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Abstract	83	

The	effect	of	textured	insoles	on	kinetics	and	kinematics	of	overground	running	was	assessed.	84	

16	male	injury-free-recreational	runners	attended	a	single	visit	(age	23	±	5	yrs;	stature	1.78	±	0.06	m;	85	

mass	72.6	±	9.2	kg).	Overground	15-m	runs	were	completed	in	flat,	canvas	plimsolls	both	with	and	86	

without	textured	insoles	at	self-selected	velocity	on	an	indoor	track	in	an	order	that	was	balanced	87	

among	participants.	Average	vertical	loading	rate	and	peak	vertical	force	(Fpeak)	were	captured	by	88	

force	platforms.	Video	footage	was	digitised	for	sagittal	plane	hip,	knee	and	ankle	angles	at	foot	89	

strike	and	mid	stance.	Velocity,	stride	rate	and	length	and	contact	and	flight	time	were	determined.	90	

Subjectively-rated	plantar	sensation	was	recorded	by	visual	scale.	95%	confidence	intervals	91	

estimated	mean	differences.	Smallest-worthwhile	change	in	loading	rate	was	defined	as	92	

standardised	reduction	of	0.54	from	a	previous	comparison	of	injured	versus	non-injured	runners.	93	

Loading	rate	decreased	(-25	to	-9.3	BW·s-1;	60%	likely	beneficial	reduction)	and	plantar	sensation	94	

was	increased	(46	to	58	mm)	with	the	insole.	Fpeak		(-0.1	to	0.14	BW)	and	velocity	(-0.02	to	0.06	m·s-1)	95	

were	similar.	Stride	length,	flight	and	contact	time	were	lower	(-0.13	to	-0.01	m;	-0.02	to-0.01	s;	-96	

0.016	to	-0.006	s)	and	stride	rate	was	higher	(0.01	to	0.07	steps·s-1)	with	insoles.		97	

Textured	insoles	elicited	an	acute,	meaningful	decrease	in	vertical	loading	rate	in	short-distance,	98	

overground	running	and	were	associated	with	subjectively-increased	plantar	sensation.	Reduced	99	

vertical	loading	rate	could	be	explained	by	altered	stride	characteristics.		100	

Key	words:	Biomechanics,	Kinetics,	Injury	&	Prevention	101	
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Introduction	109	

Injury	rates	in	running	are	reported	between	19.4%	and	92.4%	annually,	with	stress	fractures	110	

accounting	for	20%	of	all	injuries	(van	Gent	et	al.,	2007).	Meta	analysis	has	shown	vertical	loading	111	

rate	to	differ	(Cohen’s	d	=	0.54)	between	runners	suffering	stress	fractures	and	non-injured	runners	112	

(Zadpoor	&	Nikooyan,	2011).	It	has	been	proposed	as	a	causative	factor	in	this	type	of	injury,	as	well	113	

as	injury	to	the	knee	(Davis,	Bowser,	&	Hamill,	2010).	This	has	led	to	investigations	of	footwear	and	114	

gait	manipulation	that	might	reduce	loading	rate	and	potential	injury	risk	(Giandolini,	Arnal,	et	al.,	115	

2013;	Warne	et	al.,	2013).	A	recent	meta	analysis	(van	der	Worp,	Vrielink,	&	Bredeweg,	2016)	116	

confirms	higher	loading	rate	in	runners	reporting	stress	fracture	injury	compared	with	runners	117	

without	injury,	and	a	prospective	2-year	follow	up	trial	showed	lower	vertical	loading	rate	in	‘never	118	

injured’	female	runners	compared	to	those	that	sought	medical	attention	for	injury	(Davis,	Bowser,	119	

&	Mullineaux,	2016).	Together	this	evidence	provides	a	rationale	for	reducing	vertical	loading	rate	in	120	

running.		121	

The	plantar	sensory	feedback	loop	theory	of	Robbins	et	al.	(1989)	predicted	that	increased	plantar	122	

discomfort	from	horizontal	and	vertical	loading	when	barefoot	would	result	in	shock	moderating,	123	

withdrawal	reflexes	in	the	legs	that	would	reduce	loading	rate,	plantar	pressure	and	discomfort.	This	124	

theory	predicts	that	vertical	loading	rate	will	vary	inversely	with	magnitude	of	plantar	sensory	125	

feedback.	A	series	of	lab-based	studies	involving	drop	landings	or	controlled,	vertical	loading	of	the	126	

lower	leg	and	foot	on	various	surfaces	designed	to	manipulate	plantar	sensory	feedback,	supported	127	

the	theory	(Robbins	&	Gouw,	1991;	Robbins,	Hanna,	&	Gouw,	1988).	Moreover,	a	recent	meta	128	

analysis	suggests	that	added	texture	underfoot	improves	upright	balance	in	young	and	healthy	129	

participants	(Orth	et	al.,	2013)	130	

Application	of	the	theory	to	locomotion	was	demonstrated	by	Nurse	and	Nigg	(2001)	and	Eils	et	al.	131	

(2002).	Nurse	and	Nigg	(2001)	used	cooling	to	decrease	sensation	in	different	regions	of	the	plantar	132	

surface	and	finally	the	entire	plantar	surface.	Results	showed	alterations	in	peak	plantar	pressure	133	



between	normal	and	reduced	sensory	conditions	in	walking.	Specifically,	areas	of	low	sensation	were	134	

avoided	and	pressure	was	increased	in	areas	with	normal	sensation	when	cooling	was	localised.	135	

When	the	entire	plantar	surface	was	numb,	peak	pressure	was	increased	compared	to	normal	136	

sensation.	Authors	suggested	that	increased	peak	pressure	was	an	attempt	to	maximise	feedback	of	137	

location	of	bodyweight	during	stance	(Nurse	&	Nigg,	2001).	In	contrast,	anaesthetising	the	superficial	138	

plantar	surface	in	a	recent	study	did	not	affect	changes	in	gait	between	barefoot	and	shod	running	139	

suggesting	deep	rather	than	superficial	sensory	receptors	are	responsible	for	barefoot-gait	140	

adjustments	(Thompson	&	Hoffman,	2017).	141	

Increasing	plantar	sensation	has	also	been	shown	to	induce	alterations	in	bipedal	gait.	Textured	142	

insoles	were	found	to	reduce	loading	rate	compared	to	smooth	insoles	in	walking	(Nurse,	Hullinger,	143	

Wakeling,	Nigg,	&	Stefanyshyn,	2005).	Chen	et	al.	(1995)	had	previously	demonstrated	regional	144	

decreases	in	peak	pressure	and	pressure-time	integral	in	treadmill	running	with	specially-designed	145	

socks	containing	coarse	sand	to	increase	plantar	sensation,	but	vertical	loading	rate	was	not	146	

measured.	With	the	exception	of	Chen	et	al.	(1995)	and	Thompson	&	Hoffman	(2017),	previous	147	

studies	have	manipulated	plantar	sensory	feedback	during	walking	only.	148	

Previous	studies	provide	support	for	the	efficacy	of	increasing	plantar	sensation	to	reduce	vertical	149	

loading	rate	via	altered	gait	characteristics.	However,	vertical	loading	rate	has	not	been	examined	in	150	

overground	running	where	plantar	sensory	feedback	has	been	manipulated.	The	purpose	of	this	151	

study	was	to	assess	the	effect	of	a	textured	insole,	designed	to	increase	plantar	sensory	feedback,	on	152	

average	vertical	loading	rate,	spatiotemporal	variables	and	kinematics	in	overground	running.	We	153	

hypothesised	that	textured	insoles	would	increase	subjective	ratings	of	plantar	sensation	and	reduce	154	

vertical	loading	rate.				155	

	156	

	157	



Methods	158	

Participants	159	

With	institutional-ethics	approval,	16	male	injury-free-recreational	runners	attended	a	single	visit	160	

(age	23	±	5	yrs;	stature	1.78	±	0.06	m;	mass	72.6	±	9.2	kg).	Participants	were	recruited	from	staff	and	161	

students	in	the	department	of	Sport,	Exercise	and	Rehabilitation	at	Northumbria	University.	162	

Inclusion	required	participants	to	regularly	run	3-10	km,	2-3	times	weekly	but	not	competitively.		163	

Volunteers	were	excluded	if	they	had	recent	lower	limb	or	foot	injury	affecting	their	running	gait,	164	

were	habitual	barefoot	runners,	fore	foot	strikers,	or	had	any	contagious	foot	infection	or	any	165	

disorder	affecting	normal	sensation	of	the	plantar	surface.	Test-retest	measurement	error	calculated	166	

from	pilot	test	data	of	nine	other	runners	was	used	to	estimate	sample	size.	Sample	size	was	167	

calculated	to	achieve	sufficient	precision	of	estimation	to	include	a	standardised-mean	difference	in	168	

loading	rate	between	textured	insoles	and	no	insole	conditions	of	0.54	(previously	shown	to	169	

differentiate	runners	with	and	without	stress	fractures)	(Zadpoor	&	Nikooyan,	2011),	and	to	exclude	170	

a	zero	effect.	Test-retest	error	for	vertical	loading	rate	was	small	(typical	error	15	BW·s-1;	5.6%).		171	

	172	

Design	173	

After	habituation	to	achieve	a	consistent	self-selected	endurance	running	velocity,	participants	174	

completed	overground,	uni-directional	15-m	runs	on	an	indoor	running	track	with	walking	recovery	175	

in	flat-canvas	plimsolls,	both	with	and	without	textured	insoles.	Both	conditions	were	performed	176	

without	socks.	Insoles	were	made	from	rubber	and	had	a	pattern	of	grooves	and	ridges	aligned	177	

perpendicular	to	the	long	axis	of	the	foot	(Figure.	1a	&	b).	Grooves	were	1mm	deep	and	the	pattern	178	

had	a	pitch	of	3mm.	Total	thickness	of	the	insoles	was	3mm.	While	the	insole	material	was	rigid	179	

enough	that	the	texture	did	not	deform	under	the	weight	of	a	person	standing	on	it,	the	insole	was	180	

very	flexible,	offering	no	additional	restriction	to	foot	flexion.	The	presentation	of	insole	and	no	181	



insole	conditions	was	counterbalanced	among	participants	to	eliminate	order	effects.	Both	182	

conditions	were	completed	in	a	single	visit.	The	canvas	plimsolls	were	selected	as	the	test	shoe	due	183	

to	thin	soles	and	absence	of	in-built	cushioning.	184	

Figure	1	about	here	185	

Procedures	186	

Participants	were	provided	with	a	tight	fitting	shirt	and	shorts	to	wear	during	trials.	Reflective	25-187	

mm	markers	were	positioned	over	the	right	acromion	process,	greater	trochanter	(on	the	shirt	and	188	

shorts	respectively),	directly	on	the	lateral-femoral	epicondyle	and	lateral	malleolus,	and	on	the	189	

plimsoll,	directly	over	the	posterior	aspect	of	the	calcaneus	and	distal-lateral	aspect	of	the	5th	190	

metatarsal	using	double-sided-adhesive	tape.		191	

Ground	reaction	force	was	captured	at	1000	Hz	from	two	force	platforms	(OR6-7,	AMTI,	Watertown)	192	

embedded	in	series	in	one	lane	of	the	running	track.	Signals	were	filtered	using	a	2nd	order	Butterworth	193	

filter	with	a	low-pass	of	40	Hz	and	amplified	(gain	=	1000)	and	recorded	in	specialist	software	(Netforce	194	

2.4.0,	AMTI,	Watertown).	195	

Five	1-m	sections	of	the	modular	Optojump	system	(Microgate,	Bolzano-Bozen)	were	placed	along	the	196	

length	of	the	lane,	either	side	of	the	force	plates	to	capture	foot	falls	before,	during	and	after	force	197	

plate	contact,	enabling	calculation	of	velocity,	contact	and	fight	time,	stride	 length	and	stride	rate.	198	

Video	 footage	was	captured	by	high-speed	video	camera	 (A602fc-2,	Basler,	Ahrensburg)	operating	199	

through	Motus	9	(Vicon,	Oxford)	and	positioned	on	a	tripod	at	a	height	of	0.7m	and	a	distance	of	4m	200	

from	the	centreline	of	the	test	lane.	Capture	rate	of	the	camera	was	set	at	100	frames/sec.	A	floodlight	201	

positioned	behind	the	camera	was	used	to	increase	marker	contrast.	The	camera	was	calibrated	using	202	

a	1-m	square	frame	held	in	the	centre	of	the	test	lane,	perpendicular	to	the	camera.	The	experimental	203	

set	up	is	illustrated	in	Figure	2.	204	

Figure	2	about	here	205	



	206	

Participants	began	running	along	the	lane	10m	before	the	force	platforms,	and	were	asked	to	continue	207	

to	run	through	the	Optojump	tracks	before	decelerating.	For	habituation,	participants	were	asked	to	208	

perform	as	many	practice	runs	as	necessary	without	textured	insoles,	while	velocity	was	monitored	209	

via	the	Optojump	software	until	relative	consistency	(within	5%)	was	achieved.	The	participant	was	210	

then	informed	data	collection	would	commence.	Five	‘good’	trials	were	recorded	in	each	condition	211	

with	‘good’	defined	as	contact	of	the	right	foot	completely	on	a	force	platform,	without	deliberate	212	

alteration	of	stride,	at	a	velocity	within	5%	of	that	established	during	habituation.	Immediately	after	213	

completion	of	the	five	trials,	participants	were	asked	to	mark	on	a	100mm	visual-analogue	scale	to	214	

subjectively	rate	plantar	sensation	for	the	test	condition.	The	scale	ranged	from	“No	sensation”	to	215	

“Maximum	sensation”.	They	were	then	prepared	for	the	next	condition.		216	

	217	

Data	processing	218	

Kinetic,	kinematic	and	spatiotemporal	variables	were	taken	as	the	mean	of	the	five	‘good’	attempts	in	219	

each	condition.	Velocity,	stride	length,	stride	rate,	contact	and	flight	times	were	exported	from	the	220	

Optojump	software	into	Excel	for	analysis.	Force	plate	data	were	imported	into	BioAnalysis	(Version	221	

2.3,	AMTI,	Watertown),	where	they	were	normalised	to	standing	body	weight	and	percentage	of	gait	222	

cycle,	before	being	exported	into	Excel	to	determine	peak-vertical	force	(Fpeak)	and	average	vertical	223	

loading	rate.	Average	vertical	loading	rate	was	quantified	as	change	in	force	divided	by	time	over	the	224	

interval	 of	 20-80%	 of	 the	 initial	 impact	 peak	 in	 vertical	 GRF	 in	 line	with	 previous	work	 (Williams,	225	

McClay,	&	Manal,	2000).		226	

A	spatial	model	was	created	 in	Vicon	Motus	consisting	of	 six	points,	each	 representing	one	of	 the	227	

markers.	Segments	were	created	between	these	points	representing	the	trunk,	thigh,	shank,	foot	and	228	

the	floor.	Software	was	set	up	to	measure	the	hip	angle	(angle	between	trunk	and	thigh),	knee	angle,	229	



ankle	angle	and	the	foot-strike	angle	(angle	between	the	foot	and	the	floor).	Foot-strike	angle	at	initial	230	

contact	was	used	to	distinguish	foot-strike	pattern,	where	a	positive	angle	indicates	a	rear-foot	contact	231	

and	a	negative	angle	a	forefoot	contact	(Lieberman	et	al.,	2010).	Centre	of	mass	data	were	inserted	232	

for	the	body	segments.	233	

For	 each	 trial,	 the	 appropriate	 calibration	 and	 trial	 video	 clips	 were	 imported.	 Each	 marker	 was	234	

digitised,	using	automatic	tracking,	from	initial	foot	contact	to	toe	off.	Marker	coordinate	data	were	235	

filtered	using	a	4th	order	Butterworth	 low	pass	 filter	 set	 to	25	Hz.	A	virtual	marker	was	created	 to	236	

represent	the	centre	of	mass	and	joint	angles	were	calculated.	All	kinematic	data	were	exported	into	237	

Excel	for	analysis.	238	

The	video	footage	of	the	trial	was	examined	to	determine	the	frame	at	which	foot	contact	was	made	239	

on	the	force	plate,	and	values	for	the	hip,	knee,	ankle	and	foot	angles	were	extracted	for	this	frame.	240	

In	addition,	the	X	co-ordinates	of	the	ankle	marker	and	the	centre	of	mass	virtual	point	were	examined	241	

for	the	point	during	stance	when	the	centre	of	mass	was	vertically	above	the	ankle.	We	named	this	242	

centre	of	mass-ankle	alignment	(COM-A	alignment).	This	frame	was	selected	as	a	common	point	for	243	

comparison	between	conditions	approximating	the	middle	of	the	gait	cycle.	 	 Joint	angle	data	were	244	

also	extracted	for	this	frame.	245	

	246	

Statistical	analysis	247	

After	visual	assessment	and	verification	of	underlying	assumptions	(uniformity	of	error	and	248	

normality	of	difference	scores),	mean	and	SD	were	calculated	for	all	variables	in	both	conditions	249	

using	Microsoft	Excel.	Subsequently,	population-mean	differences	between	conditions	were	250	

estimated	with	95%	confidence	intervals.	For	vertical-loading	rate,	in	addition	to	the	interval	251	

estimate,	the	probability	of	the	population-mean	difference	between	conditions	exceeding	a	252	

smallest-meaningful,	standardised-mean	difference	of	0.54	was	calculated	using	a	magnitude-based	253	



inference	approach	(Batterham	&	Hopkins,	2006).	This	value	is	the	estimated	standardised-mean	254	

difference	in	vertical	loading	rate	between	runners	with	and	without	stress-fracture	injury	from	255	

meta	analysis	(Zadpoor	&	Nikooyan,	2011).		256	

Results	257	

Subjectively-rated	plantar	sensation	258	

Plantar	sensation	was	rated	higher	with	the	textured	insole	(78	±	15	mm)	than	without	(25	±	13	mm)	259	

(95%	CI	for	mean	difference	46	to	58	mm).	260	

Running	velocity	261	

Self-selected	velocity	was	similar	in	the	textured	insole	(4.21	±	0.68	m�s-1)	and	no-insole	(4.19	±	0.66	262	

m·s-1)	conditions	(95%	CI	for	mean	difference	-0.02	to	0.06	m·s-1).	263	

Kinetics	264	

Average	vertical	loading	rate	was	lower	with	textured	insoles	(111	±	37	BW�s-1)	than	without	(128	±	265	

37	BW�s-1).	The	mean	reduction	in	average	vertical	loading	rate	was	-17	BW�s-1	(15%)	(95%	CI	-25	to	-266	

9.3	BW�s-1).	Expressed	as	a	standardised	effect	size,	the	reduction	with	textured	insoles	compared	to	267	

without	was	0.54	(95%	CI	0.3	to	0.82).	The	probability	of	the	population	standardised-mean	268	

reduction	exceeding	the	smallest-meaningful	reduction	of	0.54	was	60%.	Fpeak	was	similar	between	269	

insole	and	no-insole	conditions	(2.80	±	0.37	versus	2.77	±	0.38	BW	respectively;	95%	CI	of	mean	270	

difference	-0.1	to	0.14	BW).	Individual	differences	in	average	vertical	loading	rate	between	the	two	271	

conditions	is	illustrated	in	Figure	3.	Figure	4	displays	the	average	ground-reaction	force	traces	for	272	

both	conditions.	273	

	274	

Figures	3	and	4	about	here	275	



	276	

Stride	characteristics	and	kinematics	277	

Stride	length	was	reduced	with	(3.02	±	0.36	m)	compared	to	without	(3.09	±	0.37	m)	the	textured	278	

insoles	(95%	CI	for	mean	difference	-0.13	to	-0.01	m).	Flight	time	was	shorter	with	(0.11	±	0.02	s)	279	

than	without	(0.12	±	0.02	s)	the	textured	insoles	(95%	CI	for	mean	difference	-0.02	to	-0.01	s)	and	280	

stride	rate	was	higher	with	(1.97	±	0.14	steps·s-1)	than	without	(1.93	±	0.17	steps·s-1)	the	insoles	(95%	281	

CI	for	mean	difference	0.01	to	0.07	steps·s-1).	Contact	time	was	lower	with	the	textured	insoles	than	282	

without	(95%	CI	-0.016	to	-0.006	s).	Foot-strike	angle	was	similar	with	(12.9	±	6.5°)	and	without	(12.3	283	

±	7.1°)	the	textured	insole	(95%	CI	for	mean	difference	-2.2	to	3.4°)	indicative	of	all	participants	284	

adopting	a	consistent	rear-foot	strike	strategy	in	both	conditions.	There	was	a	moderate	correlation	285	

(r	=	0.31)	between	change	in	stride	length	and	change	in	vertical	loading	rate	between	the	two	286	

conditions	(95%	CI	for	r	0.16	to	0.55).	Sample	means	for	each	condition,	mean	differences	and	95%	287	

CI	for	population	mean	differences	between	conditions	in	the	remaining	kinematic	measures	are	288	

shown	in	Table	1.	289	

	290	

Table	1	about	here.	291	

	292	

Discussion	293	

The	purpose	of	this	study	was	to	assess	the	effects	of	a	textured	insole,	designed	to	increase	294	

perceived	plantar-sensory	feedback,	on	average	vertical	loading	rate,	spatiotemporal	variables	and	295	

kinematics	in	overground	running.		Key	findings	were	an	acute	reduction	of	average	vertical	loading	296	

rate,	and	an	acute	increase	in	subjectively-rated	plantar	sensation	with	textured	insoles	compared	to	297	



without.		This	was	accompanied	by	a	reduction	in	stride	length,	flight	and	contact	time	and	an	298	

increase	in	stride	rate	with	the	textured	insoles.	299	

Textured	insoles	elicited		an	acute	and	meaningful	reduction	of	average	vertical	loading	rate	of	a	300	

magnitude	similar	to	the	difference	in	loading	rate	between	runners	with	and	without	stress-fracture	301	

injury	(Zadpoor	&	Nikooyan,	2011).		They	were	also	associated	with	an	acute	increase	in	subjectively-302	

rated	plantar	sensation.	The	decreased	loading	rate	was	unlikely	to	be	an	artefact	of	differences	in	303	

running	velocity,	given	that	mean	velocity	was	almost	identical	in	both	conditions.	Moreover,	304	

observed	reductions	in	stride	length,	flight	and	contact	time,	with	concomitant	increases	in	stride	305	

rate	are	gait	adjustments	that	have	been	associated	with	a	reduction	in	vertical	loading	rate	in	gait	306	

retraining	studies	(Giandolini,	Arnal,	et	al.,	2013;	Samaan,	Rainbow,	&	Davis,	2014).	Some	gait	307	

retraining	studies	have	used	real-time	visual	feedback	as	a	cue	to	reduce	vertical	loading	rate	308	

(Crowell	&	Davis,	2011;	Samaan	et	al.,	2014).	These	studies	reduced	vertical	loading	rate	by	32%	309	

with	eight	sessions	over	a	two-week	period	and	by	57%	in	a	single	treadmill	run	of	up	to	10	minutes	310	

respectively.	Vertical	loading	rate	reduction	in	both	studies	was	larger	than	observed	here	(11%).	311	

The	duration	and	overt-visual	nature	of	feedback	in	the	previous	studies	might	explain	this	312	

difference.	Given	that	no	overt	feedback	about	vertical	loading	rate	was	provided	in	either	condition	313	

in	the	present	study,	it	appears	that	elements	of	habitual-stride	characteristics	might	be	314	

subconsciously	adjusted	in	response	to	the	perceived	augmentation	of	plantar-sensory	feedback.	315	

These	adjustments	appear	to	result	in	a	reduction	of	loading	rate	without	a	change	in	velocity,	in	316	

relatively	few	strides	over	a	short	distance.	This	explanation	supports	predictions	of	the	plantar-317	

sensory	feedback	theory	(Robbins	et	al.,	1989)	that	would	suggest	the	adjustments	in	gait	were	318	

made	in	response	to	the	perceived	increase	in	sensory	feedback,	with	the	goal	of	reducing	the	319	

magnitude	of	the	sensory	signal	in	subsequent	steps	in	a	negative-feedback	manner.	Recent	findings	320	

suggest	that	the	gait	alterations	we	observed	are	unlikely	to	result	from	stimulation	of	superficial	321	

plantar	sensory	receptors	in	the	skin,	but	more	likely	from	stimulation	of	deeper	mechanoreceptor	322	

(Thompson	&	Hoffman,	2017).	The	rigidity	of	the	ridges	in	our	textured	insoles	and	their	323	



arrangement	perpendicular	to	long	axis	of	the	foot	might	be	facilitate	stimulation	of	deeper	plantar-324	

sensory	receptors,	but	our	design	is	unable	to	confirm	this.	325	

Despite	alterations	in	stride	length,	stride	rate,	flight	and	contact	time,	no	evidence	was	found	to	326	

suggest	changes	in	any	other	kinematic	measure	at	initial	contact	or	mid	stance.	It	appears	that	327	

simply	reducing	stride	length	is	sufficient	to	reduce	vertical	loading	rate.	This	suggestion	is	supported	328	

by	our	observed	correlation	between	change	in	stride	length	and	change	in	vertical	loading	rate.	It	is	329	

also	supported	by	the	findings	of	gait	retraining	studies	in	which	stride	rate	(and	thus	stride	length)	330	

were	manipulated	(Giandolini,	Arnal,	et	al.,	2013).	Indeed,	a	recent	study	(Lieberman,	Warrener,	331	

Wang,	&	Castillo,	2015)	demonstrated	a	causal	link	between	increased	stride	rate,	reduced	stride	332	

length	and	decreased	vertical	loading	rate.	The	mechanical	link	between	braking	forces	and	333	

accompanying	high	average	vertical	loading	rates	observed	with	longer	stride	length	and	lower	334	

stride	frequency	(Lieberman	et	al.,	2015)	could	explain	the	findings	presented	here.		335	

Notably,	in	this	study	participants	achieved	reduced	loading	rates	between	conditions	but	did	not	do	336	

this	by	changing	foot	strike	patterns.	Despite	other	studies	showing	lower	vertical	loading	rates	with	337	

a	forefoot	strike	(Lieberman	et	al.,	2010;	Phan	et	al.,	2016),	and	some	actually	instructing	338	

participants	to	consciously	adopt	this	pattern	(Giandolini,	Horvais,	Farges,	Samozino,	&	Morin,	2013;	339	

Williams	et	al.,	2000),	all	of	our	participants	retained	a	rearfoot	strike	in	both	conditions.		From	an	340	

anatomical	perspective,	an	elongated	stride	length	resulting	from	an	over	stride	at	the	knee	strongly	341	

encourages	a	rear-foot	strike	(Lieberman	et	al.,	2015).	This	landing	strategy	is	most	prevalent	in	342	

runners	wearing	conventional-cushioned	shoes	and	less	prevalent	in	minimal	footwear	and	barefoot	343	

runners	(Larson,	2014;	Lieberman	et	al.,	2010).	The	footwear	used	in	the	present	study	were	flat,	344	

flexible-canvas	plimsolls	that	can	be	classed	as	minimal	footwear.	Despite	this,	all	participants	345	

retained	a	rear-foot	landing	strategy	in	the	test	shoes	that	was	consistent	regardless	of	the	insole	346	

condition.	The	short	distances	covered	and	short	duration	of	wear	might	not	promote	a	change	in	347	



habitual-landing	pattern	and	participants	unaccustomed	to	running	in	minimal	shoes	might	tolerate	348	

the	short-term	change.	349	

The	acute	alteration	of	stride	characteristics	and	associated	reduction	in	loading	rate	in	this	study,	350	

suggests	that	textured	insoles	could	be	used	as	an	aid	to	gait	retraining.	It	is	unlikely	that	a	runner	351	

would	tolerate	the	perceived	increase	in	plantar	sensation	for	the	duration	of	a	long	run,	but	352	

frequent	short-term	use	might	facilitate	small	adjustments	in	habitual-stride	length,	rate	and	contact	353	

time	that	could	reduce	long-term	risk	from	loading-rate	related	injury.	Clearly,	these	suggestions	are	354	

speculative,	but	could	be	fruitful	lines	of	future	enquiry.	355	

	356	

It	should	be	noted	that	we	did	not	quantify	plantar	sensitivity	or	individual	sensitivity	thresholds	357	

using	methods	such	as	Semmes-Weinstein	monofilament	testing.	As	such,	ratings	of	plantar	358	

sensation	and	changes	between	conditions	are	subjective	and	not	normalized	to	individual	359	

sensitivity	thresholds.	Accordingly,	a	causal	link	between	textured	insole	use,	the	observed	increase	360	

in	subjectively-rated	sensation,	gait	alteration	and	reduced	vertical	loading	rate	cannot	be	inferred.	361	

	362	

The	results	of	this	study	suggest	that	textured	insoles	produce	meaningful,	albeit	acute,	decreases	in	363	

average	vertical	loading	rate	in	short-distance,	overground	running.	Increased	subjectively-rated	364	

plantar	sensation	was	also	observed	in	the	textured	insole	condition.	Reduced	vertical	loading	rate	365	

with	the	insole	could	be	explained	by	altered	stride	characteristics	in	that	condition.	Future	studies	366	

should	examine	the	effects	of	longer	durations	of	wear,	explore	the	potential	effectiveness	of	367	

textured	insoles	as	an	aid	to	gait	retraining	and	attempt	to	confirm	a	causal	link	between	altered	gait	368	

and	plantar	sensation	using	standard-objective	measures	of	the	latter.	369	

		370	
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	435	

Table	and	figure	headings.	436	

Table	1.	Joint	angles	at	initial	contact	and	at	COM-A	alignment	in	recreational	runners	(n	=	16)	during	437	

indoor-overground	running	at	matched	velocity	in	flat-canvas	plimsolls	both	with	and	without	438	

textured	insoles.	439	

Figure	1.	A	canvas-plimsoll	test	shoe	and	custom-made	textured	insole	with	ridges	at	3mm	intervals	440	

and	1mm	deep	(a),	and	figurative	cross-sectional	view	of	the	insole	(b).	441	

Figure	2.	Schematic	of	the	experimental	set	up.	442	

Figure	3.	Vertical	loading	rate	of	male	recreational	runners	(n	=	16)	during	overground,	indoor	443	

running	at	matched	velocity	in	canvas	plimsolls	both	with	and	without	textured	insoles.	444	

Figure	4.	Average	vertical	ground-reaction	force	traces	of	16	male	recreational	runners	during	445	

overground	running	at	matched	velocity	in	canvas	plimsolls	with	(red)	and	without	(blue)	textured	446	

insoles.	447	
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Figure	3.	477	
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Figure	4.	504	
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Table	1.	518	

	 Mean	±	SD	
No	insole	

Mean	±	SD	
Textured	insole	

Mean	±	SD	difference		
(insole	minus	no	insole)	

95%	CI	of	mean	difference	

Hip	angle	at	footstrike	(°)	 156.2	±	8.6	 156.4	±	8.5	 0.19	±	1.99	 -0.87	to	1.25	
Knee	angle	at	footstrike	(°)	 164.1	±	5.1	 163.7	±	4.8	 -0.31	±	3.01	 -1.91	to	1.29	
Ankle	angle	at	footstrike	(°)	 86.7	±	4.8	 85.4	±	4.7	 -1.25	±	2.74	 -2.66	to	1.56	

Hip	angle	at	COM-A	alignment	(°)	 150.0	±	8.13	 149.8	±	7.9	 -0.27	±	2.53	 -1.62	to	1.08	
Knee	angle	at	COM-A	alignment	(°)	 136.7	±	4.8	 135.7	±	6.5	 -0.97	±	3.25	 -2.77	to	0.83	
Ankle	angle	at	COM-A	alignment	(°)	 74.7	±	3.5	 73.8	±	3.9	 -0.87	±	1.84	 -1.82	to	0.07	
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