
URL:
This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/3387/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.)
Modelling Small-scale CHP Plant Under Closed Loop Control

C P Underwood
Northumbria University, United Kingdom
Background – UK Climate Change Levy

- A commodities tax introduced in April 2001
- Applicable to electricity, gas and other fuels (but not oil since this is already subject to excise duty)
- Payable by most (there are a few exceptions) non-domestic energy consumers
- Examples of current Levy rates: 0.15 p/kWh (natural gas); 0.43 p/kWh (electricity)
Purpose of the Levy: to help secure the UK’s CO₂ emissions reduction target (5% (Kyoto-binding); 12.5% targeted by between 2008 – 2012)

Fuels used in “good quality” CHP will be exempt from the Levy

UK CHP capacity target of 10 GWe by 2010 (about 15% of current capacity)
CHP Quality Indexing

- Quality indexing scheme operated by the CHPQA group at the UK’s DEFRA
- QI thresholds set for different types of CHP installation
- A QI is calculated as a weighting of power and heat from CHP that is actually utilised
- Example, for small scale installations < 1 MWe...

Threshold: $\eta \geq 0.2$ AND $QI \geq 115$

Where: $QI = 230\eta + 125\phi$
($\eta = \text{efficiency}; \phi = \text{heat "efficiency"}$)
Modelling Equations – Gas and Work

\[
\eta_{\text{indicated}} = 1 - r_c^{1-\gamma}
\]

\[
V = V_{\text{disp}}
\]

\[
P_3 = \text{fnc}(v_{\text{cyl}}, T_{\text{ai}}, M_f, \eta_{\text{indicated}}, FLHV, W_{\text{brake}})
\]

\[
P_2 = \max(P_3, P_{\text{crit}})
\]

\[
M_g = \text{fnc}(A_{\text{throat}}, v_{\text{ai}}, T_{\text{ai}}, P_2, P_{\text{ai}})
\]

\[
A_{\text{throat}} = \text{fnc}(IV_{\text{lift}}, IV_{\text{diam}})
\]

\[
W_{\text{brake}} = \text{fnc}(M_g, \eta_{\text{indicated}}, \eta_{\text{mech}}, FLHV)
\]

\[
M_f = \text{fnc}(FAR, M_g)
\]

\((M_g \text{ is solved recursively})\)
Modelling Equations – Heat Transfer

\[T_{\text{adiabatic}} = fnc\left(h_{\text{gas-chamber}}, FLHV, FAR\right) \]

(\(T_{\text{adiabatic}} \) implicit in \(h_{\text{gas-chamber}} \) hence solve recursively)

\[T_{\text{gas-outlet}} = fnc\left(T_{\text{adiabatic}}, W_{\text{brake}}\right) \]

\[Q_{\text{HX}} = fnc\left(T_{\text{gas}}, T_{\text{coolant}}, E_{\text{HX}}\right) \]

\[Q_{\text{loss}} = fnc\left(T_{\text{coolant}}, T_{\text{ambient}}, E_{\text{loss}}\right) \]
Modelling - Uncertainties

- Inlet throat area fitted to mnfrs. data
- General form...

\[IV_{lift} = C_1 + C_2 V_{disp} + \ldots \]
\[C_3 V_{disp}^2 + C_4 r_c + \ldots \]
\[C_5 r_c^2 + C_6 r_c V_{disp} + \ldots \]
\[C_7 (r_c V_{disp})^2 \]

- Mechanical efficiency balanced from mnfrs. data
- Generally lower for smaller engines
- Typically, for naturally aspirated SI engines up to 250 kW...

\[0.6 \leq \eta_{mech} \leq 0.82 \]
Matlab Function - ChpSim

Parameter Set
- Number of Cylinders: 4
- Cylinder Bore (mm): 108
- Displacement Volume (all cylinders - litres): 4.58
- Compression Ratio (typically: 10 (SI), 20 (CI)): 10
- Mechanical Efficiency (fraction): 0.65

Input Data Set
- Relative Air:Fuel Ratio (Stoichiometric=1): 1
- Jacket Water Mass Flow rate (kg/s): 1
- Jacket Inlet Water Temperature (K): 391.15
- Inlet Air Pressure (Nsq m): 101325
- Inlet Air Temperature (K): 298.15
- Engine Speed (RPS): 25

Auxilliary HX Size
- Aux. Heat Exchanger Surface Area (sq m): 5

Jacket-series, separate circuit or...
- Auxillary cooling
 - Series
 - Separate
 - None
Manufacturers Reference Data

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Brake Power (kW)</th>
<th>Fuel Use (kW)</th>
<th>Brake Efficiency</th>
<th>Displacement (Litre)</th>
<th>Compression Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAN Rollo</td>
<td>E0824E302</td>
<td>37</td>
<td>142</td>
<td>0.261</td>
<td>4.58</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>E0826E302</td>
<td>70</td>
<td>210</td>
<td>0.333</td>
<td>6.873</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>E2866E</td>
<td>95</td>
<td>271</td>
<td>0.351</td>
<td>11.97</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>E2866E302</td>
<td>118</td>
<td>341</td>
<td>0.346</td>
<td>11.97</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>E2876E302</td>
<td>130</td>
<td>376</td>
<td>0.346</td>
<td>12.82</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>E2842E</td>
<td>177</td>
<td>490</td>
<td>0.361</td>
<td>21.94</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>E2842E302</td>
<td>222</td>
<td>617</td>
<td>0.360</td>
<td>21.94</td>
<td>-</td>
</tr>
<tr>
<td>Perkins</td>
<td>3008SI</td>
<td>160</td>
<td>445</td>
<td>0.360</td>
<td>17.41</td>
<td>12</td>
</tr>
<tr>
<td>Waukesha</td>
<td>F11G</td>
<td>83.5</td>
<td>273</td>
<td>0.306</td>
<td>11.03</td>
<td>10</td>
</tr>
<tr>
<td>Caterpillar</td>
<td>G3304</td>
<td>61</td>
<td>185</td>
<td>0.330</td>
<td>6.994</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>G3304</td>
<td>51</td>
<td>167</td>
<td>0.305</td>
<td>6.994</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>G3306</td>
<td>91</td>
<td>266</td>
<td>0.342</td>
<td>10.49</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>G3306</td>
<td>77</td>
<td>257</td>
<td>0.300</td>
<td>10.49</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>G3406</td>
<td>138</td>
<td>407</td>
<td>0.339</td>
<td>14.6</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>G3408</td>
<td>166</td>
<td>551</td>
<td>0.301</td>
<td>17.93</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>G3412</td>
<td>244</td>
<td>758</td>
<td>0.322</td>
<td>26.9</td>
<td>10</td>
</tr>
<tr>
<td>Cummins</td>
<td>Onan LPG-2</td>
<td>5.8</td>
<td>20.8</td>
<td>0.279</td>
<td>0.928</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>Onan LPG-3</td>
<td>9.7</td>
<td>30.7</td>
<td>0.316</td>
<td>1.391</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>Onan LPG-4</td>
<td>13.2</td>
<td>43.6</td>
<td>0.303</td>
<td>1.855</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>Ford LRG-4251</td>
<td>23.1</td>
<td>55.5</td>
<td>0.416</td>
<td>2.451</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>Ford ESG-642</td>
<td>35.8</td>
<td>97.2</td>
<td>0.368</td>
<td>4.197</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>Ford WSG-1068</td>
<td>70.9</td>
<td>195.3</td>
<td>0.363</td>
<td>6.77</td>
<td>-</td>
</tr>
</tbody>
</table>
Correlation with Manufacturers Data

- Normalised Brake Power (MODEL) vs. Normalised Brake Power (ACTUAL)
- Brake Efficiency (MODEL) vs. Brake Efficiency (ACTUAL)
- Normalised Heat Recovery (MODEL) vs. Normalised Heat Recovery (ACTUAL)
Parameter Extraction Using ChpSim

Throttling Rate:
$$TR = 0.4262 + 0.59283LF$$

Power Output:
$$P = -128.12 + 367.16TR$$

Heat Recovery:
$$Q = 157 + 135.26TR$$

Brake Efficiency:
$$\eta = -0.22407 + 0.98871TR - 0.42815TR^2$$
Matlab Function ChpScheduler

- Reads hourly time series of heat & power demands
- Performs an hourly balance to give...
 - Module matching
 - Turndown
 - Energy balance
 - Machine utilisation
- Integrated annual energy balance includes Q_I
Application Example: 700-household Village

- “Heat-rich” case
- Two scenarios...
 - existing case
 - 50% reduced heating to reflect a major insulation campaign
Simulated Village Energy Demands

Cockfield Village: Predicted Global Domestic Energy Demands
Bold pattern: electricity demand Feint pattern: heating demand

Hour (Start 01:00 first day of the month)
Application – Nominal Module Choice

- Naturally aspirated gas engine
- 8-cylinder in-line; 137 mm bore; 26.9 ltr.; \(r_c = 10 \);
 \(\eta_{\text{mech}} = 0.65 \); \(M_w = 5 \text{ kgs}^{-1} \) (series cooled)
- Parameter extraction from *ChpSim*...

\[
Q_{\text{recovery}} = 0.699 + 0.302 \left(\frac{W}{W_{\text{rated}}} \right)
\]

\[
\eta = 0.0686 + 0.450 \left(\frac{W}{W_{\text{rated}}} \right) - 0.182 \left(\frac{W}{W_{\text{rated}}} \right)^2
\]

- Simulated nominal capacities 239 kWe / 292 kWt
Results – Efficiency and Module Utilisation

![Graph showing Power Efficiency and Module Utilisation](image)

- Power efficiency - both cases
- Module utilisation - both cases

Minimum Turndown versus Power Efficiency and Module Utilisation.
Results – Heat Recovery Utilisation

![Graph showing Heat Recovery Utilisation vs Module Turndown]

- Reduced Heat Demand
- Full Heat Demand
Results – Quality Index

Quality Index

- Module Turndown

QI - full heating
QI - reduced heating

Quality Index

Threshold

Results – Quality Index

Module Turndown

QI - full heating
QI - reduced heating

northumbria UNIVERSITY
Conclusions and Further Work

- For maximised QI and η, a CHP module must be capable of turndown though this will reduce module utilisation.
- The minimum turndown is shown here to maximise QI when set at 0.7 whereas for maximised η it should be 0.8 – 0.9.
- For a “heat rich” application, heat recovery utilisation is maximised when no turndown is applied.
- Further work is required to investigate short term module dynamics, smart control and thermal storage.
- Further work is also needed to extend the range of model applicability to large turbo/super-charged engines and gas turbines.