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Abstract 

Tin sulphide (SnS) thin films deposited by thermal evaporation on glass substrates are studied 

for different substrate temperatures. The increase in substrate temperature results in the 

increase of the crystallite size and change in orientation of the films. The crystal structure of 

the film is that of SnS only and for temperatures  300 oC the films are of random orientation, 

whereas for higher temperatures the films become (040) oriented. The variation of Sn/S 

composition was accompanied by a reduction in optical energy bandgap from 1.47 to 1.31 eV 

as the substrate temperature increases. The Urbach energy was found stable at 0.169 ± 0.002 

eV for temperature up to 350 °C. Photoluminescence emission was observed only for films 

exhibiting stoichiometric properties and shows that a precise control of the film composition 

is critical to fabricate devices while an increase in grain size will be essential to achieve high 

efficiency. 

Keywords: Thermal evaporation, thin films, tin sulphide, photoluminescence, solar cells. 

1. Introduction 

Research in thin films solar cells is focusing towards developing alternative absorbing 

materials that are low-cost, non-toxic, earth abundant and easy to fabricate. Tin Sulphide 

(SnS) is such a candidate for making cost effective solar cells having demonstrated good 

optical properties [1], ideal direct bandgap for photon absorption (in the range of 1.3-1.5 eV) 

[2], an appropriate hole mobility (0.8-15.3 cm2V-1s-1) and a good carrier concentration (1016 

cm-3) [1], and with both Sn and S available in large abundance [3]. Those ideal properties are 

further supported with theoretical calculations indicating realistic conversion efficiency in the 

range of 24-31% for SnS solar cells [4, 5]. However the maximum efficiency reported for 

SnS solar cells to date is only 4.4% [6]. There are several factors that currently contribute this 

relative poor performance compared to other chalcogenide thin film photovoltaics. Firstly the 

concentration of defects in the SnS thin film layers arising from deposition condition and 
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methods can create excessive Shockley-Read-Hall recombination centres [3, 7]. This is also 

linked to non-stoichiometric composition and structural inhomogeneity arising from different 

crystal orientation of SnS grains or crystallites that can lead to different optical behaviour of 

the SnS layers [8], which may limit the performance of the SnS-based solar cells. Secondly, 

the pn junction formation and in particular the perfect matting n-type material has not yet 

been revealed. The record efficiency device was produced using a Zn(O,S) buffer and judged 

adequate with reduced band offset at the interface with SnS [6]. Sugiyama et al. study a broad 

range of possible n-type material for SnS using photoelectron yield spectroscopy and 

concluded that type I heterostructures could only be achieved with ZnIn2Se4 and MgxZn1-

xO buffer layer with the latter one being the most appropriate [9]. Finally, the ability to create 

a good p-n junction will also depend on crystallographic orientation of the SnS absorber layer 

[10] which is controlled by the deposition parameters. 

Several techniques have been reported in the deposition of thin films of SnS which include 

spray pyrolysis [11], electro deposition [12], chemical bath deposition (CBD) [13], plasma-

enhanced chemical vapour deposition [14], thermal evaporation either short or long-throw 

[15-18], hot wall deposition method [19], pulsed chemical vapour deposition [20] and atomic 

layer deposition [ALD] [1,20]. Physical vapour deposition (PVD) techniques such as thermal 

evaporation are reliable, easy to control and provide a great level of process parameter 

variations. PVD is the method of choice for depositing thin film inorganic absorber reaching 

power conversion >20% (see for example CuInGaSe2 (CIGS) and CdTe record efficiencies 

22% [21]). Structural parameters (such as crystallite size, strain and degree of orientation) 

and optoelectronic parameters (such as absorption coefficient, energy bandgap, refractive 

index and extinction coefficient) of SnS thin films prepared with some of these techniques 

have been reported [1,15,16]. Devika et al. investigated the dependence of SnS properties on 

film thickness and demonstrated that improved crystallinity of the layers can be achieved for 

film thickness >0.75 µm [15]. While the record SnS device used an absorber thickness of 

only 500 nm such a thin absorber is likely to limit the overall performance. Indeed for CIGS 

solar cells short circuit current, fill factor and as results efficiency, seriously deteriorate for 

film thicknesses below 800nm [22-24]. Here, we present detailed structural and optical 

properties of sweat spot (<1 µm) thermally evaporated thin films and demonstrate that 

luminescence material can only be produced with a precise control of the film stoichiometry 

and crystallographic orientation.  
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2. Experimental 

SnS absorber layers were grown via thermal evaporation of 5N purity SnS pellets 

(Testbourne T7-5014-M) onto pre-cleaned soda lime glass (SLG) substrate. The SLG 

substrates were cleaned chemically (dilute decon-90 solution with deionised water) followed 

by ultrasonication (water for 15 minutes) prior to the deposition. All the layers were 

deposited at high vacuum ( 1x10-6 mbar) at substrate temperature in the range 200-400 oC 

with thickness of 0.9  0.1 µm (deposition rate of 3 nms-1). The source substrate distance and 

substrate rotation were set at 300 mm and 10 rpm respectively. 

The composition, structure and optical properties of the as-deposited layers were studied. 

Siemens D5000 X-ray diffractometer in Bragg-Brentano configuration using a CuKα ( = 

1.54 Å) radiation source was used to study the layers orientation and crystallographic 

structures. Scanning electron microscopy (SEM) (Tescan Mira3) and energy dispersive X-ray 

spectroscopy (EDS) (Oxford Instruments) were used to investigate the morphology and 

composition of the as-deposited layers, respectively. Optical transmittance and reflectance of 

the layers were examined in the 300-1400 nm wavelength range with a Shimadzu UV-VIS-

2600 spectrophotometer. The Raman spectra were studied with a Horiba Labram 300 Raman 

spectrometer of 632.8 nm wavelength using a HeNe laser. Secondary ion mass spectroscopy 

(SIMS) was performed using a primary beam of oxygen ions (5 kV, 300 nA) rastered over a 

0.5 x 0.5 mm2 area (gating 10%) and quadrupole detector from Hiden Analytical. The PL 

spectra were measured using a Horiba Jobin Yvon iHR320 spectrometer with a cooled 

InGaAs detector coupled to a lock-in amplifier. A 532 nm continuous wave diode-pumped 

solid-state laser was used as an excitation source.  

3. Results and Discussion  

The composition of the as-deposited SnS films (see table 1) showed gradual increase of the 

Sn/S ratio in the films with substrate temperature, whereas the starting material (pure SnS 

pellets) had a stoichiometric composition of tin and sulphur (Sn/S = 1.00). The Sn/S range of 

0.96 - 1.10 shows a trend of decreasing S content in the thin films as the substrate 

temperature increases in agreement with previous work [16, 25]. The change in composition 

with growth conditions are due to re-evaporation at the surface of the growing films where 

the vapour pressure of S increases with temperature faster than that of Sn, (e.g. the vapour 

pressure of sulphur PS and tin PSn is 1.0x10-2 mbar at 102 oC and 1224 oC, respectively, 
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giving a very large 1122 oC temperature difference) [26]. The composition uniformity with 

respect to the film thickness was probed by SIMS and is shown in figure 1 where the 

intensity ratio of Sn and S ions are plotted for three films. All films showed uniform profiles 

with depth of both Sn and S but the ratios showed the films becoming increasing Sn rich as 

substrate temperature increases in good agreement with the EDS data shown in table 1.  

Table 1: SnS thin film composition across the substrate temperature range along with key 

optical properties. The starting SnS evaporant material was measured at Sn/S = 1.00 using 

EDS. The energy bandgap Eg and Urbach energy Eu were determined from optical 

measurements.  

Substrate temperature (oC) Sn (at %) S (at %) Sn/S Eg (eV) Eu (eV) 

200 48.9 51.1 0.96 1.46 0.167 

250 49.2 50.8 0.97 1.43 0.169 

300 49.7 50.3 0.99 1.41 0.171 

325 49.8 50.2 0.99 1.40 0.172 

350 50.9 49.1 1.00 1.37 0.170 

400 52.4 47.6 1.10 1.31 0.186 

 

 

Figure 1: Variation of Sn/S ratio with film depth as determined from SIMS for substrate 

temperature of 325, 350 and 400 oC. 
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Figure 2: SEM micrographs (5kV) of as-deposited SnS films at substrate temperature of (a) 

200, (b) 300 and (b) 350 oC, inset: cross-section (scale bars denote 500 nm). 

The surface morphology of as-deposited films shows randomly oriented rice and flake-like 

grains that are dependent on substrate temperature: as substrate temperature increases, the 

micrographs reveal the growth of bigger grains as shown in figure 2 (a-c). Further increase in 

temperature yielded no visual change on the surface morphology. The cross-sectional views 

of the as-deposited SnS layers (inset of figure 2 (b and c)), confirmed the small grained 

structure with some columnar feature appearing at temperature ≥ 350 °C. Quantification of 

grain size was not possible due to non-uniform arrangement of grain distribution, however 

the grain size increase is visually noticeable from both planar and cross sectional views. The 

bigger grains are likely due to the increase in adatoms mobility with temperature, promoting 

coalescences of the smaller grains to form bigger grains. However, the growth of large grains 

in the 3-dimensional space is required to reduce carrier recombination usually associated with 

polycrystalline thin film absorber. 

The transmittance, T, and reflectance, R, spectra of the as-deposited SnS thin films studied 

over the wavelength range of 300-1400 nm are plotted in figure 3a. A sharp fall of the 

transmittance was observed for all films at the wavelength regarded as the fundamental 

absorption edge. The absorption edge shifts towards longer wavelength with increase in 

substrate temperature, and this is associated with the change in composition described earlier. 

The spectra also show good absorption in the visible range where the transmittance is close to 

zero. The absorption coefficient (α) is calculated using the relation [27]:  

𝛼 = − (
1

𝑥
)  ln  (

[(1 − 𝑅)4 +  4𝑇2𝑅2]
1
2 − (1 − 𝑅)2

2𝑇𝑅2
)                                                      (1) 

(a) (b) (c)
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where 𝑥 is the film thickness. The films show high absorption coefficient of 3.5 x 104 to 1.2 x 

10-5 cm-1 (at wavelength range 300-670 nm). The optical energy bandgap (𝐸𝑔) was calculated 

using the relation: 

𝛼ℎ = 𝑐(ℎ − 𝐸𝑔)
𝑎

                                                                                                                      (2) 

where c is a constant called the band tailing parameter, (h ) is the photon energy, 𝑎 is used 

as ½ or 2 for direct and indirect allowed transitions, respectively. Both direct and indirect 

bandgap values have been reported for SnS thin films depending on preparation and growth 

conditions [16, 28-30]. In this study, the plot of (αh)2 vs (h) (see figure 3b) gave a best 

straight line fit for 𝑎 = ½ and the bandgap was determined by extrapolating the linear region 

to the h axis. The plots for 𝑎 = 2 are shown in the figure S1a for reference. The direct 

bandgap energy range of 1.31-1.47 eV (see Table 1) are recorded for the different substrate 

temperatures with varying Sn/S atomic composition. The near stoichiometric SnS film (Sn/S 

= 1.00) grown at 350 oC substrate temperature has a direct bandgap of 1.37 eV. This value is 

close to the reported bandgap of stoichiometric polycrystalline SnS, 1.35 eV [16]. The 

noticeable change in the bandgap with the substrate temperature is linked to the changing 

composition of the films. 
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Figure 3: (a) Transmittance (solid lines) and reflectance (dotted lines) versus wavelength and 

(b) (αh)2 versus h of the as-deposited SnS thin films on SLG. 

In thin films materials, the exponential dependence of absorption coefficient (α) on the 

photon energy can give information on the localized states that tail off from the band edge 

with the optical bandgap. Below the optical band edge, the relationship between (α) and 

photon energy (h) is following the Urbach empirical rule (see figure S1b) [31, 32]. This rule 

characterises the degree of the absorption edge spreading due to the crystalline lattice 

disorder resulting from structural anomalies and compositional disordering. For single crystal, 

the fluctuations of atomic position during thermal vibration at high temperatures determines 

the nature of the tail state. The Urbach rule is given as [31]: 

𝛼 =  𝛼𝑜 exp (
ℎ

𝐸𝑢
)                                                                                                                        (3) 

where αo denotes a pre-exponential term which is constant and Eu is Urbach energy which 

indicates the width of the exponential absorption edge. From the plot of ln (α) against (h) 

(shown in figure S2) near the absorption edge for the as-deposited SnS films at different 

substrate temperature, the Urbach energy were estimated as the inverse of the slope. The Eu 

value is ranging from 0.167 to 0.186 eV across the temperature range as listed in table 1. For 

temperature of 250-350 oC, Eu is invariant (within the experimental error) while a large 

increase is observed for the highest temperature. This correlates well with the increase in 

Sn/S ratio (10% at 400 oC) resulting in an increase in the disordered atoms and defects in the 

structural bonding that can cause the absorption edge to spread at the lower region [32] and is 

the main reason for the observed variations. 

Figure 4a shows the X-ray diffraction (XRD) spectra of the as-deposited SnS thin films 

grown at substrate temperature ranging from 200 to 400 oC. XRD analysis showed the films 

were highly crystallized with properties matching well with orthorhombic structure of SnS 

(Herzenbergite) consistent with the reference powder diffraction file 039-0354. The layers 

were all single phase (also confirmed from the Raman analysis as detailed later) with the 

(111)/(040) planes giving rise to the most prominent peak. The (111) reflections are more 

likely associated with lower substrate temperatures while the (040) reflections are related to 

higher substrate temperatures. This is consistent with other reports [15, 16, 28, 33 and 34]. 

Raman studies were also conducted to further complement the XRD data (see figure 4b). 

Three main peaks are evident in the Raman spectra, which are located at 140, 167 and 196 
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cm-1 and a minor peak found at 98 cm-1, these can be attributed to SnS [35, 36]. No peak 

belonging to Sn2S3 (307 cm-1) and SnS2 (312 cm-1) [37] are detected within the analysis 

effective depth (depth = 147 nm) therefore it can be concluded that the crystal structure of the 

film is that of SnS only. The most intense peak for the samples is at 167 cm-1 for all the 

substrate temperatures and corresponds to B2g mode of SnS while peaks at 98 and 196 cm-1 

are from the Ag modes [35].  

 

Figure 4: (a) XRD and (b) Raman spectra of SnS films grown across the substrate range. 

The preferred orientation of the crystals  in the as-deposited polycrystalline SnS films were 

established by first calculating the texture coefficient (Chkl) [38]. The Chkl and  values are 

included in the supplementary information table S1. Figure 5a shows the variation of C(111), 

C(040) and  as a function of substrate temperature. For temperatures 300 oC the films are 

random, whereas for the higher temperatures the films become (040) oriented. 

Crystallite size and strain were also estimated from the XRD data. The strain may arise due to 

lattice mismatch or difference between thermal coefficient of the glass substrate and growing 

film, which can lead to a shift in the peak position as well as peak broadening. To estimate 
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the average crystallite size (D), Williams-Hall (W-H) method [39] was employed using the 

following equation: 

cos  = 
0.94

D
+4sin                                                                                         (4) 

where  is strain,  is the wavelength of the X-ray radiation (1.54 Å),  is the full width half 

maximum (FWHM) of the diffraction peaks and  is the Bragg angle. All eight peaks shown 

in table S1 were used for the calculations. From the plot of cos against 4sin , the strain 

was extrapolated from the slope of the graph, while the intercept was used to calculate the 

average crystallite size. The plot of average crystallite size and strain against the substrate 

temperature is shown in figure 5b. 

 

Figure 5: (a) variation of texture coefficient C(111) and C(040) and degree of preferred 

orientation  with temperature, (b) variations of crystallite size and strain with substrate 

temperature (the lines are guides for the eye). 

A trend of decreasing in strain and increase in crystallite size with substrate temperature was 

observed. The decrease in strain may indicate the formation of higher quality films at higher 

substrate temperatures [40]. This could be that at higher temperatures, residual stress of the 

films relaxes and thus strain is reduced. As with grain size, the increase in substrate 

temperature increases the mobility of adatoms that also results in the increase of the 
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crystallite size and crystallinity of the films [41]. This observation is consistent with the 

increase in grain size observed by SEM. Photoluminescence (PL) studies were carried out for 

some SnS films to reveal further information on the optical quality of the films and their 

potential in carrier generation for devices. Figure 6 shows the PL emission spectra of the SnS 

films with photon excitation at 532 nm. 

Figure 6: PL spectra of as-deposited SnS films recorded at 6K 

SnS film grown at 350 oC has a broad emission peak centred on 1.23 - 1.33 eV, whereas films 

grown at 300 oC and 400 oC showed no emission peaks. This broad peak has been attributed 

to emissions from vacancies or defects that are intrinsic to the growth processes of the films 

[42, 43]. This demonstrates that controlling the film composition and crystal structure to 

some extend is critical to produce a film that will luminesce, a requisite for any 

implementation in solar devices. 

4. Conclusion 

SnS thin films were grown by thermal evaporation onto SLG substrates at varying substrate 

temperatures. The morphological properties were mildly independent of the growth 

temperature with a marginal increase in grain size observed. On the other hand, composition, 

structural and optical properties were strongly influenced by the temperature. A shift in 

preferred orientation was observed at 300-350°C were the films became aligned along the 

(040) direction. The single-phase nature of the deposited films was confirmed by both XRD 

and Raman spectroscopy. A reduction in energy bandgap was observed with increasing 

substrate temperature and this is strongly related to the loss of Sn in the films. Moreover, it is 

found that photoluminescence can only be generated for films grown at 350°C which are 
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stoichiometric and of energy bandgap of 1.37 eV. This study demonstrates that controlling 

the stoichiometry of the film is key to fabricate future solar devices and future work should 

focus on improving grain growth in all three directions. 
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6. Supplementary information 

Table S1: Texture coefficient (Chkl) and degree of preferred orientation () across the 

temperature. 

Substrate 

temp. 

(oC) 

   C(hkl)      
(110) (120) (021) (101) (111) (040) (141) (211) 

200 1.769 1.234 0.352 1.165 1.863 0 0.357 0.431 0.56 

250 1.183 0.691 0.168 1.26 1.932 0 0.436 0.344 0.56 

300 1.972 0.957 0.288 0.751 2.341 0 0.319 0.437 0.79 

350 0.199 0.222 0.063 0.082 0.619 7.216 0.029 0.05 2.33 
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400 0.165 0.219 0.095 0.07 0.517 7.432 0.042 0.037 2.41 

 

 

Figure S1: (a) (αh)1/2 and (b) absorption coefficient (α) against photon energy. 

 

 

Figure S2: Plot of lnα versus h of the as-deposited SnS thin films at (a) 200 oC, (b) 250 oC, 

(c) 300 oC, (d) 350 oC and (e) 400 oC substrate temperature. 
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