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Towards a quantum time mirror for nonrelativistic wave packets
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1Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany

2Department of Mathematics, Physics and Electrical Engineering,
Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom and

3Institut Langevin, ESPCI, CNRS, PSL Research University, 1 rue Jussieu, 75005, Paris, France
(Dated: February 8, 2018)

We propose a method – a quantum time mirror (QTM) – for simulating a partial time-reversal
of the free-space motion of a nonrelativistic quantum wave packet. The method is based on a
short-time spatially-homogeneous perturbation to the wave packet dynamics, achieved by adding
a nonlinear time-dependent term to the underlying Schrödinger equation. Numerical calculations,
supporting our analytical considerations, demonstrate the effectiveness of the proposed QTM for
generating a time-reversed echo image of initially localized matter-wave packets in one and two
spatial dimensions. We also discuss possible experimental realizations of the proposed QTM.

I. INTRODUCTION

The question of how to invert the time evolution of
a wave, classical or quantum, in an efficient and con-
trollable way has both fundamental and practical impor-
tance. The fundamental aspect of the question is evident
from its connection with the problem of unidirectionality
of the arrow of time, conceived in a seminal 19th century
debate between Loschmidt and Boltzmann [1, 2]. The
practical importance is apparent from numerous applica-
tions in medicine, telecommunication, material analysis,
and, more generally, wave control [3–7].

One fruitful approach to the time inversion of classical
wave motion is based on the concept of a time-reversal
mirror: an array of receiver-emitter antennas is used to
first record an incident wavefront, originating say from a
localized source, and then to rebroadcast a time-inverted
copy of the recording, thus generating a wave that effec-
tively propagates backward in time and refocuses at the
source point. To date, time reversal mirrors have been
successfully implemented with acoustic [8, 9], elastic [3],
electromagnetic [10], and water waves [11, 12].

The classical procedure at the heart of such time-
reversal mirrors, i.e. a continuous measurement and a
subsequent reinjection of the signal, cannot be directly
applied to quantum systems. The fundamental obsta-
cle here is that any measurement performed on a quan-
tum system is bound to perturb the quantum state and
consequently affects its time evolution. (A theoretical
scenario in which a time-dependent wave function is
measured, recorded and then “played back” by a per-
fect non-invasive detector-emitter has been analyzed in
Refs. [13, 14]) An alternative approach to manipulate the
propagation of waves relies on non-adiabatic perturba-
tions to the system dynamics, such as an instantaneous
change of its boundary conditions [15–22]. Protocols of
this kind were considered for time- and space-modulated
one-dimensional photonic [23–25] and magnonic crystals

∗ klaus.richter@ur.de

[26, 27]. More recently, Bacot et al. put forward and
experimentally realized an instantaneous time mirror for
gravity-capillary waves, requiring a sudden but homoge-
nous modulation of water wave celerity [7]. Such ap-
proaches bypass the recording procedure, and are thus
very appealing for quantum systems. A specific time-
reversal protocol, albeit valid in a very narrow momen-
tum range, was indeed devised for a one-dimensional
periodically-kicked optical lattice [28] and realized in a
87Rb Bose-Einstein condensate (BEC) [29]. On the other
hand, an instantaneous quantum time mirror (QTM) for
Dirac-like systems (exploiting their spinor structure) was
recently proposed in Ref. [30].

In this paper, we propose and investigate an exper-
imentally realizable method for simulating the time-
reversal of the free-space motion, thus mimicking a non-
linear QTM, for a spatially extended (orbital) quantum-
mechanical wave function, such as a BEC cloud. The ap-
proach relies on generating a short-time spatially-uniform
perturbation to the wave packet dynamics that corre-
sponds to an additional nonlinear term added in the
Schrödinger equation; in a BEC cloud system, such a
perturbation can be realized using established experi-
mental techniques allowing to tune the strength of the
interaction among the cloud atoms [31, 32]. More pre-
cisely, our QTM protocol comprises three stages: (i) a
matter-wave packet propagates freely in space for a time
0 < t < t0; (ii) at t = t0, a strong nonlinear perturba-
tion is switched on globally for a short period δt, lead-
ing to a near-instantaneous modification of the position-
dependent phase of the wave function; (iii) the pertur-
bation is switched off, the wave function evolves freely
again, and at a time techo > t0+δt an “echo” signal of the
original wave packet is observed. From the conceptual
viewpoint, the nonlinear QTM proposed in this paper
can be viewed as a quantum-mechanical counterpart of
the instantaneous time mirror for gravity-capillary waves
by Bacot et al. [7].

The paper is organized as follows. In Sec. II, we
describe the physical principle underlying the proposed
QTM. Two concrete scenarios for generating a time-
reversed motion of matter waves in one and two spatial
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dimensions are analyzed in Sec. III. A summary, con-
cluding remarks, and a discussion of the feasibility of an
experimental realization of the proposed QTM are pre-
sented in Sec. IV. Technical calculations are deferred to
an appendix.

II. PHYSICAL PRINCIPLE OF A NONLINEAR
QUANTUM TIME MIRROR

We address the time evolution of a matter-wave packet
Ψ(r, t), subject to the initial condition Ψ(r, 0) = Ψ0(r),
in accordance with the (D + 1)-dimensional nonlinear
Schrödinger equation

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + λf(t− t0)|Ψ|2Ψ. (1)

Here, m is the atomic mass, λ quantifies the nonlin-
earity strength, and t0 denotes the time around which
the nonlinear term representing interaction effects is
switched on. The function f(ζ) is sharply peaked around
ζ = 0 and is chosen to satisfy the normalization condi-

tion
∫ +∞
−∞ dζf(ζ) = 1. We take f to be a δ-function in

our analytical calculations and a Gaussian peak f(ζ) =

1√
2π∆t

e−
ζ2

2∆t2 in all numerical simulations. The pulse

length ∆t � t0 will be taken as 0.001t0 and 0.0025t0
in one and two dimensions, respectively.

Wave packet dynamics in the presence of an infinites-
imally short nonlinear kick, f(ζ) = δ(ζ), can be de-

scribed as follows. Rescaling t → t0t, r →
√

~t0
m r,

Ψ →
(
m
~t0

)D/4
Ψ, and λ → ~

(~t0
m

)D/2
λ, we write the

nonlinear Schrödinger equation in a dimensionless form
as

i
∂Ψ

∂t
= −1

2
∇2Ψ + λδ(t− 1)|Ψ|2Ψ . (2)

The evolution of the wave function from Ψ0(r) at t = 0
to its value Ψ−(r) = Ψ(r, t = 1−) right before the kick is
given by

Ψ−(r) =

∫
dDr′K(r− r′, t)Ψ0(r′) , (3)

where the integration runs over the infi-
nite D-dimensional space, and K(q, t) =
(2πit)−D/2 exp [i|q|2/(2t)] is the free-particle propa-
gator. The nonlinear kick results in an instantaneous
change of the wave function from Ψ−(r) at t = 1− to

Ψ+(r) = Ψ−(r)e−iλ|Ψ−(r)|2 (4)

at t = 1+. Indeed, during the time interval 1− < t < 1+,
the wave function transformation is dominated by the
second term in the right-hand side of Eq. (2), and effec-

tively governed by the differential equation ∂ ln Ψ(r,t)
∂t =

−iλ|Ψ−(r)|2δ(t − 1), the solution of which is given by

Eq. (4). After the kick, the wave function evolves freely,
so that Ψ(r, t) =

∫
dDr′K(r − r′, t)Ψ+(r′) for all times

t > 1.
As evident from Eq. (4), the instantaneous nonlin-

ear kick alters the phase of the wave function without
producing any probability density redistribution, so that
ρ(r) ≡ |Ψ+(r)|2 = |Ψ−(r)|2. The phase change however
affects the probability current, whose dimensionless ex-
pression reads j(r, t) = Im

[
Ψ∗(r, t)∇Ψ(r, t)

]
. A straight-

forward evaluation of the current right after the kick,
j+ = Im

[
Ψ∗+∇Ψ+

]
, yields

j+ = j− + ∆j with ∆j = −λρ∇ρ , (5)

where j− = Im
[
Ψ∗−∇Ψ−

]
is the probability current im-

mediately preceding the kick. This in turn means that,
by properly tuning the kicking strength λ, the wave prop-
agation direction can be reversed for those parts of the
matter wave for which the vector ∇ρ is aligned (or anti-
aligned) with j−. Below we show that in geometries ac-
cessible in atom-optics experiments this reversal effect is
robust and well-pronounced.

III. THE QUANTUM TIME MIRROR AT
WORK

As our first example, we consider the case of the initial
state given by a 1D Gaussian wave packet,

Ψ0(x) = (πσ2)−1/4 exp

(
− x2

2σ2
+ ikx

)
, (6)

characterized by the dimensionless real spatial disper-
sion σ and average momentum k. The corresponding
wave function at time t = 1− is obtained from Eq. (3)
and reads (up to a position-independent phase factor)
Ψ−(x) = [π(σ2 + σ−2)]−1/4 exp[−ξ2/2(σ2 + i) + ikξ]
with ξ = x − k denoting the distance from the wave
packet center. Thus, the probability density at t = 1 is
ρ = exp(−ξ2/σ2

1)/
√
πσ1, where σ1 =

√
σ2 + σ−2 is the

dispersion of the wave packet at the time of the kick.
The probability currents before and after the kick are,

respectively, j− =
(
k + ξ

σ2σ2
1

)
ρ and j+ = j− + ∆j, with

∆j = 2λξ
σ2

1
ρ2. The minimal kick strength λmin necessary

for reversing the direction of motion of (and effectively
reflecting) a part of the wave packet can be estimated by
requiring j+ = 0 at ξ = −σ1. In the case of a fast mov-
ing wave packet, such that k � 1/σ2σ1, this estimation
yields

λmin ' Ck
(
σ2 +

1

σ2

)
(7)

with C = e
√
π/2 ' 2.4. Then, given a kicking strength

λ > λmin, the time techo at which the reflected part of
the wave packet reaches its initial position, leading to a
partial echo of the original wave packet, can be evaluated
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as follows. The velocity of the reflected wave is krev '
j+
∣∣
ξ=−σ1

' k − λ
Cσ2

1
=
(

1− λ
λmin

)
k, and the revival

occurs when |krev|(techo − 1) = k or, correspondingly, at

techo =
λ

λ− λmin
. (8)

The numerical simulations are based on the wave
packet propagation algorithm Time-dependent Quantum
Transport (TQT) [33]. The state is discretized on a
square grid and the time evolution is calculated for suffi-
ciently small time steps such that the Hamilton oper-
ator can be assumed time independent for each step.
We calculate the action of H on ψ in a mixed posi-
tion and momentum-space representation by the appli-
cation of Fourier Transforms. With this a Krylov Space
is spanned, which can be used to calculate the time evo-
lution using a Lanczos method [34].

The echo strength is quantified by the norm correlation
between the initial and the time propagated wave packet
defined as [35]

N (t) =

∫
dDr |Ψ0(r)|2 |Ψ(r, t)|2√∫

dDr |Ψ0(r)|4
∫

dDr |Ψ(r, t)|4
. (9)

In contrast to other possible measures of the echo
strength, such as fidelity, the norm correlation is eas-
ily accessible in experiments on quantum systems with
continuous degrees of freedom, e.g., atom optics ex-
periments. Figure 1a) presents N (t) for various pulse
strengths λ at constant σ and k, demonstrating echo
strengths up to 60%. The occurring lower peaks at higher
λ for larger times are due secondary peaks of the dis-
torted wave packet, which can be seen in Fig. 1b): This
panel shows the spatial probability density ρ = |ψ|2 at
times t = 0 (black dashed curve) and t = 0.99 (immedi-
ately before pulse, black dashed-dotted curve), as well as
the reflected wave packets for different λ’s (color code as
in panel (a)), each shown at its peak echo time. In the
lower plot, the current density j is shown directly after
the pulse t = 1.01. Parts of the wave packet with negative
current density move backwards leading to the echo. For
the parameters used, the estimated value for the minimal
pulse strength in (7) is λmin ' 20 corresponding to the
red curve, whose current density exhibits only a vanish-
ing negative part that is insufficient for echo generation,
thus verifying the prediction (7).

To explore the parameter space for the possibility of
achieving echoes, the peak of the norm correlation (in
time) is plotted as a function of λ and σ in Fig. 1c)
and as a function of λ and k in Fig. 1d). The black
curve shows the analytic approximation (7) of the min-
imal pulse strength λmin. Although it does not fit per-
fectly, the analytic approximation is in good agreement
and still well-suited to approximate the minimal pulse
strength required for a time-reversal.

In order to better understand the quality, underlying
principles and limitations of the proposed QTM, it is

instructive to compare the state Ψ+, rendered by the
nonlinear kick (see Eq. (4)), against the desired (per-
fectly time-reversed) state CΨ−, obtained by applying
the (anti-unitary) complex conjugation operator C to the
pre-kick state Ψ−. In the case of the initial state given
by Eq. (6), we have

Ψ+ = Ψ−e
−iφ , φ =

λ√
πσ1

e−(ξ/σ1)2

(10)

and

CΨ− = Ψ−e
−i(ϕ+ϕ0) , ϕ =

(
ξ

σ1σ

)2

+ 2kξ , (11)

where σ1 =
√
σ2 + σ−2 is the width of wave packet at

time t = 1 when the kick occurs, ξ = x−k is the distance
measured from the center of the wave packet, and ϕ0 is
a constant (position-independent) phase related to the
global phase of Ψ−. While, in general, the two phases, φ
and ϕ, have different functional forms, φ(ξ) may serve as
a reasonable approximation to ϕ(ξ), modulo a physically
irrelevant constant shift, over a finite position interval.
It is the probability density supported by this position
interval that makes the main contribution to the time-
reversed wave generated by the nonlinear QTM. Figure 2
presents a comparison between the ideal (target) phase
ϕ(ξ) and the phase φ(ξ) imprinted by the proposed QTM.
The system parameters are taken to be the same as in
Fig. 1a), i.e. σ = 1 and k = 4, and the three values of
the kicking strength considered are λ = 30, 40, and 50.

We further investigate the dynamics of a 2D wave
packet, initially given by

Ψ0(r) =

√
1

2π3/2Rσ
exp

[
− (r −R)2

2σ2
+ ikr

]
(12)

with r = |r| and k > 0. For R � σ, the wave func-
tion is normalized to one and describes a Gaussian ring
of radius R and width σ that spreads radially with the
average velocity k. A straightforward, although tedious,
calculation shows that, in the parametric regime defined
by 1 � σ � R and kR � 1, the wave packet at t = 1−

has the form (up to a spatially uniform phase) (see Ap-
pendix A):

Ψ−(r) '
√

1

2π3/2R1σ
exp

[
− (r −R1)2

2σ2
+ ikr

]
, (13)

where R1 = R + k is the radius of the Gaussian ring at
time 1−. (Essentially, Eq. (13) corresponds to a short-
time approximation of the ring-shaped wave packet at
the kick time, and is valid in the parametric regime in
which the dispersive widening of the ring is negligible.)
Thus, the corresponding probability density is given by
ρ = (2π3/2R1σ)−1 exp[−(r−R1)2/σ2], and the probabil-

ity current at t = 1+, reads j+ =
(
kρ+ 2λ(r−R1)

σ2 ρ2
)

r
r .

Then, the evaluation of the minimal kick strength re-
quired to trigger a probability density echo proceeds in
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close analogy with the corresponding 1D calculation, re-
sulting in

λmin ' 2πC(R+ k)kσ2 . (14)

Finally, just as in the 1D case, the echo time is deter-
mined by Eq. (8).

The numerical calculations (Fig. 3) attest the possibil-
ity of pronounced echoes up to 90% also in the 2D setup.
Although the parameter range is not in the regime of the
analytical approximation, the value of λmin in Eq. (14) is
still well-suited to estimate the minimal pulse strength λ
required (see black curves).

The color plots in Figs. 1 and 3 seem to imply λ > λmin

(marked as black lines) to be the only echo requirement
for echo generation. However for large λ the wave packet
splits into many peaks, as shown in Fig. 1b), blue curve
for λ = 200. In such a scenario the norm correlation is
still fairly high, but the wave packet might not longer
have the desired shape. The effect of many peaks, i.e.
very large λ, on the norm correlation can be seen in
Fig. 3c), where the echo strength moderately declines for
σ ≈ 1 and λ > 3000.

IV. SUMMARY AND CONCLUSIONS

In summary, we have proposed a protocol for simu-
lating the time-reversed motion of a localized matter-
wave packet evolving in free space. Our method is based
on making a near-instantaneous spatially-homogeneous
perturbation to the wave packet dynamics by externally
switching on a nonlinear perturbation for a short time
interval. The analytical and numerical considerations
presented in our paper demonstrate the efficiency of the
proposed quantum time mirror in one and two spatial
dimensions.

We note that the time reversal protocol proposed in
this paper could in principle be employed in different
physical systems, such as ultracold atomic clouds, optical
pulses, or shallow water waves, as long as the system’s
time evolution is governed by the nonlinear Schrödinger
equation. Here, we further explore the possible connec-
tion between the numerical simulations reported in this

paper and relevant atom-optics experiments. To this end,
we provide an estimate for values of the dimensionless
parameters σ and k, defined in Eqs. (6) and (12), for
the case of ultracold lithium atoms. The mass of a 7Li
atom is m = 7.016 u = 1.165 × 10−26 kg. Taking the
wave packet propagation time until the nonlinear kick
to be t0 = 10 ms, we see that the wave packet width
range of 10− 50µm corresponds to 1.05 < σ < 5.26, and
the mean velocity range of 2− 10 mm s−1 corresponds to
2.1 < k < 10.5. These parameter ranges coincide with
the ones considered in this paper, which strongly sug-
gests that the matter wave reversal effects predicted here
can be realized in experiments with lithium BECs.

In order to further facilitate experimental realization
of the proposed QTM, we make a rough estimate of the
scattering length of condensed lithium atoms required to
generate a reflected wave. In the one-dimensional case,
the (dimensional) kicking strength λ~

√
~t0/m/∆t (see

the discussion preceding Eq. (2)) is approximately equal
to 2N~2as/(ma

2
⊥), where N is the number of condensed

atoms, as is the scattering length, ∆t is the kick duration
(taken to be ∆t = 0.001t0 = 10µs in our numerical simu-
lations), and a⊥ is the linear length scale of the potential
confining the atomic motion in the transverse direction
[36]. This yields the estimate as = λa2

⊥
√
mt0/~/(2N∆t).

Taking N = 107, a⊥ = 10µm, and λ in the range 10−200
(see, e.g., Fig. 1), we find the required scattering length
to lie in the range 5nm . as . 105nm. While challeng-
ing, the suggested parameter values are not impossible
to achieve in modern atom-optics experiments, using, for
instance, such novel techniques as optical control of Fes-
hbach resonances [37].
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Appendix A: Free spreading of a Gaussian ring wave packet in 2D: Derivation of Eq. (13)

Let us consider a two-dimensional wave packet, initially (at t = t0) given by

Ψ0(r) = C exp

(
− (r −R)2

2σ2
+ ik0(r −R)

)

with r = |r| =
√
x2 + y2, σ � R, k0 > 0 and C ' 1/

√
2π3/2Rσ, so that the probability density is normalized to

unity. Let Ψ(r, t) be the wave packet evolved from Ψ0(r) in the course of a free-particle evolution through time t.

Here, we would like to show that in the parametric regime given by
√
~t/m� σ � R and k0R� 1 the wave packet

Ψ has the same functional dependence on r as Ψ0.
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The free-particle propagator in 2D reads

K0(r, r′, t) =
m

2πi~t
exp

(
i
m(r− r′)2

2~t

)
.

Hence,

Ψ(r, t) =
mC

2πi~t

∫
d2r′ exp

(
− (r′ −R)2

2σ2
+ ik0(r′ −R) + i

m(r− r′)2

2~t

)
=
mC

i~t
exp

(
− R2

2σ2
− ik0R+ i

mr2

2~t

)
G(r, t) ,

where

G(r, t) =

∫ ∞
0

dr′r′J0

(
mrr′

~t

)
exp

[
−1

2

(
1

σ2
− im

~t

)
r′2 +

(
R

σ2
+ ik0

)
r′
]
.

Let us investigate the behavior of G(r, t) around the spatial point R+ ~k0

m t. Taking into account the fact that the
main contribution to the integral comes from the region |r′ −R| . σ, we have

mrr′

~t
∼ mR

~t

(
R+

~k0

m
t

)
=
mR2

~t
+ k0R > k0R .

Assuming k0R� 1, we see that the argument of the Bessel function is always large compared to one, i.e. mrr′

~t � 1.
This allows us to use the large argument asymptotics,

J0

(
mrr′

~t

)
'
√

~t
2πmrr′

[
e
i
(
mrr′
~t −

π
4

)
+ e
−i

(
mrr′
~t −

π
4

)]
,

in order to write

Ψ(r, t) ' C

i

√
mR

2π~tr
exp

(
− R2

2σ2
− ik0R+ i

mr2

2~t

)
[Φ+(r, t) + Φ−(r, t)] .

Here,

Φ±(r, t) = e∓i
π
4

∫ +∞

−∞
dr′
√
r′

R
exp

{
−1

2

(
1

σ2
− im

~t

)
r′2 +

[
R

σ2
+ i
(
k0 ±

mr

~t

)]
r′
}

' e∓iπ4
√

2π
1
σ2 − im~t

exp

[
R
σ2 + i

(
k0 ± mr

~t
)]2

2
(

1
σ2 − im~t

) .

Introducing

ε =
~t
mσ2

and v0 =
~k0

m
,

we rewrite the previous expression as

Φ±(r, t) = e∓i
π
4

√
2πi~t

m(1 + iε)
exp

(
i
m

2~t
[εR+ i(v0t± r)]2

1 + iε

)
.

This leads to

Ψ(r, t) =
C

i

√
mR

2π~tr
exp

( m
2~t

[−εR2 − 2iRv0t+ ir2]
)

[Φ+(r, t) + Φ−(r, t)]

= C

√
R

i(1 + iε)r

∑
γ=±1

e−iγ
π
4 exp

(
− m

2~t
ε(R+ v0t+ γr)2 + i2(R+ v0t+ γr)v0t− i

[
(v0t)

2 + ε2(R+ γr)2
]

1 + ε2

)
.
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Assuming further that ε� 1, we have

Ψ(r, t) ' C
√
R

ir

∑
γ=±1

e−iγ
π
4 exp

{
− m

2~t
[
ε(R+ v0t+ γr)2 + i2(R+ v0t+ γr)v0t− i(v0t)

2
]}

= C

√
R

ir

∑
γ=±1

e−iγ
π
4 exp

(
− (R+ v0t+ γr)2

2σ2
− ik0(R+ v0t+ γr) + i

~k2
0t

2m

)
.

Taking into account that the last expression for Ψ is only valid for r close to rt, where

rt = R+ v0t = R+
~k0t

m
,

we see that a contribution of the term with γ = +1 is negligibly small. Thus we arrive at the sought approximation
for the freely propagated wave function:

Ψ(r, t) '
√

1

2π3/2σrt
exp

(
− (r − rt)2

2σ2
+ ik0(r − rt) + i

~k2
0t

2m

)
.

This expression is only valid in the parametric regime defined by√
~t
m
� σ � R and k0R� 1 .
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[17] Č. Brukner and A. Zeilinger, “Diffraction of matter waves
in space and in time,” Phys. Rev. A 56, 3804 (1997).

[18] J. T. Mendonça and P. K. Shukla, “Time refraction and
time reflection: Two basic concepts,” Phys. Scripta 65,
160 (2002).

[19] A. del Campo, G. Garcia-Calderón, and J. G. Muga,
“Quantum transients,” Phys. Rep. 476, 1 (2009).

[20] A. Goussev, “Huygens-Fresnel-Kirchhoff construction for
quantum propagators with application to diffraction in
space and time,” Phys. Rev. A 85, 013626 (2012).

[21] P. Haslinger, N. Dorre, P. Geyer, J. Rodewald, S. Nimm-
richter, and M. Arndt, “A universal matter-wave inter-
ferometer with optical ionization gratings in the time do-
main,” Nat. Phys. 9, 144 (2013).

[22] Arseni Goussev, “Diffraction in time: An exactly solvable
model,” Phys. Rev. A 87, 053621 (2013).

[23] Y. Sivan and J. B. Pendry, “Time reversal in dynamically
tuned zero-gap periodic systems,” Phys. Rev. Lett. 106,
193902 (2011).

[24] Y. Sivan and J. B. Pendry, “Theory of wave-front reversal
of short pulses in dynamically tuned zero-gap periodic

Page 6 of 10AUTHOR SUBMITTED MANUSCRIPT - NJP-107935.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

http://dx.doi.org/10.1063/1.881692
http://dx.doi.org/10.1063/1.881692
http://dx.doi.org/10.1126/science.1134824
http://dx.doi.org/ 10.1038/NPHOTON.2012.88
http://dx.doi.org/10.1038/nphys3810
http://dx.doi.org/ 10.1109/58.156174
http://dx.doi.org/ 10.1109/58.156174
http://dx.doi.org/ 10.1103/PhysRevLett.79.407
http://dx.doi.org/ 10.1103/PhysRevLett.79.407
http://dx.doi.org/10.1103/PhysRevLett.92.193904
http://dx.doi.org/ 10.1103/PhysRevLett.109.064501
http://dx.doi.org/ 10.1103/PhysRevLett.109.064501
http://dx.doi.org/ 10.1103/PhysRevLett.112.124101
http://dx.doi.org/ 10.1209/0295-5075/77/40001
http://dx.doi.org/10.1209/0295-5075/89/60002
http://dx.doi.org/10.1103/PhysRev.88.625
http://dx.doi.org/10.1103/PhysRev.88.625
http://jetp.ac.ru/cgi-bin/e/index/e/44/5/p892?a=list
http://jetp.ac.ru/cgi-bin/e/index/e/44/5/p892?a=list
http://dx.doi.org/10.1103/PhysRevA.56.3804
http://iopscience.iop.org/article/10.1238/Physica.Regular.065a00160/meta
http://iopscience.iop.org/article/10.1238/Physica.Regular.065a00160/meta
http://dx.doi.org/10.1016/j.physrep.2009.03.002
http://dx.doi.org/ 10.1103/PhysRevA.85.013626
http://dx.doi.org/ 10.1038/nphys2542
http://dx.doi.org/ 10.1103/PhysRevLett.106.193902
http://dx.doi.org/ 10.1103/PhysRevLett.106.193902


7

systems,” Phys. Rev. A 84, 033822 (2011).
[25] Y. Sivan and J. B. Pendry, “Broadband time-reversal of

optical pulses using a switchable photonic-crystal mir-
ror,” Opt. Express 19, 14502 (2011).

[26] A. V. Chumak, V. S. Tiberkevich, A. D. Karenowska,
A. A. Serga, J. F. Gregg, A. N. Slavin, and B. Hille-
brands, “All-linear time reversal by a dynamic artificial
crystal,” Nat. Commun. 1, 141 (2010).

[27] A. D. Karenowska, J. F. Gregg, V. S. Tiberkevich, A. N.
Slavin, A. V. Chumak, A. A. Serga, and B. Hillebrands,
“Oscillatory energy exchange between waves coupled by a
dynamic artificial crystal,” Phys. Rev. Lett. 108, 015505
(2012).

[28] J. Martin, B. Georgeot, and D. L. Shepelyansky, “Cool-
ing by time reversal of atomic matter waves,” Phys. Rev.
Lett. 100, 044106 (2008).

[29] A. Ullah and M. D. Hoogerland, “Experimental obser-
vation of Loschmidt time reversal of a quantum chaotic
system,” Phys. Rev. E 83, 046218 (2011).

[30] P. Reck, C. Gorini, A. Goussev, V. Krueckl, M. Fink, and
K. Richter, “Dirac quantum time mirror,” Phys. Rev. B
95, 165421 (2017).

[31] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner,
D. M. Stamper-Kurn, and W. Ketterle, “Observation of

feshbach resonances in a boseeinstein condensate,” Na-
ture 392, 151 (1998).

[32] J. L. Roberts, N. R. Claussen, Jr. James P. Burke, C. H.
Greene, E. A. Cornell, and C. E. Wieman, “Resonant
magnetic field control of elastic scattering in cold 85Rb,”
Phys. Rev. Lett. 81, 5109 (1998).

[33] V. Krückl, Wave packets in mesoscopic systems: From time-dependent dynamics to transport phenomena in graphene and topological insulators,
Ph.D. thesis, Universität Regensburg, Re-
gensburg, Germany (2013), the basic version
of the algorithm is available at TQT Home
[http://www.krueckl.de/#en/tqt.php].

[34] C. Lanczos, “An iteration method for the solution of the
eigenvalue problem of linear differential and integral op-
erators,” J. Res. Natl. Bur. Stand. 45, 255 (1950).

[35] B. Eckhardt, “Echoes in classical dynamical systems,” J.
Phys. A: Math. Gen. 36, 371 (2003).

[36] L. Salasnich, A. Parola, and L. Reatto, “Effective wave
equations for the dynamics of cigar-shaped and disk-
shaped bose condensates,” Phys. Rev. A 65, 043614
(2002).

[37] L. W. Clark, L. Ha, C. Xu, and C. Chin, “Quantum
dynamics with spatiotemporal control of interactions in
a stable bose-einstein condensate,” Phys. Rev. Lett. 115,
155301 (2015).

Page 7 of 10 AUTHOR SUBMITTED MANUSCRIPT - NJP-107935.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

http://dx.doi.org/10.1103/PhysRevA.84.033822
http://dx.doi.org/https://doi.org/10.1364/OE.19.014502
http://dx.doi.org/10.1038/ncomms1142
http://dx.doi.org/ 10.1103/PhysRevLett.108.015505
http://dx.doi.org/ 10.1103/PhysRevLett.108.015505
http://dx.doi.org/10.1103/PhysRevLett.100.044106
http://dx.doi.org/10.1103/PhysRevLett.100.044106
http://dx.doi.org/10.1103/PhysRevE.83.046218
http://dx.doi.org/ https://doi.org/10.1103/PhysRevB.95.165421
http://dx.doi.org/ https://doi.org/10.1103/PhysRevB.95.165421
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1038/32354
http://dx.doi.org/ 10.1103/PhysRevLett.81.5109
http://epub.uni-regensburg.de/28081/
http://www.krueckl.de/#en/tqt.php
http://stacks.iop.org/0305-4470/36/i=2/a=306
http://stacks.iop.org/0305-4470/36/i=2/a=306
http://dx.doi.org/10.1103/PhysRevA.65.043614
http://dx.doi.org/10.1103/PhysRevA.65.043614
http://dx.doi.org/ 10.1103/PhysRevLett.115.155301
http://dx.doi.org/ 10.1103/PhysRevLett.115.155301


8

0

3

6

|ψ|2

0 4x
-40

0

40

j

(a) (b)

0

50

100

150

200

0

0.2

0.4

0.6

0.8

1

σ
0 1 2 3 4

λ

0

50

100

150

0

0.2

0.4

0.6

0.8

1

k
5 10 15

λ

(c) (d)

FIG. 1. Echo of a 1D Gaussian wave packet subjected to a short, nonlinear pulse. All quantities are dimensionless according
to the rescaling in the text above Eq. (2). (a) Norm correlation, Eq. (9), as a function of time for various pulse strengths λ
of a kick at t = 1 at fixed wave packet width σ = 1 and momentum k = 4, yielding echoes up to 60%. (b) Upper panel: real
space probability density ρ = |ψ|2 at t = 0 (black dashed curve), t = 0.99 (just before pulse, black dashed-dotted curve), and
at the peak echo times (colored curves, color code as in (a)). Notice that the latter depend on λ, as evident from (a). Lower
panel: current density j at t = 0 (black dashed curve) and t = 1.01 (right after the pulse, color code as in (a)). A negative
current density indicates the part of the wave packet reversing its propagation direction thereby causing the echo. The minimal
kicking strength for the used parameters, as predicted by Eq. (7), is λmin ' 20 (red curve); the associated negative current
density is not sufficient for echo generation. Panels (c) and (d) show the echo strength, i.e. the maximal achieved value of the
norm correlation after the pulse for a given parameter set. The parameter, which is kept constant is (c) k = 4, (d) σ = 1. The
black curves are the analytical approximations (Eq. (7) for the minimal pulse strength λmin required to generate an echo and
matches well the numerical results.
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FIG. 2. Comparison between the QTM-imprinted phase φ(ξ) (shifted by a physically irrelevant constant) and ideal-time-reversal
phase ϕ(ξ), as given by Eqs. (10) and (11), respectively. The system parameters are the same as in Fig. 1a): σ = 1 and k = 4.
Three different values of the kicking strength are considered: λ = 30 (orange curve), λ = 40 (green curve) and λ = 50 (cyan
curve). (The color code coincides with the one adopted in Fig. 1a).)
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FIG. 3. Echo of a 2D Gaussian wave packet subjected to a short, nonlinear pulse. (a) The norm correlation (9) is shown as
function of time for varying pulse strength λ and fixed momentum k = 4 and width σ = 2. A norm correlation up to 90% is
achievable. Note that the large λ values are due to the variable rescaling as described in the text. (b)-(d) The echo peak of the
norm correlation is plotted as a function of λ, σ and k. The constant parameters are (b) σ = 2, (c) k = 4 and (d) λ = 3000.
The black curves are the analytical approximations by Eq. (14) for the minimal pulse strength λmin required to generate an
echo. The radius of the Gaussian ring, is R = 6.
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