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Abstract In traditional machine learning, classifica-

tion is typically undertaken in the way of discriminative

learning by using probabilistic approaches, i.e. learn-

ing a classifier that discriminates one class from other

classes. The above learning strategy is mainly due to the

assumption that different classes are mutually exclusive

and each instance is clear-cut. However, the above as-

sumption does not always hold in the context of real-life

data classification, especially when the nature of a clas-

sification task is to recognize patterns of specific classes.

For example, in the context of emotion detection, multi-

ple emotions may be identified from the same person at

the same time, which indicates in general that different

emotions may involve specific relationships rather than

mutual exclusion. In this paper, we focus on classifica-

tion problems that involve pattern recognition. In par-
ticular, we position the study in the context of granular

computing, and propose the use of fuzzy rule-based sys-

tems for recognition intensive classification of real-life

data instances. Furthermore, we report an experimental

study conducted using 7 UCI data sets on life sciences,

to compare the fuzzy approach with four popular prob-

abilistic approaches in pattern recognition. The exper-

imental results show that the fuzzy approach can not
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only be used as an alternative one to the probabilistic

approaches but also is capable to capture more patterns

which probabilistic approaches can not achieve.
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1 Introduction

Classification is one of the most popular tasks of ma-

chine learning, which has been popularly involved in

various application areas, such as sentiment analysis (Liu

and Cocea, 2017b; Pedrycz and Chen, 2016; Jefferson

et al., 2017), image processing (Liu et al., 2017a; Wang

and Yu, 2016), pattern recognition (Teng et al., 2007;

Wu et al., 2011) and decision making (Liu and Gegov,

2015; Xu and Wang, 2016; Liu and You, 2017).

In traditional machine learning, classification is typ-

ically conducted by training a classifier that discrimi-

nates one class from other classes towards uniquely clas-

sifying each instance, since the classification is based on

the assumptions that different classes are mutually ex-

clusive and that each instance is clear-cut and thus can

not belong to more than one class. However, the above

assumptions do not always hold in real-life data classi-

fication. For example, it is very normal that the same

movie can belong to different categories or the same

book can be associated with different subjects. Also,

while different classes are truly mutually exclusive, it is

also possible that some instances are very complex and

hard to distinguish, e.g. in handwritten digits recogni-

tion, the two digits ‘4’ and ‘9’ can be highly similar to

each other, due to the diversity in handwriting styles

from different people.
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Furthermore, as introduced in Liu et al. (In press),

classification is essentially a task of predicting the value

of a discrete attribute. In the context of data science,

discrete attributes can be specialized into several other

types, such as nominal, ordinal and string (Tan et al.,

2005). Due to the difference in types of discrete at-

tributes, the nature of classification tasks can also be

varied. In particular, classification tasks can be special-

ized into pattern recognition, rating and decision mak-

ing (Liu et al., In press), which indicates that a classi-

fication task is not necessarily aimed at discrimination

between different classes, i.e. the purpose could be sim-

ply to identify instances of a specific class, without the

need to distinguish it from other classes.

In this paper, we focus on recognition intensive clas-

sification in the setting of granular computing. In par-

ticular, we propose to adopt fuzzy rule based systems

in the context of multi-task classification, i.e. each class

is viewed as an information granule, which involves a

specific recognition task, in terms of the membership

degree of an instance to the class. Also, the recogni-

tion task for each class is undertaken independently,

i.e. the membership degree of an instance to each class

is measured independently, in the context of generative

classification.

The contributions of this paper include the follow-

ing: a) we point out the case that in recognition in-

tensive classification different classes generally involve

some specific relationships rather than mutual exclu-

sion, so it is not appropriate to undertake such a classi-

fication task in a discriminative way; b) we show both

theoretically and empirically that fuzzy approaches are

more suitable than probabilistic ones for recognition

intensive classification, i.e. fuzzy approaches can not

only be used as the alternative ones to probabilistic ap-

proaches in terms of classification performance, but also

show the capability of capturing more patterns that can

not be discovered by using probabilistic approaches.

The rest of this paper is organized as follows: Sec-

tion 2 provides related work on recognition intensive

classification in the context of traditional machine learn-

ing and the concepts of granular computing. In Sec-

tion 3, we illustrate the procedure of fuzzy rule-based

classification in the context of multi-task learning. We

also justify the significance and advantages of fuzzy

classification of real-life data that involves recognition

tasks. In Section 4, we report an experimental study

conducted by using 7 UCI data sets, and discuss the

results critically and comparatively to show the advan-

tages of fuzzy approaches for recognition intensive clas-

sification, in comparison with probabilistic approaches.

In Section 5, we summarize the contributions of this

paper and suggest further directions towards advanc-

ing this research area in the future.

2 Related Work

This section provides a review of recognition intensive

classification when traditional machine learning approaches

are used. This section also presents an overview of gran-

ular computing concepts and techniques and shows how

they can be used effectively and efficiently for dealing

with real-life classification problems.

2.1 Review of Recognition Intensive Classification

As introduced in (Liu et al., In press), recognition can

be either a binary or multi-class classification task. A

popular example of binary classification for the pur-

pose of recognition is gender identification (Guo, 2014),

which is aimed at judging that a person is male or fe-

male. In this context, both the male and female classes

are of high interest, since it is required to distinguish

clearly the two classes towards identifying accurately

the gender of a person, which has motivated researchers

to focus the research on discriminative approaches of

classification Wu et al. (2011); Ali and Xavier (2014);

Lin et al. (2016); Suykens and Vandewalle (1999). In

other words, researchers aim to identify features that

can discriminate effectively between male and female

in the setting of discriminative learning.

However, there are also some examples of binary

classification that only involve one class of interest, such

as cyberbullying detection (Zhao et al., 2016; Reynolds

et al., 2011). In the context of cyberbullying classifi-

cation, the aim is essentially at recognizing effectively

any such offensive languages from online text posted

via social media, i.e. it is to judge if the text is sent for

the purpose of bullying. In reality, vast majority of tex-

tual instances posted via social media would normally

belong to the ‘no’ class (i.e. a collected data set usu-

ally contains less than 10% cyberbullying instances),

as mentioned in Reynolds et al. (2011), which indicates

the case of class imbalance. Since discriminative classifi-

cation has been mainly involved in traditional machine

learning, some popular probabilistic approaches, such

as Support Vector Machine (SVM), Naive Bayes (NB)

and Decision Trees (DT), have been popularly used for

cyberbulling detection (Zhao et al., 2016).

From a perspective of granular computing based

machine learning, the ‘yes’ class, which represents the

case of cyberbullying, can be viewed as the only tar-

get class, since it is the only class of interest and the

prediction accuracy for the ‘no’ class would be usually
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very high. From this point of view, it is only needed

to extract a set of features that are highly relevant to

the target class, such that a classifier is learned for rec-

ognizing the case of cyberbullying. In other words, the

classifier output is the ‘no’ class by default, and the

‘yes’ class is provided as the output only when some

features of cyberbullying are found from text.

On the other hand, there are also many examples of

multi-class classification for the purpose of recognition,

such as emotions identification (Teng et al., 2007). Due

to the popularity of probabilistic approaches in tradi-

tional machine learning, SVM and NB have been used

for discriminating one emotion from the other ones (Al-

trabsheh et al., 2015). However, as argued in Liu et al.

(In press), different emotions are not really mutually ex-

clusive, i.e. it is normal that different emotions can be

identified from the same person at the same time, so it

is not really appropriate to learn classifiers towards dis-

criminating between different classes. Instead, it would

be necessary to treat identification of each emotion as

an independent task. In this context, it is necessary to

extract only features that are highly relevant to this

specific emotion, such that a classifier is learned from

these features for identifying whether a person has this

specific emotion at a particular point.

2.2 Overview of Granular Computing

Granular computing is a paradigm of information pro-

cessing. It is aimed at structural thinking from a philo-

sophical perspective and is aimed at structural problem

solving from a practical perspective (Yao, 2005b).

In general, granular computing involves two opera-

tions, namely granulation and organization (Yao, 2005a).

The former operation is aimed at decomposing a whole

into several (overlapping or non-overlapping) parts, whereas

the latter operation is aimed at integrating several (over-

lapping or non-overlapping) parts into a whole. In the

context of computer science, granulation and organiza-

tion are typically used as the top-down and bottom-

up approaches, respectively (Liu and Cocea, 2017a). In

other words, granulation means to divide a complex

problem into several simpler sub-problems, whereas or-

ganization indicates that several modular problems are

linked together into a more systematic problem.

In practice, two main concepts of granular comput-

ing have been popularly involved in the two operations

of granular computing (granulation and organization),

namely, granule and granularity. A granule generally

represents a large particle, which can be divided into

several smaller particles that can form a larger unit.

There are many real-life examples as follows:

– In the context of classification, each class can be

viewed as a granule, since a class is essentially a

collection of objects/instances.

– In the context of rule-based systems, each rule can

be viewed as a granule, since a rule consists of a

collection of rule terms as its antecedent.

– In the context of fuzzification of continuous attributes,

each linguistic term can be viewed as a granule, since

a linguistic term is essentially a fuzzy set that rep-

resents a collection of elements with different mem-

bership degrees to the fuzzy set.

In general, there are some specific relationships be-

tween granules in the same level or different levels,

which leads to the need to involve the concept of gran-

ularity (Pedrycz and Chen, 2015). In particular, gran-

ules, which are located at the same level of granularity,

involve horizontal relationships (Liu and Cocea, 2018),

e.g. mutual exclusion, correlation and mutual indepen-

dence.

In contrast, granules, which are located at differ-

ent levels of granularity, involve hierarchical relation-

ships (Liu and Cocea, 2018; Liu et al., In press), e.g.

generalization/specialization and aggregation/decomposition.

For example, in the context of classification, a class at a

higher level of granularity may be specialized/decomposed

into sub-classes at a lower level of granularity. Also,

classes at a lower level of granularity may be general-

ized/aggregated into a super class at a higher level of

granularity (Liu and Cocea, 2017a). On the other hand,

different classes may also be mutually exclusive, corre-

lated or mutually independent, when these classes are

at the same level of granularity (Liu et al., 2017b).

In practice, granular computing concepts have been

popularly used in various areas, such as artificial intel-

ligence (Wilke and Portmann, 2016; Pedrycz and Chen,

2011; Skowron et al., 2016), computational intelligence (Dubois

and Prade, 2016; Yao, 2005b; Kreinovich, 2016; Livi

and Sadeghian, 2016), machine learning (Min and Xu,

2016; Peters and Weber, 2016; Liu and Cocea, 2017c;

Antonelli et al., 2016; Chen et al., 2001), decision mak-

ing (Xu and Wang, 2016; Liu and You, 2017; Chatter-

jee and Kar, 2017), data clustering (Chen et al., 2009;

Horng et al., 2005; Chen et al., 2011) and natural lan-

guage processing (Zhang et al., 2007).

Furthermore, granular computing concepts have also

been popularly used in ensemble learning techniques (Liu

and Cocea, 2017c). In particular, ensemble learning ap-

proaches, such as Bagging, involve granulation of infor-

mation through decomposing a training set into a num-

ber of overlapping samples (different versions training

data), and also involve organization through combin-

ing the individual outputs derived from different base

classifiers towards finally assigning a class to an unseen
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instance; there has also been a very similar perspective

stressed and discussed in Hu and Shi (2009).

3 Fuzzy Multi-task Classification Approach

In this section, we illustrate the procedure of fuzzy

rule-based systems in the context of generative multi-

task classification. Also, we justify the theoretical sig-

nificance and advantages of using fuzzy approaches for

recognition intensive classification.

3.1 Procedure of Fuzzy Rule-Based Systems

A fuzzy-rule based system is essentially based on fuzzy

logic and fuzzy set theory. Fuzzy logic is an extension

of a deterministic rule based system, i.e. fuzzy truth

values are continuous, which are ranged from 0 to 1,

unlike binary truth values (0 or 1).

In the context of fuzzy sets, each element xi has

a certain degree of membership to the set S, it par-

tially belongs to the set. The value of the member-

ship degree is determined by the membership function

fs(xi) defined for the fuzzy set S. There are various

shapes of membership functions used in practice, such

as trapezoid, triangle and rectangle. In general, trape-

zoidal membership functions can be seen as a general-

ization of triangular and rectangular membership func-

tions. The definition of a membership function is essen-

tially achieved by estimating four parameters a, b, c, d,

as illustrated below and in Fig 1.

fT (x) =


0, when x ≤ a or x ≥ d;

(x− a)/(b− a), when a < x < b;

1, when b ≤ x ≤ c;

(d− x)/(d− c), when c < x < d;

According to Fig. 1, the shape of the membership

function would be triangle, if b = c, or the shape would

be rectangle, if a = b and c = d. The rectangle area

between b and c is referred to as ‘core area’, which rep-

resent the case that elements fully belong to the set,

whereas the right triangle area, between a and b, or c

and d, is referred to as ‘support area’, which represents

the case that elements partially belong to the set.

A membership function can be defined by using ex-

pert knowledge (Mamdani and Assilian, 1999) or by

learning statistically from data (Bergadano and Cutello,

1993). More details on fuzzy sets and logic can be found

in (Zadeh, 1965; Chen and Chang, 2001; Chen and

Chen, 2011; Chen, 1996).

In the context of multi-task classification, a fuzzy

rule-based system involves four main operations (Liu

Fig. 1 Trapezoid Membership Function (Liu and Cocea,
2017b)

Algorithm 1: Fuzzy Multi-task Classification

Input : An attribute vector I: numerical value vij of
each attribute xi, where i is the index of the
attribute and j is the id of the attribute
vector, A set of fuzzy rules: each rule is
represented as Rm and is assigned a class ct
as its consequent, A set of fuzzy intervals for
each attribute xi: each interval is
represented as Tik, where k is the index of
the interval

1 Fuzzification: for each fuzzy rule Rm do
2 for each attribute xi do
3 covert the attribute value vij into the

membership degree value fijk
4 end

5 end
6 Application: for each fuzzy rule Rm do
7 for each attribute xi do
8 conjunct the membership degree value

fijkinfer the firing strength of the rule using
the ‘min’ function

9 end

10 end
11 Implication: for each fuzzy rule Rm do
12 infer the membership degree fRm→ct

(I) of the
attribute vector I to the class ct based on this
rule

13 end
14 Aggregation: for each class ct do
15 disjunct the membership degree values derived

from all fuzzy rules of the class ct to infer the
overall membership degree fct

(I) of the attribute
vector I to the class ct by using the ‘max’
function

16 end

et al., In press): fuzzification, application, implication,

and aggregation, as shown in Algorithm 1. We illustrate

the whole procedure by using the following example of

fuzzy rules:

– Rule 1: if x1 is Young and x2 is High then class=Impressive;

– Rule 2: if x1 is Young and x2 is Middle then class=Impressive;
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– Rule 3: if x1 is Young and x2 is Low then class=Normal ;

– Rule 4: if x1 is Middle-aged and x2 is High then

class=Impressive;

– Rule 5: if x1 is Middle-aged and x2 is Middle then

class=Normal ;

– Rule 6: if x1 is Middle-aged and x2 is Low then

class=Odd ;

– Rule 7: if x1 is Old and x2 is High then class=Normal ;

– Rule 8: if x1 is Old and x2 is Middle then class=Odd ;

– Rule 9: if x1 is Old and x2 is Low then class=Odd ;

The fuzzy membership functions defined for the lin-

guistic terms transformed from x1 and x2 are illustrated

in Fig. 2 and Fig. 3, respectively.

Fig. 2 Fuzzy membership functions for linguistic terms of
attribute ‘age’ (Liu et al., In press)

Fig. 3 Fuzzy membership functions for linguistic terms of
attribute ‘salary’

According to Fig. 2 and Fig. 3, if x1 = 30 and

x2 = 60k, then the following steps will be executed:

Fuzzification:

Rule 1: fY oung(30) = 0.67, fHigh(60k) = 0.33;

Rule 2: fY oung(30) = 0.67, fMiddle(60k) = 0.67;

Rule 3: fY oung(30) = 0.67, fLow(60k) = 0;

Rule 4: fMiddle−aged(30) = 0.33, fHigh(60k) = 0.33;

Rule 5: fMiddle−aged(30) = 0.33, fMiddle(60k) = 0.67;

Rule 6: fMiddle−aged(30) = 0.33, fLow(60k) = 0;

Rule 7: fOld(30) = 0, fHigh(60k) = 0.33;

Rule 8: fOld(30) = 0, fMiddle(60k) = 0.67;

Rule 9: fOld(30) = 0, fLow(60k) = 0;

In the fuzzification step, the notation fHigh(60k) =

0.33 represents that the membership degree of the nu-

merical value ‘60k’ to the fuzzy set defined with the

linguistic term ‘High’ is 0.33. The fuzzification step is

aimed at mapping the value of a continuous attribute to

a value of membership degree to a fuzzy set (i.e. map-

ping to the value of a linguistic term transformed from

the continuous attribute).

Application:

Rule 1: fY oung(30) ∧ fHigh(60k) = Min(0.67, 0.33) =

0.33;

Rule 2: fY oung(30) ∧ fMiddle(60k) = Min(0.67, 0.67) =

0.67;

Rule 3: fY oung(30) ∧ fLow(60k) = Min(0.67, 0) = 0;

Rule 4: fMiddle−aged(30)∧fHigh(60k) = Min(0.33, 0.33) =

0.33;

Rule 5: fMiddle−aged(30)∧fMiddle(60k) = Min(0.33, 0.67) =

0.33;

Rule 6: fMiddle−aged(30)∧ fLow(60k) = Min(0.33, 0) =

0;

Rule 7: fOld(30) ∧ fHigh(60k) = Min(0, 0.33) = 0;

Rule 8: fOld(30) ∧ fMiddle(60k) = Min(0, 0.67) = 0;

Rule 9: fOld(30) ∧ fLow(60k) = Min(0, 0) = 0;

In the application step, the conjunction of the two

fuzzy membership degree values respectively for the two

attributes ‘x1 and ‘x2’ is aimed at deriving the firing

strength of a fuzzy rule. For example, the antecedent of

Rule 1 consists of x1 is Young and x2 is High, so the fir-
ing strength of Rule 1 is 0.33, while fY oung(30) = 0.67

and fHigh(60k) = 0.33.

Implication:

Rule 1: fRule1→Impressive(30, 60k) = 0.33;

Rule 2: fRule2→Impressive(30, 60k) = 0.67;

Rule 3: fRule3→Normal(30, 60k) = 0;

Rule 4: fRule4→Impressive(30, 60k) = 0.33;

Rule 5: fRule5→Normal(30, 60k) = 0.33;

Rule 6: fRule6→Odd(30, 60k) = 0;

Rule 7: fRule7→Normal(30, 60k) = 0;

Rule 8: fRule8→Odd(30, 60k) = 0;

Rule 9: fRule9→Odd(30, 60k) = 0;

In the implication step, the firing strength of a fuzzy

rule derived in the application step can be used further

to infer the value of membership degree of an input vec-

tor to one of the class labels ‘Impressive’, ‘Normal’ and

‘Odd’, depending on the actual consequent of the fuzzy

rule. For example, fRule1→Impressive(30, 60k) = 0.33 in-
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dicates that the consequent of Rule 1 is assigned the

class label ‘Impressive’ and the input vector ‘(30, 60k)’

has the membership degree value of 0.33 to the class la-

bel ‘Impressive’. In other words, the input vector ‘(30, 60k)’

gains the membership degree value of 0.33 to the class

label ‘Impressive’, through the inference using Rule 1.

Aggregation:

fImpressive(30, 60k) = fRule1→Impressive(30, 60k)

∨fRule2→Impressive(30, 60k)∨fRule4→Impressive(30, 60k)

= Max(0.33, 0.67, 0.33) = 0.67

fNormal(30, 60k) = fRule3→Normal(30, 60k)

∨ fRule5→Normal(30, 60k) ∨ fRule7→Normal(30, 60k)

= Max(0, 0.33, 0) = 0.33

fOdd(30, 60k) = fRule6→Odd(30, 60k)

∨ fRule8→Odd(30, 60k) ∨ fRule9→Odd(30, 60k)

= Max(0, 0, 0) = 0

In the aggregation step, the membership degree value

of the input vector to the class label (‘Impressive’, ‘Nor-

mal’ or ‘Odd’), which is inferred through using a rule,

is compared with the other membership degree values

inferred through using the other rules, towards finding

the maximum among all the membership degree values.

For example, Rule 1, Rule 2 and Rule 4 are all assigned

the class label ‘Impressive’ as their consequent and the

input vector ‘(30, 60k)’ gains the membership degree

values of are 0.33, 0.67 and 0, respectively, to the class

label ‘Impressive’, through the inference by using the

above three rules. As the maximum of the fuzzy mem-

bership degree values is 0.67, the input vector is judged

finally to have the membership degree value of 0.67 to

the class label ‘Impressive’.

In traditional machine learning, it is usually needed

to provide an crisp output as the classification outcome,

so defuzzification is typically involved by choosing the

class label with the maximum value of membership de-

gree. When there is more than one class label with the

maximum value of membership degree, defuzzification

is achieved by randomly choosing one of these classes

with the maximum membership degree. For the above

illustrative example, the final classification outcome is

to assign the class label ‘Impressive’ to the unseen in-

stance ‘(30, 60k, ?)’, since the value (0.67) of the mem-

bership degree to this class label is the maximum one. In

contrast, generative multi-task classification is aimed at

measuring independently the membership degree value

of an instance to each class, so it is not necessary to

involve the defuzzification step.

Besides, as mentioned above, definition of member-

ship functions can be based on expert knowledge or

real data. In the context of data driven definition of

membership functions, it is generally not applicable to

assign each fuzzy set a linguistic term. Instead, each

fuzzy set is provided with an ID, e.g. ID ‘0’ represents

the first fuzzy set. The representation of each fuzzy set

is achieved through providing the actual parameters of

the membership function defined for the fuzzy set, e.g.

[20, 30, 55, 75] represents the four parameters (a, b, c,

d) of a trapezoid membership function.

3.2 Justification

In the context of recognition intensive classification, the

purpose is essentially to discover the presence of a tar-

get class of instances. From this point of view, fuzzy

multi-task classification is considered as a very suitable

approach. For example, in the context of human activ-

ities recognition, there are several activities that need

to be identified, and each of the activities is viewed as a

target class, such that a set of fuzzy rules are learned for

each target class and are used to identify the degree to

which the activity (corresponding to the target class) is

present, in the setting of fuzzy multi-task classification.

On the other hand, recognition intensive classifica-

tion can usually involve a large number of classes, e.g.

human activities recognition can involve more than 10

classes as indicated in Kalua et al. (2010). It is very

likely that these classes are not mutually exclusive. For

example, in activities recognition, the three classes ‘sit-

ting’, ‘sitting down’ and ‘sitting on the ground’ are gen-

erally correlated to some extents. Also, the three classes

‘standing up from lying’, ‘standing up from sitting’ and

‘standing up from sitting on the ground’ would have

some overlaps in terms of their features. From the above

point of view, human activities recognition is not a

black and white problem, so fuzzy approaches are capa-

ble to deal with this kind of problems in a grey manner,

i.e. it is aimed at identifying independently the degree

of presence of each activity.

Furthermore, as mentioned in Section 1, it is also

possible in reality that an instance can fully belong to

more than one class, since these classes are defined from

different perspectives. For example, a student can be

classified as an international student in terms of na-

tionality, as a full-time student in terms of study mode,

or as a undergraduate student in terms of degree lev-

els. In this context, a student can fully belong to all

the three classes above. Since fuzzy rule-based classifi-

cation is generally done in a generative way, i.e. it treats

each class equally and the membership degree of an in-

stance to each class is measured independently, a fuzzy

classifier is really capable to capture the case that an

instance highly or even fully belongs to more than one
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class, i.e. an instance appears to have a very high mem-

bership degree (closer or even equal to 1) to more than

one class.

On the basis of the above argumentation, it is nec-

essary to propose the use of fuzzy approaches instead

of probabilistic approaches, in terms of recognition in-

tensive classification. Firstly, probabilistic approaches

aim at learning classifiers that discriminate one class

from other classes. However, when these classes are

not mutually exclusive, probabilistic classifiers, such as

DT (Quinlan, 1993), would fail to identify that some

instances actually belong to one class, due to the case

that these instances have been recognized as instances

of another class. Also, when the number of classes is

grown and becomes massive, it would be more diffi-

cult for probabilistic approaches to train classifiers that

discriminate effectively between classes, e.g. NB (Rish,

2001) is generally not able to learn from a data set that

involves a massive number of classes. In some cases,

it is also possible to result in the case that some in-

stances can not be classified. For example, as illustrated

in Fig. 4, a linear SVM classifier (Cristianini, 2000) is

unable to classify any instances that lie in an area (area

E) enclosed by three boundaries. In addition, due to a

massive number of classes, when the K Nearest Neigh-

bour (KNN) algorithm (Zhang, 1992) is used, it would

also be more likely to happen that multiple classes ap-

pear to be the most frequently occurring ones, leading

to the uncertainty in classifying instances.

Fig. 4 Linear SVM for multi-class classification

We will show experimental results to support the

above argumentation in the context of fuzzy multi-task

classification from granular computing perspectives.

4 Experiments, Results and Discussion

In this section, we report an experimental study on

fuzzy multi-task learning for recognition intensive clas-

sification. The experiments were conducted by using 7

UCI data sets on life sciences (Lichman, 2013). The

charatersitics of the data sets are shown in Table 1.

In terms of classification accuracy, we compare the

fuzzy approach with four popular probabilistic ones for

pattern recognition, namely, DT (Quinlan, 1993), NB (Rish,

2001), KNN (Zhang, 1992) and SVM with the polyno-

mial kernel (Cristianini, 2000). Also, we show the mem-

bership degree values of some representative instances

(selected from the test sets) to all the given classes, in

order to indicate that the fuzzy approach is capable to

capture more patterns than expected, i.e. an instance

may also belong to other classes apart from the target

class, or the set of given classes is not complete, so the

instance can not be classified and an extra class needs

to be found.

The learning of fuzzy rule-based systems is based on

the mixed fuzzy rule formation algorithm (Berthold,

2003), which has been implemented on the KNIME

platform (Berthold et al., 2013).

The results on classification accuracy are shown in

Table 2 and indicate that the fuzzy approach outper-

forms all the probabilistic ones in 2 out of the 7 cases

(on the ‘Forest-Type’ and ‘Glass’ data sets). In the

other 5 cases, the fuzzy approach performs marginally

worse than the best performing one but still outper-

forms the majority of the probabilistic approaches. The

results shown in Table 2 indicate that the fuzzy ap-

proach can fairly be used as the alternative one to these

popular probabilistic approaches for recognition inten-

sive classification, without loss of classification accu-

racy.

However, the fuzzy approach is capable to capture

more patterns which probabilistic approaches can not

achieve, as mentioned above. In particular, Tables 3, 4

and 5 are presented to show the membership degrees

of each instance to different classes. For example, in

Table 3, the first column represents the ID of an in-

stance; the second column represents the class label

that is assigned to each instance by experts, and the

third to sixth columns represent the membership de-

grees of each instance to these corresponding classes

(i.e. ‘d’, ‘h’, ‘o’ and ‘s’). In addition, the last column

represents the prediction made by the fuzzy classifier

for assigning a class to an instance in the setting of tra-

ditional machine learning, i.e. it is the output of the

fuzzy classifier through defuzzification. However, as ar-

gued in Section 3, the defuzzification step is not needed

in the setting of recognition intensive classification from

a granular computing perspective, and we include this

column just for clarifying what outputs would be pro-

vided by the fuzzy classifier if the defuzzification step

is involved.
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Table 1 Characteristics of Data Sets

Dataset Attribute Types #Attributes #Instances #Classes Reference

Forest-Type continuous 27 326 4 (Johnson et al., 2012)
Anuran-Calls-1 continuous 22 7195 4 (Colonna et al., 2015)
Anuran-Calls-2 continuous 22 7195 8 (Colonna et al., 2015)
Anuran-Calls-3 continuous 22 7195 10 (Colonna et al., 2015)
cardiotocography-1 continuous 23 2126 3 (de Campos et al., 2000)
cardiotocography-2 continuous 23 2126 10 (de Campos et al., 2000)
Glass continuous 10 214 6 (Evett and Spiehler, 1987)

Table 2 Classification Accuracy

Dataset DT (Quinlan, 1993) NB (Rish, 2001) KNN (Zhang, 1992) SVM (Cristianini, 2000) Fuzzy (Berthold, 2003)

Forest-Type 0.806 0.772 0.84 0.828 0.853
Anuran-Calls-1 0.951 0.878 0.991 0.935 0.98
Anuran-Calls-2 0.937 0.854 0.988 0.933 0.97
Anuran-Calls-3 0.947 0.884 0.987 0.94 0.96
cardiotocography-1 0.983 0.986 0.821 0.78 0.974
cardiotocography-2 1 0.999 0.422 0.278 0.991
Glass 0.663 0.485 0.655 0.553 0.686

The results shown in Table 3 indicate that an in-

stance can match the features of more than one type

of forest, i.e. an instance may have a very high mem-

bership degree (closer or even equal to 1) to more than

one class, e.g. instances 10, 11 and 12.

Table 3 Results sample on Forest-Type Data

ID class d h o s prediction

1 d 0.25 0 0 0 d
2 s 0 0.63 0 1 s
3 s 0 0 0 1 s
4 d 1 0 0 0 d
5 h 0 1 0 0 h
6 o 0 0 1 0 o
7 d 0.91 0 0 0.28 d
8 d 0 0 0 0 ?
9 s 0 0 0 0 ?
10 s 0 1 0 1 s
11 s 1 0 0 1 s
12 s 0 0.77 0 1 s
13 d 1 0 0.23 0 d
14 d 1 0 0.44 0 d
15 o 0.2 0 1 0 o

Furthermore, the results show that an instance may

not belong to any of the predefined classes, i.e. an in-

stance has the membership degree value of 0 to all

the classes. In this case, the instance is unclassified,

so it is labelled with “?” as shown in Table 3, but it

is very different from the case of unclassification from

a probabilistic classifier. In probabilistic classification,

the above case is due to a normal distribution (e.g.

50/50 for a two-class classification problem) happening

to an instance, i.e. maximum uncertainty is reached. In

contrast, the phenomenon of the membership degree of

0 to all the classes indicates that the fuzzy classifier

is confident that the instance does not belong to any

classes, i.e. no evidence is found to assign the instance

any non-zero values of membership degree to any one

of the classes.

From a mathematical perspective, the above phe-

nomenon can be explained by the case of incomplete

mapping. In particular, a classifier is essentially a func-

tion that provides a discrete output after an input is

provided. A function f is defined as a mapping from

set A to set B, where A is the domain of f and the

range of f is a subset of B. In this context, if a classi-

fier does not represent a complete mapping, then there

would be some truly existing classes (available in set

B) but they are not in the range of this function f .

In fact, real-life environments are generally imperfect,

imprecise, incomplete and uncertain, so it is fairly pos-

sible that a set of pre-defined classes is not complete,

and an extra class, which is not known yet, needs to be

found to classify an instance.

For the above example on forest type identification,

the four classes ‘s’, ‘h’, ‘d’ and ‘o’ represent ‘Sugi’ forest,

‘Hinoki’ forest, ‘Mixed deciduous’ forest and ‘Other’

non-forest land. On the basis of the above argumenta-

tion, it is fairly possible that there may be other types

of forest beyond experts’ knowledge and cognition, i.e.

these forest types are truly existing but are not known

yet. Also, the membership degrees shown in Table 3 for

instances 13, 14 and 15 indicate that even identifying

the case of forest or non-forest is not really a black and
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white problem, which again supports the argumenta-

tion made in Section 3.2 that some instances of mutu-

ally exclusive classes may still show some highly similar

features, so the same instance may have non-zero val-

ues of membership degree to some or even all of these

classes. The similar phenomenon (in terms of member-

ship degrees of instances to different classes) can also be

found in other recognition intensive classification tasks

as shown in Tables 4 and 5.

Table 4 Results sample on Glass Data

class 1 2 3 4 5 6

1 1 0 0.5 0 0 0
2 0.70 0.79 0 0 0 0
2 0 0.54 0 0 0 0
2 0.75 1 0.29 0 0 0
1 1 0 0 0 0 0
2 0 0 0 0 0 0
4 0 0 0 1 0 0
2 0.07 1 0 0.77 0.53 0
6 0 0.39 0 0.07 0 0.84
5 0 0 0 0 0 0

Table 5 Results sample on Anuran-Calls-1 Data

class B D H L

D 0 1 0 0
L 0 0 0.63 1
L 0 0 1 1
H 0 0 1 1
L 0 0 0.45 1
D 0 0 0 0
D 0 1 0 0.72
L 0 0 0.20 1
L 0 0 0 0
L 0 0 0 0.73

5 Conclusions

In this paper, we proposed the use of fuzzy rule-based

systems for recognition intensive classification in the

setting of granular computing. In particular, we treated

the recognition of each class of instances as an indepen-

dent task of learning and classification, and the class is

viewed as the target class. When there are several tar-

get classes of instances that need to be recognized, fuzzy

multi-task learning becomes very suitable to not only

identify the presence of the patterns of each target class

but also measure the degree to which the patterns of a

target class are present. The features of fuzzy multi-task

learning are highly required, especially when there is a

large number of classes involved and the classification

problem is not black and white.

The experimental results show that the classifica-

tion performance of the fuzzy approach is fairly compa-

rable to the ones of the probabilistic approaches (DT,

NB, KNN and SVM), which indicate that the fuzzy

approach can be used as the alternative ones to the

probablistic approaches. However, the probabilistic ap-

proaches would fall short in the aspects that are usu-

ally involved in recognition intensive classification. In

particular, the probabilistic approaches aim at learning

classifiers that discriminate one class from other classes.

As mentioned in Section 3.2, when the number of classes

is very large or even massive, it would become very dif-

ficult to discriminate effectively between classes. Also,

in the context of recognition intensive classification, it

is fairly possible that different classes are not mutually

exclusive so there is no need to involve discrimination

between classes.

In contrast, the fuzzy approach aims at training

classifiers in the way of generative learning, i.e. each

class is treated equally, and recognition of each class of

instances is involved in an independent task of learn-

ing and classification, i.e. multi-task learning. There-

fore, the fuzzy approach is capable to deal effectively

with a massive number of classes and to discover that

an instance does not only belong to the target class but

also to other classes. Furthermore, the fuzzy approach

can also discover the case that an instance does not

belong to any of the given classes and an extra class

thus needs to be discovered. In fact, the above case is

fairly possible to appear in real-life environments that

are imperfect, imprecise, incomplete and uncertain.

In future, we will investigate further the use of fuzzy

rule-based systems for identifying the relationships be-

tween classes in the setting of granular computing, i.e.

it is to identify the relationships between information

granules where each class is viewed as a granule. In

particular, following the completion of fuzzy multi-task

classification, all instances are assigned values of mem-

bership degree to the given classes. In this context,

a secondary learning task for association (correlation)

analysis can be undertaken, where each class is treated

as an attribute (feature) and the membership degree

value of each instance to this class is treated as a value

of this feature. We will also look into the ensemble clas-

sification or data stream mining problems using fuzzy

rule-based systems where the data instances are chal-

lenging, unpredictable and diverse embedded with newly

arrived classes. In addition, it is worth to investigate the

use of optimization techniques (Chen and Chien, 2011;

Chen and Kao, 2013; Tsai et al., 2008, 2012; Chen and
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Chang, 2011; Chen et al., 2013; Chen and Chung, 2006;

Chen and Huang, 2003) for tuning the shapes of mem-

bership functions towards obtaining better performance

of prediction.

Acknowledgements The authors acknowledge support from
the Social Data Science Lab at the Cardiff University and
the Affective and Smart Computing Research Group at the
Northumbria University.

References

Ali, N. and Xavier, L. (2014). Person identification

and gender classification using gabor filters and fuzzy

logic. International Journal of Electrical, Electronics

and Data Communication, 2(4), 20–23.

Altrabsheh, N., Cocea, M., and Fallahkhair, S. (2015).

Predicting Students’ Emotions Using Machine Learn-

ing Techniques, pages 537–540. Springer Interna-

tional Publishing.

Antonelli, M., Ducange, P., Lazzerini, B., and Marcel-

loni, F. (2016). Multi-objective evolutionary design

of granular rule-based classifiers. Granular Comput-

ing , 1(1), 37–58.

Bergadano, F. and Cutello, V. (1993). Learning mem-

bership functions. In European Conference on Sym-

bolic and Quantitative Approaches to Reasoning and

Uncertainty , pages 25–32, Granada, Spain.

Berthold, M. R. (2003). Mixed fuzzy rule formation.

International Journal of Approximate Reasoning , 32,

67–84.

Berthold, M. R., Wiswedel, B., and Gabriel, T. R.

(2013). Fuzzy logic in knime: Modules for approx-

imate reasoning. International Journal of Computa-

tional Intelligence Systems, 6(1), 34–45.

Chatterjee, K. and Kar, S. (2017). Unified

granular-number-based ahp-vikor multi-criteria deci-

sion framework. Granular Computing , 2(3), 199–221.

Chen, S.-M. (1996). A fuzzy reasoning approach for

rule-based systems based on fuzzy logics. IEEE

Transactions on Systems, Man, and Cybernetics -

Part B: Cybernetics, 26(5), 769–778.

Chen, S.-M. and Chang, T.-H. (2001). Finding multiple

possible critical paths using fuzzy pert. IEEE Trans-

actions on Systems, Man, and Cybernetics - Part B:

Cybernetics, 31(6), 930–937.

Chen, S.-M. and Chang, Y.-C. (2011). Weighted fuzzy

rule interpolation based on ga-based weight-learning

techniques. IEEE Transactions on Fuzzy Systems,

19(4), 729–744.

Chen, S.-M. and Chen, C.-D. (2011). Handling forecast-

ing problems based on high-order fuzzy logical rela-

tionships. Expert Systems with Applications, 38(4),

3857–3864.

Chen, S.-M. and Chien, C.-Y. (2011). Parallelized ge-

netic ant colony systems for solving the traveling

salesman problem. Expert Systems with Applications,

38(4), 3873–3883.

Chen, S.-M. and Chung, N.-Y. (2006). Forecasting en-

rollments of students by using fuzzy time series and

genetic algorithms. International Journal of Infor-

mation and Management Sciences, 17(3), 1–17.

Chen, S.-M. and Huang, C.-M. (2003). Generating

weighted fuzzy rules from relational database systems

for estimating null values using genetic algorithms.

IEEE Transactions on Fuzzy Systems, 11(4), 495–

506.

Chen, S.-M. and Kao, P.-Y. (2013). Taiex forecasting

based on fuzzy time series, particle swarm optimiza-

tion techniques and support vector machines. Infor-

mation Sciences, 247, 62–71.

Chen, S.-M., Lee, S.-H., and Lee, C.-H. (2001). A

new method for generating fuzzy rules from numeri-

cal data for handling classification problems. Applied

Artificial Intelligence, 15(7), 645–664.

Chen, S.-M., Wang, N.-Y., and Pan, J.-S. (2009). Fore-

casting enrollments using automatic clustering tech-

niques and fuzzy logical relationships. Expert Sys-

tems with Applications, 36(8), 11070–11076.

Chen, S.-M., Lee, S.-H., and Lee, C.-H. (2011). Fuzzy

forecasting based on high-order fuzzy logical relation-

ships and automatic clustering techniques. Expert

Systems with Applications, 38(12), 15425–15437.

Chen, S.-M., Chang, Y.-C., and Pan, J.-S. (2013).

Fuzzy rules interpolation for sparse fuzzy rule-based

systems based on interval type-2 gaussian fuzzy sets

and genetic algorithms. IEEE Transactions on Fuzzy

Systems, 21(3), 412–425.

Colonna, J. G., Cristo, M., Jnior, M. S., and Nakamura,

E. F. (2015). An incremental technique for real-time

bioacoustic signal segmentation. Expert Systems with

Applications, 42(21), 7367–7374.

Cristianini, N. (2000). An Introduction to Support

Vector Machines and Other Kernel-Based Learning

Methods. Cambridge University Press, Cambridge.

de Campos, D. A., Bernardes, J., Garrido, A., de S,

J. M., and Pereira-Leite, L. (2000). Sisporto 2.0 a

program for automated analysis of cardiotocograms.

The Journal of Maternal-Fetal Medicine, 9(5), 311–

318.

Dubois, D. and Prade, H. (2016). Bridging gaps be-

tween several forms of granular computing. Granular

Computing , 1(2), 115–126.

Evett, I. W. and Spiehler, E. J. (1987). Rule induc-

tion in forensic science. Technical report, Central



Fuzzy Rule-Based Systems for Recognition Intensive Classification in Granular Computing Context 11

Research Establishment, Home Office Forensic Sci-

ence Service.

Guo, G. (2014). Gender classification. In Encyclopedia

of Biometrics, pages 1–6.

Horng, Y.-J., Chen, S.-M., Chang, Y.-C., and Lee, C.-H.

(2005). A new method for fuzzy information retrieval

based on fuzzy hierarchical clustering and fuzzy in-

ference techniques. IEEE Transactions on Fuzzy Sys-

tems, 13(2), 216–228.

Hu, H. and Shi, Z. (2009). Machine learning as gran-

ular computing. In IEEE International Conference

on Granular Computing , pages 229–234, Nanchang,

Beijing.

Jefferson, C., Liu, H., and Cocea, M. (2017). Fuzzy ap-

proach for sentiment analysis. In IEEE International

Conference on Fuzzy Systems, Naples, Italy.

Johnson, B., Tateishi, R., and Xie, Z. (2012). Using

geographically-weighted variables for image classifi-

cation. Remote Sensing Letters, 3(6), 491–499.

Kalua, B., Mirchevska, V., Dovgan, E., Lutrek, M., and

Gams, M. (2010). An agent-based approach to care

in independent living. In International Joint Confer-

ence on Ambient Intelligence, pages 177–186.

Kreinovich, V. (2016). Solving equations (and systems

of equations) under uncertainty: how different practi-

cal problems lead to different mathematical and com-

putational formulations. Granular Computing , 1(3),

171–179.

Lichman, M. (2013). UCI machine learning repository,

http://archive.ics.uci.edu/ml.

Lin, F., Wu, Y., Zhuang, Y., Long, X., and Xu, W.

(2016). Human gender classification: a review. Inter-

national Journal of Biometrics, 8(3-4).

Liu, H. and Cocea, M. (2017a). Fuzzy information

granulation towards interpretable sentiment analysis.

Granular Computing , 2(4), 289–302.

Liu, H. and Cocea, M. (2017b). Fuzzy rule based sys-

tems for interpretable sentiment analysis. In Inter-

national Conference on Advanced Computational In-

telligence, pages 129–136, Doha, Qatar.

Liu, H. and Cocea, M. (2017c). Granular computing

based approach for classification towards reduction

of bias in ensemble learning. Granular Computing ,

2(3), 131–139.

Liu, H. and Cocea, M. (2018). Granular Computing

Based Machine Learning: A Big Data Processing Ap-

proach. Springer, Berlin.

Liu, H. and Gegov, A. (2015). Collaborative Decision

Making by Ensemble Rule Based Classification Sys-

tems, pages 245–264. Springer, Switzerland.

Liu, H., Cocea, M., and Ding, W. (2017a). Decision tree

learning based feature evaluation and selection for

image classification. In International Conference on

Machine Learning and Cybernetics, Ningbo, China.

Liu, H., Cocea, M., Mohasseb, A., and Bader, M.

(2017b). Transformation of discriminative single-task

classification into generative multi-task classification

in machine learning context. In International Confer-

ence on Advanced Computational Intelligence, pages

66–73, Doha, Qatar.

Liu, H., Cocea, M., and Ding, W. (In press). Multi-task

learning for intelligent data processing in granular

computing context. Granular Computing .

Liu, P. and You, X. (2017). Probabilistic linguis-

tic todim approach for multiple attribute decision-

making. Granular Computing , 2(4), 332–342.

Livi, L. and Sadeghian, A. (2016). Granular computing,

computational intelligence, and the analysis of non-

geometric input spaces. Granular Computing , 1(1),

13–20.

Mamdani, E. and Assilian, S. (1999). An experiment

in linguistic synthesis with a fuzzy logic controller.

International Journal of Human-Computer Studies,

51(2), 135–147.

Min, F. and Xu, J. (2016). Semi-greedy heuristics for

feature selection with test cost constraints. Granular

Computing , 1(3), 199–211.

Pedrycz, W. and Chen, S.-M. (2011). Granular Com-

puting and Intelligent Systems: Design with Infor-

mation Granules of Higher Order and Higher Type.

Springer, Heidelberg.

Pedrycz, W. and Chen, S.-M. (2015). Information

Granularity, Big Data, and Computational Intelli-

gence. Springer, Heidelberg.

Pedrycz, W. and Chen, S.-M. (2016). Sentiment Anal-

ysis and Ontology Engineering: An Environment of

Computational Intelligence. Springer, Heidelberg.

Peters, G. and Weber, R. (2016). Dcc: a framework for

dynamic granular clustering. Granular Computing ,

1(1), 1–11.

Quinlan, R. J. (1993). C4.5: Programs for Machine

Learning . Morgan Kaufmann Publishers, San Fran-

cisco.

Reynolds, K., Kontostathis, A., and Edwards, L.

(2011). Using machine learning to detect cyberbully-

ing. In Proceedings of the 10th International Confer-

ence on Machine Learning and Applications, pages

241–244.

Rish, I. (2001). An empirical study of the naive bayes

classifier. IJCAI 2001 workshop on empirical methods

in artificial intelligence, 3(22), 41–46.

Skowron, A., Jankowski, A., and Dutta, S. (2016). In-

teractive granular computing. Granular Computing ,

1(2), 95–113.

Suykens, J. A. and Vandewalle, J. (1999). Least squares

support vector machine classifiers. Neural processing



12 Han Liu1, Li Zhang2

letters, 9(3), 293–300.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Intro-

duction to Data Mining . Addison-Wesley Longman

Publishing Co., Inc, Boston, MA, USA.

Teng, Z., Ren, F., and Kuroiwa, S. (2007). Emotion

recognition from text based on the rough set the-

ory and the support vector machines. In Interna-

tional Conference on Natural Language Processing

and Knowledge Engineering , pages 36–41, Beijing,

China.

Tsai, P.-W., Pan, J.-S., Chen, S.-M., Liao, B.-Y., and

Hao, S.-P. (2008). Parallel cat swarm optimization.

In Proceedings of the 2008 International Conference

on Machine Learning and Cybernetics, volume 6,

pages 3328–3333, Kunming, China.

Tsai, P.-W., Pan, J.-S., Chen, S.-M., and Liao, B.-Y.

(2012). Enhanced parallel cat swarm optimization

based on the taguchi method. Expert Systems with

Applications, 39(7), 6309–6319.

Wang, Y. and Yu, H. (2016). Facial expression-aware

face frontalization. In LNCS Proceedings of Asian

Conference on Computer Vision, pages 375–388,

Taibei, Taiwan.

Wilke, G. and Portmann, E. (2016). Granular comput-

ing as a basis of humandata interaction: a cognitive

cities use case. Granular Computing , 1(3), 181–197.

Wu, J., Smith, W. A., and Hancock, E. R. (2011). Gen-

der discriminating models from facial surface nor-

mals. Pattern Recognition, 44(12), 2871–2886.

Xu, Z. and Wang, H. (2016). Managing multi-

granularity linguistic information in qualitative

group decision making: an overview. Granular Com-

puting , 1(1), 21–35.

Yao, J. (2005a). Information granulation and granular

relationships. In IEEE International Conference on

Granular Computing , pages 326–329, Beijing, China.

Yao, Y. (2005b). Perspectives of granular computing.

In Proceedings of 2005 IEEE International Confer-

ence on Granular Computing , pages 85–90, Beijing,

China.

Zadeh, L. (1965). Fuzzy sets. Information and Control ,

8(3), 338–353.

Zhang, J. (1992). Selecting typical instances in

instance-based learning. In Proceedings of the Ninth

International Workshop on Machine Learning , pages

470–479, Aberdeen, United Kingdom.

Zhang, X., Yin, Y., and Yu, H. (2007). An application

on text classification based on granular computing.

Communications of the IIMA, 7(2), 1–8.

Zhao, R., Zhou, A., and Mao, K. (2016). Automatic de-

tection of cyberbullying on social networks based on

bullying features. In Proceedings of the 17th Inter-

national Conference on Distributed Computing and

Networking .


