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A B S T R A C T

Wearable technology (WT) has become a viable means to provide low-cost clinically sensitive data for more
informed patient assessment. The benefit of WT seems obvious: small, worn discreetly in any environment,
personalised data and possible integration into communication networks, facilitating remote monitoring. Yet,
WT remains poorly understood and technology innovation often exceeds pragmatic clinical demand and use.
Here, we provide an overview of the common challenges facing WT if it is to transition from novel gadget to an
efficient, valid and reliable clinical tool for modern medicine. For simplicity, an A–Z guide is presented, focusing
on key terms, aiming to provide a grounded and broad understanding of current WT developments in healthcare.

1. Introduction

Wearable technology (WT, or wearable computing) encapsulates a
plethora of devices worn directly on or loosely attached to a person.
Commonly, the latter comprises smartphones, which have become in-
tegral to the popularity and functionality of WT [1]. Although there is a
debate defining smartphones as WT, their existence has seen the demise
and rebirth of WT as useful aids to assist daily living [2]. This is pri-
marily due to the rise of third party applications (i.e. apps) which have
nurtured innovation but at the expense of well-organised app devel-
opment, leaving the end-user overwhelmed with choices. Indeed, the
mobile computing power of smartphones is so influential that they will
likely play a key role in ongoing WT innovations such as performing
quick, robust and easy bioassays anywhere and at any time [3].

In short, WT can be subdivided into two categories: (i) primary,
those operating independently and functioning as central connectors for
other devices and/or information (e.g. wrist worn fitness tracker,
smartphone) and; (ii) secondary, capturing specific actions or executing
a measurement (e.g. heart rate monitor worn around the chest) off-
loading to a primary wearable device for analysis [4]. Additionally,
those categories may include smart textiles where the physical prop-
erties of the material can measure or react to stimuli from the user or
environment [2]. Smart textiles currently lay beyond the scope of
normal daily use as the concept of wearing electronic or uncommon
tailoring materials interwoven within clothes or directly on the skin

remains the vernacular of technological idealists.
Nevertheless, fuelled by miniaturisation of electronic-based com-

ponents, WT has experienced an evolution since first appearing as
means to take traditional desktop computing on the go [1]. With the
ability to gather and store data as well as perform complex permuta-
tions in any real-world environment it hasn’t taken WT long to enter the
healthcare domain, recognised as useful tools to aid patient assessment,
treatment and management. Yet, the true utility of current WT (and
associated communication infrastructures) remains lacking with de-
velopment of novel WT usually exceeding pragmatic (clinical) use.
Regulatory bodies and vendors hamper clinical adoption, struggling to
differentiate between apps classified as medical devices requiring
formal regulatory approval, versus wellness apps for general use by the
consumer market. Qualification of device efficacy and safety, adoption
of various standards for accurate analysis and device and communica-
tions interoperability are all interwoven, presenting further barriers to
clinical adoption of WT. There is also a dearth of knowledge pertaining
to the fundamentals of WT, e.g. outcomes generated and relevance to
specific pathologies; suitable WT selection; appropriate data manage-
ment and analysis. The aim of this review is to highlight key aspects of
WT for those less familiar with their robust application in healthcare.
Currently, there is a myriad of technologies and terminologies over-
whelming those less familiar with this field. Here, we provide a concise
overview for those aiming to familiarise themselves with WT.
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2. Wearables: an A–Z guide

The following details a selection of the most commonly used de-
vices, terminologies and areas of interest. For simplicity, we present an
A–Z guide (Fig. 1).

2.1. A is for algorithm

WT comprise different electronic-based sensors depending on
measurement needs, e.g. electrocardiogram, blood glucose. For sim-
plicity, sensors will generate an electrical signal when detecting phy-
siological signs/responses, captured many times a second (high sam-
pling frequency, SF) or every few minutes (low SF) depending on
measurement needs. Subsequently, signals are stored as complex/raw
time series data by acquisition electronics. Off-the-shelf commercial
devices use proprietary software with embedded algorithms to down-
load data, extract pertinent features and generate required outcomes
(e.g. heart rate). Additionally, most WT facilitate access to raw data to
allow the creation of bespoke algorithms via research tools (e.g.
Matlab®, R) for more insightful patient assessment [5]. This aligns to
trends in open-source development options, making algorithms trans-
parent compared to black-box designs. Broadly, algorithms (within
software/apps) are structured computer-based protocols to process and
analyse sections of raw electronic signals/data to derive real world,
meaningful outcomes. Algorithm syntax can be complex given the
permutations of data interpretation needed but pseudo-code re-
presentations offer some insight to operations, like in eye tracking [6].

2.2. B is for big data

WT can continuously monitor many times a second for days or
weeks. However, this will negatively affect running time between bat-
tery recharge/replacement and memory capabilities: increased data
capture means reduced WT deployment time. Although WT can use
large batteries or memory units, this will make WT impractical, too big
and bulky to wear discretely. Thus, when deploying WT, data acquisi-
tion appreciation is required to ensure robust data collection proce-
dures. For example; too little data and vital clues to diagnose or treat a
patient may be missed; alternatively, mining/searching big data for
clinically sensitive/relevant outcomes is complex. One common ap-
proach is to place WT in a low-power mode and only power up addi-
tional sensors when a possible event that is of interest has been detected
[7]. Big data collected in free-living environments can offer insight to
habitual behaviours such as seasonal trends, normally lacking under
direct typically episodic clinical observation [8]. Yet, many obstacles
exist for mainstream use of big data within healthcare such as choosing
optimal architecture for storage (e.g. Structured Query Language, SQL)
and analytical system (e.g. Apache HIVE), where one size does not fit all
[9].

2.3. C is for cloud (computing)

Most WT is now part of the Internet of Things (IoT): connectable to
digital communication infrastructures, facilitating rapid data trans-
mission and storage. The latter is big business and growing, with
overwhelming future estimates of 2.3 trillion gigabytes (GB) of IoT-
based data produced daily by 2020 [10], reaching an accumulation of

Fig. 1. A simplistic overview of the A–Z of wearables. (i, top-to-bottom) Co-creation with adults of all ages is paramount to the successful design of WT for continued
daily use, influencing how WT is worn (ii) this will impact algorithm and hardware designs on how best to capture physiological measurements, (iii) once created WT
will need to be efficient, valid/verified and reliable to robustly capture outcomes for longitudinal periods, (iv) adoption is simplified by translational/transparent
terminology and implementing an expert consensus of standards, (v, left-to-right) the use of low cost technology including development kits and open source can
facilitate novel and streamlined WT development, (vi) valid and reliable WT can better facilitate supervised patient assessment during instrumented testing in generic
environments with more sensitive electronic-based data, (vii) WT (e.g. jewellery) can also provide habitual data on a range of generations facilitating self-care, (viii)
WT connectivity to cloud computing, adhering to strict GDPR regulations, ensures ubiquitous sensing capabilities where embedded machine learning or artificial
intelligence systems can decipher meaning from big data, (ix) WT data on the cloud can be accessed by healthcare professionals from any browser, facilitating ease of
patient care. Feedback/involvement from those in the health services (or patient) should be used to inform design processes.
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847 zettabytes1 (ZB) by 2021 [11]. Indeed, we are on the cusp of the
yottabyte (YB) era2 which heralds a need to consider how big data is
used as large proportions remain underutilised [11]. The cloud (and
clustered IT infrastructures, i.e. data centres) can overcome limitations
by providing ubiquitous computerised economies of scale: the power of
a super computer accessed anywhere through any device. However,
cloud computing is still maturing, such as implementing optimisation
methodologies like (the aptly named) fogs and cloudlets to process data
at network edges, i.e. on more local systems like smartphones. Hence,
that topic of research is termed edge computing where real-time analytics
plays a key driver to improve data efficiency [12].

2.4. D is for design

Technology-driven developments rather than co-creation driven by
end-users (user centred design) led to discrepancies between project
aims and outputs from the EU Ambient and Assisted Living Joint
Programme [13]. Although WT stems from an evolution of computing
and sensing technologies, its continued revolution relies on interactions
with numerous stakeholders from all ages. Younger generations3 are
exposed to technologies from an early age, making adoption and use
instinctual. Yet, older adults remain excluded from aiding technology
design and development for their generation, described as a lack of
involvement to build their (own) future [14]. Furthermore, WT often
lacks considerations for the wearer’s physical, psychological and social
preferences [15] as holistic end-user preferences need consideration
[16]. Contemporary frameworks exist to guide WT design ensuring a
human-centred approach [16], as well as novel reflective themes which
could be more broadly applied to other topics influencing WT [14].

2.5. E is for efficiency

Deploying WT for prolonged periods is difficult due to two primary
WT criteria: battery life and memory capacity. Current studies aiming
to gather longitudinal data may adopt a series of n-of-1 methods, re-
peated measurement of an individual over time (with low SF) allowing
conclusions to be drawn about the individual [17]. That method of data
gathering can complement traditional study designs and would help
personalise health behaviour interventions to individuals [18]. More-
over, it could help carefully manage study resources, optimising per-
sonnel time and minimise costs due to reduced WT expenditure.
However, studies needing to deploy WT on larger patient numbers for
more data (with high SF) must deal with device logistics, e.g. rotating
fully charged WT between users. Typically, battery limitations out-
weigh memory, as it constitutes the bulkiest component. Alternatively,
energy harvesting for improved efficiency, utilises the dynamic energy
(e.g. body heat, friction, movement) of the wearer to continuously
(months) power wearables through smart materials has been suggested
[19].

2.6. F is for fusion

Current WT inefficiencies are offset by the application of data fusion
techniques from different sensors and technologies. For example, a
more reliable indication of pulse rate is achievable by signal fusion from
electrocardiogram and pulse oximetry. Continuous monitoring with WT
is aided by gathering additional data from ubiquitous devices placed
within habitual environments. Yet, coherent analysis with data gath-
ered from other sensor types, capturing at diverse specifications with
alternate algorithms, is a challenge. Data fusion techniques stemming

from WT have been presented [20], detailing considerations like
number of sensors to adequately provide seamless monitoring, para-
mount for complex conditions with multiple co-morbidities. Multi-
sensor data fusion has many engineering obstacles [21], but pragmatic
implementation remains equally challenging, e.g. access to commercial
data; knowledge sharing between companies; uptake/integration
within national/private health services.

2.7. G is for GDPR (General Data Protection Regulation)

In 2016 the EU Parliament approved GDPR to replace the Data
Protection Directive 95/46/EC, aiming to empower individuals by
strengthening and merging data protection as well as addressing the
export of personal data outside the EU4 (Additional information found
here5). Requirements for firmer data regulations were justified by
considering technology foresight and examining a range of national and
political organisations influencing policy across many technologies
[22]. Four factors were identified which complicate data protection and
privacy that are applicable to WT:

1. It’s hard to understand what new technologies are doing and the real
limits of their capabilities.

2. Technological development is not linear and disruptive breaks can
occur which bring about qualitative changes in circumstances,
making prediction from past technologies challenging.

3. Technology cannot be taken in isolation; it should be assessed
alongside a range of other technologies to aid combination.

4. Technologies do have affordances (relational properties supporting
different actions) but can be used in ways unintended by designers
and developers.

A notable example of the latter was a serious security breach of
wrist worn WT in the context of divulging secret information (i.e. key
entries) while people accessed key-based security systems [23].

2.8. H is for hardware

Most WT may comprise the same underlying hardware, the only dif-
ference being algorithms and visualisation tools (on a smartphone/com-
puter) that decipher and graph the data, respectively. One example is WT
quantifying human movement, where inertial sensors (typically accel-
erometers) generate a signal when the wearer moves. Depending on where
WTs are worn, sensors will generate different signal shapes requiring
different algorithms to interpret data to generate specific outcomes [24].
Generally, more outcomes mean more embedded sensors or algorithm
complexity creating a trade-off for length of use, influenced by: (i) battery
life (to power all functionality) and; (ii) abundance of data stored.

2.9. I is for instrumented

WT value in everyday clinical practice is yet to be realised. WT is
often used without healthcare professionals appreciating the extent of
its capabilities but broad recommendations are provided [25]. Fur-
thermore, WT can be a hindrance to those in working in healthcare due
to cost, complexity of integration to existing technology frameworks
and need to upskill. Sometimes low-tech works but realising how WT
can add value is key. Recent approaches to understanding ageing
phenotypes highlight the instrumented approach to measure traditional
tasks like gait speed, replacing manual observations with a stopwatch.
Where the latter was prone to observation variations/errors in re-
cording(s), WT facilitates a standardised (computerised) approach to

1 1 ZB=10007 bytes= 1021 bytes= 1,000,000,000,000,000,000,000 bytes= 1000
exabytes (EB)= 1 million petabytes (PB)=1 billion terabytes (TB)= 1 trillion GB.

2 1 YB=10008 bytes= 1024 bytes= 1,000,000,000,000,000,000,000,000
bytes=1000 ZB=1 trillion TB.

3 Those collectively labelled generations: Z, Y (millennials) and less often, X.

4 www.eugdpr.org.
5 Information Commissioners Office: ico.org.uk/for-organisations/resources-and-

support/getting-ready-for-the-gdpr-resources.
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gathering data in any environment, often with additional outcomes
usually obtained by larger and more expensive devices in specialist
settings [26,27]. Additionally, ongoing work is examining motor phe-
notyping individuals (e.g. Parkinson’s and Alzheimer’s disease), where
WT has gained a great deal of interest among rehabilitation and
movement disorder specialists [28,29].

2.10. J is for jewellery

A recent exploration of patents suggested that a key factor for im-
mediate WT success is a need for a clear strategic vision within
healthcare [30]. The referenced study suggests that in addition to fo-
cusing on current WT norms (e.g. smartwatch) companies should invest
in new subclasses (e.g. smart jewellery) where there are high potentials
for growing products. Suggestions by a major telecommunications
services provider propose sensors beneath the skin as mainstream by
2049 to aid automated emergency responses. Current work to achieve
that goal is examining mobile (false) nails accompanied by connected
jewellery that will let you talk into the nail by raising your finger to
your face [31]. Although that idea is visionary and stylish, current WT
jewellery (Table 1) are equally so but lack focus and the “wow” factor
[32] by replicating mundane outcomes: there is a need to merge style
with leading research to ensure novel concepts aren’t left in the vintage
collection.

2.11. K is for kits

Professional groups no longer work in isolation; there is a require-
ment for multidisciplinary teams to share experiences and knowledge.
Therefore, the necessity to be technology literate is more profound than
ever allowing diverse groups to work efficiently and effectively. For
those within healthcare sciences, developer kits (DK) are presented as a
means of increasing some basic technical insights to WT. Typically,
software DK (SDK) are more commonly discussed (e.g. SDK6 for an iOS
app) but they are quite complex and require specific expertise. Alter-
natively, affordable hobby-based DK are growing in popularity. Gen-
erally, DK come with simple projects for hardware and software in-
tegration as well as online help resources. Current DK allow easy
upskilling and a basic appreciate of some technical WT design and
development, Table 2.

2.12. L is for low cost

WT offers a one-stop-shop to monitor people in their natural living
environments, potentially offering better insight compared to occa-
sional clinical observations. A single WT can offer numerous sensing
capabilities with multiple algorithms, termed collapse of functionality
[33], to allow for more streamlined and efficient healthcare mon-
itoring. Commercial competition and huge economies of scale drive the
price of WT down, passing low costs to the consumer (single user or
health service provider). The ability to self-monitor (e.g.) to avoid the
burden of waiting rooms has led consumers (patients) yearning for
convenience, simplicity, speed and immediate satisfaction. Conse-
quently, there is increasing growth for affordable on-demand services
(e.g. Uber) where health represents the second fastest growing segment
[34].

2.13. M is for machine learning

Machine learning (ML, akin to computational statistics) algorithms
have emerged as useful analytical methodologies, undoubtedly due to
the rise of big data. Typically, the machine/computer learns from a
training set of data where outcomes are mapped to specific data char-
acteristics. That is the basic concept that differentiates ML from artifi-
cial intelligence (AI), the latter being more autonomous. ML is captured
for clinical scientists in a previous tutorial including: relevant termi-
nology; relationship to traditional biomedical statistics; application to
WT clinical measurement7; and limitations [35]. ML algorithms and
their application(s) are numerous, current examples include: decision
trees for classifying motoric activities [36]; and neural or deep learning
networks for measuring upper limb rehabilitation [37], disease state in
Parkinson’s [38] and managing large amounts of time series data from a
large number of input channels with a high temporal resolution (several
kHz) such as electroencephalography [39]. Table 3 describes an open
resource for those wishing to try some ML-based analysis.

2.14. N is for nursing

An article published before the turn of the millennium highlighted a
dilemma for healthcare workers (i.e. nurses): slaves or masters of
technology [41]. The article provided several guidelines (some equally
as relevant today for WT) to help frontline staff carefully assess the
impact of emerging technologies (Table 4). Of paramount importance

Table 1
Recent smart jewellery examples (www.smartgeekwrist.com/best-smart-jewelry).

Name Worn Health-based functionality Colour

Bellabeat Leaf Urban Neck, wrist, clip Activity and sleep, Stress, Menstrual cycle Rose Gold, Silver
Ringly Luxe smart ring Fingers Activity tracking (steps, distance, calories burned). Mindfulness –

meditation and breathing exercises
Gold/Lapis, Gold/Black Onyx

Fitbit Flex 2 Wrist Activity (including swimming) and sleep tracking Black, Lavender, Magenta, Navy
Misfit Shine (with Bloom

Necklace)
Wrist, neck Activity (inc. sports) and sleep tracking. Black, Grey, Champagne and 7 more

Ringly Luxe smart bracelet Wrist Activities (steps, distance, calories burned) Silver/Blue Lace Agate, Gold/Lapis
Omate Ungaro Finger None – vibration alerts for calls and texts Gold, Silver
Michael Kors access bracelet Wrist Activity tracker with sleep monitoring Rose Gold/Pink, Black, Blue, Silver, Rose

Gold/Grey
Mira wellness & activity bracelet Wrist, clip Activities (steps, elevation, calories burned, distance). Motivation (gives

fitness tips)
Midnight Purple

Joule earring backing Earring backing Continuous heart rate tracking. Activity tracking and level measurement Silver
Netatmo June Bracelet UV bracelet hat's designed to keep you safe from the sun's harmful rays Gold, charcoal, platinum
Moodmetric Ring Stress management (detects stress levels by measuring electrodermal

activity)
Black, grey, plum and turquoise

Grace Wristband (bracelet) Automated tracking and cooling device for women experiencing
menopausal hot flushes

Rose gold with grey

6 https://developer.apple.com/ios. 7 In Parkinson’s disease.
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for point 5 is the authors note that “data are not information” and “must
be interpreted before they can be considered real information”. Cer-
tainly, the role of current and future WT should enhance the role of
frontline staff. Yet, future work must help frontline clinical staff un-
derstand how WT data translates to sensitive clinical information/out-
comes and how validation and standardisation procedures play a key
role in that process.

2.15. O is for open-source

2018 marks the 20th anniversary of the Open Source Initiative8

(OSI), a non-profit organisation advocating open-source software. For
simplicity, (free and) open-sourced software (FOSS) will be described
here as software that is freely available and applied as the users deems
necessary. There is no doubting OSI and FOSS have proliferated WT
research and development (R&D) with languages (e.g. Python™) and
platforms (e.g. WEKA, see W) accessible to all rather than groups using
bespoke software in premier institutes. Open-source (but not

necessarily free) hardware examples include Arduino and Raspberry Pi,
where the latter slightly differs due to its closed firmware, i.e. low-level
software to control specific hardware functionality. Regardless, their
low-cost and easy availability make for interesting low-cost solutions to
current clinical-based WT research [42].

2.16. P is for pets

WT isn’t just for humans, it has extended its reach to our home-
based pets to impact human health. Options exist for pet owners to
track the activity of their furry friends in their natural surroundings
where some algorithms provide insight to emotional behaviour and
stress [43]. In fact, pilot work involving WT showed promise to improve
communication between working (guide) dogs and their handlers [44].
Currently, the focus of WT is generally on pet health and costs asso-
ciated with insurance [45]. However, WT could better inform animal-
assisted interventions (AAI) where several theoretical and practical
challenges remain [46]. Better understanding of animal and owner
activities could aid AAI where dog ownership indicates potential health
improvements due to increased ambulation [47].

2.17. Q is for quality of life

WT was recently labelled as a digital compass to navigate everyday
choice, counting and controlling how “bites, sips, steps and minutes of
sleep” impact health, but this can bypass individual responsibility and
self-regulation [48]. Undoubtedly, WT can help users achieve healthier
lifestyle goals if regulated with appropriate, expert guidance but over
reliance on the fixed thresholds/scores within WT can negatively im-
pact health. Use of wrist-worn WT with feedback mechanisms showed
healthier trends in eating and exercise but users felt under pressure to
reach daily targets. Almost one third felt the WT was an enemy and
made them feel guilty [49]. Therefore, it is important to consider the
long-term psychological as well as physiological effects of WT.

2.18. R is for reliability

WT should be validated according to an expert set of standardised
validation procedures while also ensuring it remains reliable over time.
WT sensors are prone to a phenomenon called drift, physical changes
which results in error accumulation. Most modern WT should have re-
calibration strategies to account for drift, e.g. time synchronisation to
network protocols. The use of a gold standard reference is often de-
scribed but in truth, all equipment will slightly differ in their func-
tionality as well as having some inherent error. Therefore, allowance
must be made for some discrepancies when comparing between WT and

Table 2
Hobby-based developer kits for educational purposes.

Company/kit name Features Useful information Getting started

Inxus/Verve2 New device featuring three systems:
processing, web data server and data
acquisition in a n

Sound, touch (skin), light, temperature, motion,
magnetic, buttons to gather basic sensing data

Design and build custom monitoring solutions,
data can be saved as CSV files for various analysis

http://myinxus.com/welcome/verve2all/#guide
Kinoma/Kinoma

Create
Create is an integrated Wi-Fi, low-energy
Bluetooth, touchscreen, speaker, and
microphone

Additional sensors can be purchased from an open-
source hardware company (adafruita) to create many
projects

Range of online tutorials and projects with
supporting code and documentation

http://kinoma.com
Raspberry Pi A large community now surrounds this brand

aimed at promoting basic computer science.
The brand supports many accessories that can be
integrated to create complex sensing solutions

A range of projects and tutorials are available via
its website

www.raspberrypi.org
Arduino Like Pi, another popular low-cost brand for

rapid prototype development
Arduino offers a web editor as well as downloadable
software. The former allows you to code anywhere on
the go.

An extensive library with built-in examples and
tutorials exist to help start development

www.arduino.cc

a www.adafruit.com.

Table 3
Try me – A resource to deploy some ML methodologies.

Waikato Environment for Knowledge Analysisa

A Java-based ML software that is openly available.b Contains online documentation,
video tutorials and courses available through its webpage to explore how it can
be used for data mining.

WEKA allows users to dabble with ML algorithms on WT datasets without writing any
code. Users access a selection of graphical interfaces, choosing menu and form
filling options to implement ML algorithms and visualise the results.

Suggested ways of using WEKA are (i) to apply a ML method to a dataset and analyse
its output to learn more about the data or (ii) to use ML models to generate
predictions on new instances [40].

a www.cs.waikato.ac.nz/ml/weka.
b GNU General Public License.

Table 4
1999 based guidelines for wise technology integration.

1. Technology systems must be patient centred
2. Technology must be thoughtfully applied
3. Technology should have an invisible interface when possible
4. Technology should be carefully integrated
5. Nurses must avoid on overreliance on technology
6. Technology must be evaluated as a team
7. Sometimes less is best
8. Technology cannot replace humanity

8 https://opensource.org.
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other devices [50]. For those that are unsure, simple bench testing of the
device against a reliable scale would help check accuracy over time. For
example, video recording and counting the steps from a pedometer with
a participant on a treadmill at different speeds. Ultimately, calibration
procedures must be conducted prior to deployment ensuring (with
some confidence) WT reliability.

2.19. S is for standardisation

Technical/engineering standards allow WT to connect via known
communication protocols (e.g. Bluetooth) created by the IEC,9 IEEE10

or ISO.11 This allows WT developers to ensure their devices integrate
with other technologies. Additionally, some IEEE standards are avail-
able which relate to WT measurement, validation and data reporting.
An example includes wearable, cuff-less blood pressure measuring de-
vices detailing appropriate statistical analysis that should be taken,
ensuring confidence in reported outcomes [51]. However, researchers
generally rely on openly available resources to guide work. Contrasting
examples include the MapReduce framework for processing and gen-
erating big data or the PRISMA12 set of items in systematic reviews and
meta-analyses. Additionally, the Personal Connected Health (PCH) Al-
liance publishes the Continua Design Guidelines, an implementation
framework for authentic, end-to-end interoperability of personal con-
nected health devices and systems. Yet there is scope for standard en-
hancement with open guidance for non-experts needed on how best to
(e.g.) construct algorithms, plan and conduct appropriate validation/
reliability protocols as well as statistical analysis.

2.20. T is for terminology

Lack of WT standardisation is encapsulated by heterogeneity of WT
terms, with authors often interchanging phrases (e.g. measurement
unit, wearable/motion sensors) or creating study specific acronyms that
can be confusing for those new to the field. This also relates to similar
WT outcomes with notable differences observed. Ideally, the field
should be adopting terminology from a predefined set of standards akin
to the adoption of clinical terminology created by healthcare specia-
lists.13 The rationale to do so ensures routine integration of information
systems, such as transforming paper into digital records and ensuring
universal interoperability among all forms of electronic data.14 This is
of upmost importance when considering (e.g.) file formats, naming
conventions or metadata where no common terminology exists al-
though interfacing through the HL7/FIHR would facilitate a useful
starting point.15

2.21. U is for ubiquitous

Data fusion methodologies could facilitate more continuous mon-
itoring with the use of ubiquitous sensing technologies, addressing
short-term limitations of WT: periodically downloading data from WT
to free memory. Ideally, (ethically valid) ubiquitous sensing would
(e.g.) relay technical information between technologies to harmonise
data streams or; facilitate WT integration as the user enters different
surroundings. With up to 10-trillion sensors connected to the internet in
the next decade [52], systems/frameworks to identify, track and loca-
lise WT within all environments becomes difficult. Therefore, the uti-
lisation of additional Positioning, Navigation and Timing (PNT)

infrastructures to complement current systems (e.g. GPS) as well as the
advent of the next generation of mobile connectivity16 becomes para-
mount to achieve seamless and pragmatic ubiquitous WT.

2.22. V is for validation and verification

Increased WT awareness within healthcare usher’s innovative
methods to deliver modern approaches to improve patient treatment
and management. Consequently, this sector is rife with opportunities
where WT can offer efficient methodologies to gather sensitive data for
more informed diagnosis. This may hasten development but conversely
exposes users to poor WT, void of robust design with insufficient patient
or clinician engagement; pragmatic utility; validation or verification.
The creation of WT (inc. apps) and deployment within clinical settings
is a contentious topic as it is difficult to determine if devices/products
are (in vitro diagnostic) medical devices falling within the EU Medical
Device Directive (MDD) framework [53]. (Devices or algorithms used in
approved regulatory devices, e.g. CE17 marking, are subject to suitable
validation and verification procedures, often through clinical trials, to
ensure that they perform as specified on the intended population.) Yet
WT remains novel within healthcare where regulations require the
manufacturer to perform internal verification processes only (ensuring
basic compliance), often forgoing expensive and time consuming vali-
dation. No regulations exist for the robust capture and quantification of
WT outcomes including expert guidance on suitable validation or ver-
ification procedures for any physiological outcome. Healthcare profes-
sionals should be cautious if adopting WT where a lack of transparency
may conceal hidden barriers to robust patient assessment. For example,
algorithms may utilise subjective thresholds to quantify outcomes that
go unreported by the manufacturer [54].

2.23. W is for wearability

WT remains finely poised as a useful and pragmatic aid to inform
healthy living. Yet, WT rides on waves of success from the latest
mainstream gadget by a large corporation to show utility as a viable
means to monitor the user during free-living, providing round the clock
habitual data. Therefore, success is built on the fickle nature of con-
sumerism and brand loyalty rather than an ability to quantify sensitive
(clinically relevant) ageing or disease specific outcomes. Primarily,
adoption of technology remains bound to the glamorous nature of good
marketing or integration to smartphones. Many who receive or pur-
chase WT engage with it for short periods, grow uninterested and take it
off, reverting to usual clothing accessories. Others may not wear WT at
all, or feel that it makes them stand out for the wrong reasons, as some
ankle-based WT look like law-enforced tagging devices. Use of WT and
body placement has a great deal to do with social acceptability [55] and
may only become mainstream as perceptions change or devices become
smaller and directly integrated into clothing or injected beneath our
skin.

2.24. X is for X marks the spot

As previously discussed, depending on WT site(s) of attachment
during movement related tasks and outcomes required (e.g. gait and
step time) different algorithms may be used. Previous work detailed the
effect of site variation (chest, lower back, right waist) on spatio-tem-
poral gait outcomes during clinical testing [56]. Accordingly, correct
WT placement is given careful consideration to ensure robust data
collection and accurate measurement of movement related tasks, i.e.

9 International Standards and Conformity Assessment for all electrical, electronic and
related technologies.

10 Institute for Electrical and Electronic Engineers.
11 International Standards Organisation.
12 PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
13 SNOMED CT: www.snomed.org/snomed-ct.
14 openEHR: www.openehr.org.
15 Health Level Seven/Fast Healthcare Interoperability Resources (hl7.org/fhir).

16 https://5g.co.uk.
17 Ensures conformity to EU safety, health and environmental requirements. Other

regulations apply depending on geographical area, e.g. The US Food and Drug
Administration (FDA).
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whether the site of attachment is best suited to capture the complete
range of movement.

2.25. Y is for yourself

The power of WT lies in the ability to gather personalised data,
allowing you to learn how poor lifestyle choices can influence negative
trends in health (e.g. blood pressure). Typically, this is often referred to
as self-monitoring, quantified-self or lifelogging. Robust data from valid
and reliable WT can be used to aid medical diagnosis or treat the in-
dividual rather than relying solely on information about the collective.
Data gathered by WT is unique to the wearer. Nevertheless, we are still
in an age of discovery as abilities to detect and understand continuously
evolve to inform ways to predict and prevent [57]. Ideally, strategies to
target preventive medicine are developed from WT data gathered in the
wild, where the complexities of normal daily living blur the ability of
current algorithms to perform robustly. Additionally, WT data can
contribute to self-care and effectively managing chronic disease ex-
acerbations [58] by empowering a patient through WT data displays
[59,60].

2.26. Z is for (generation) Z

Early exposure to technology breeds a familiarity that hastens
abilities to adopt. Those exposed to technology (e.g. gaming consoles)
in the home or computer literacy courses in school during adolescence
may be considered early adopters and more willing to continuously use
WT. In contrast, older generations may find it difficult to rationalise WT
usage, simply because they never needed to: WT is a tool but to gen-
eration Z it can be a normal part of life [61]. The former must generally
stay engaged through continuous instruction or novel experiences [62],
whereas the latter are bombarded daily by technology. How current WT
shortcomings with older generations map to generation Z in older age
remain unknown or perhaps unwarranted. As the digital divide shrinks
and disciplines like gerontechnology mature [63], WT will be become
the norm with little or no learning curves required.

3. Summary and conclusion

The disruptive nature of WT is leading a slow evolution within
modern healthcare. The power of WT as a pragmatic and clinically
useful technology to aid patient diagnosis, treatment and care is be-
coming evident. This is due to its low-cost ability to gather habitual
data in a discrete manner for longitudinal periods in any environment.
Integration to the cloud provides readily available big data, facilitating
the application of machine learning algorithms for novel outcomes.
However, stringent data governance and appropriate validation and
verification standards/procedures are significantly lacking within the
field, with the former going through significant learning processes.
Nevertheless, WT innovation is rife and still within a R&D phase of its
technology life cycle. The simultaneous implementation of appropriate
data regulation, validation/verification frameworks, ubiquitous in-
tegration to global networks and maturing of generations will see WT
realise its potential.
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