Bran) compared to high GI (Coco Pops)

- Changes in cognitive performance may be a reflection of changes in blood glucose levels, in this case triggered by glycaemic index
Discussion

- Effect of GI may be different for different cognitive processes

- Micronutrients and other macronutrients can also influence cognitive performance (Lieberman et al, 1986)

Plans for Future Research:

- To investigate the effects of lunch and mid-morning snack
We would like to thank Cambridge Laboratories for sponsoring this research presentation.

We would also like to thank the staff and pupils from the following schools: Coundon Primary, Coxhoe Primary, Dean Bank Primary, Ferryhill Station Primary, High Coniscliffe CE Primary, Ludworth Primary, Neville’s Cross Primary, New Brancepeth Primary, St. Cuthbert’s RCVA Primary, St. Godrick’s RCVA Primary and St. Michael’s RCVA Primary.