Multi-agent system for early prediction of urinary bladder inflammation disease

Atteya, Walid Adly, Dahal, Keshav and Hossain, Alamgir (2010) Multi-agent system for early prediction of urinary bladder inflammation disease. In: IEEE International Conference on Intelligent Systems Design and Applications (ISDA), 29 Nov- 1 Dec 2010, Cairo, Egypt.

Full text not available from this repository. (Request a copy)
Official URL: http://dx.doi.org/10.1109/ISDA.2010.5687208

Abstract

This paper presents an efficient real-time knowledge base architecture for multi-agent based patient diagnostic system for chronic disease management, basically, the early detection of Inflammation of urinary bladder and Nephritis of renal pelvis origin diseases. The model integrates information stored heterogeneous and geographically distributed healthcare centers. The paper presents two main contributions. First, a proposed multi-agent based system for mining frequent itemsets in distributed databases. Second, the implementation of this model on distributed medical databases in order to generate hidden medical rules. The proposed model can gather information from each department or from different hospitals, and using the cooperative agents it analyzes the data using association rules as a data mining technique. The proposed model improves the diagnostic knowledge and discovers the diseases based on the minimum number of effective tests, thus, providing accurate medical decisions based on cost effective treatments. It can also predict the existence or the absence of the diseases, thus improving the medical service for the patients. The proposed multi-agent system constitute an effort toward the design of intelligent, flexible, and integrated large-scale distributed data mining system.

Item Type: Conference or Workshop Item (Paper)
Uncontrolled Keywords: association rules, distributed data mining
Subjects: B800 Medical Technology
G900 Others in Mathematical and Computing Sciences
Department: Faculties > Engineering and Environment > Computer and Information Sciences
Depositing User: EPrint Services
Date Deposited: 17 Aug 2011 15:33
Last Modified: 10 Aug 2015 11:23
URI: http://nrl.northumbria.ac.uk/id/eprint/338

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics


Policies: NRL Policies | NRL University Deposit Policy | NRL Deposit Licence