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Summary. Joint modelling of longitudinal data and competing risks has grown over the past
decade. Despite the recent methodological developments, there are still limited options for fitting
these models in standard statistical software programs, which prohibits their adoption by applied
biostatisticians. We summarize four published models, each of which has software available for
model estimation. Each model features a different hazard function, latent association structure
between the submodels, estimation approach and software implementation. Of the four models
considered here, the model specifications and association structures are substantially different,
thus complicating model-to-model comparison. The models are applied to the ‘Standard and
new anti-epileptic drugs’ trial of anti-epileptic drugs to investigate the effect of drug titration
on the treatment effects of lamotrigine and carbamazepine on the mode of treatment failure.
Notwithstanding the vastly different association structures, we show that the inference from
each model is consistent, namely, that there is a beneficial effect of lamotrigine on unacceptable
adverse events over carbamazepine and a non-significant effect on the hazard of inadequate
seizure control. The association between anti-epileptic drug titration and treatment failure was
significant in most models. To allow for the routine adoption of joint modelling of competing
risks and longitudinal data in the analysis of clinical data sets, further work is required on the
development of model diagnostics to aid model choice.

Keywords: Competing risks; Epilepsy; Joint modelling; Longitudinal analysis; Software

1. Introduction

In many clinical studies, it is common that both longitudinal measurement data and time-to-
event data are collected during follow-up (Ibrahim et al., 2010; Asar et al., 2015). When focus
lies on the time-to-event process, so-called naive approaches such as Cox regression with a
time varying covariate or application of the two-stage model have historically been applied
(Cox, 1972; Tsiatis et al., 1995; Kalbfleisch and Prentice, 2002). However, numerous studies
have demonstrated that it is preferable to model both outcomes jointly, particularly when the
censoring mechanism is informative or the time varying covariate is measured with error, as
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efficiency is increased and bias decreased (Ibrahim et al., 2010; Chen et al., 2011). Joint models
of longitudinal and time-to-event data can also be exploited to improve inference about lon-
gitudinal profiles with informative drop-out (Henderson ez al., 2000). This has been an active
research area for the past two decades. The literature on this topic is extensive, with compre-
hensive reviews given by Hogan and Laird (1997), Tsiatis and Davidian (2004) and Gould et al.
(2015). Reviews specific to joint latent class models and multivariate longitudinal data are given
by Proust-Lima et al. (2012) and Hickey et al. (2016) respectively.

Much of the research has been focused on data with a single event time and a single mode
of failure, combined with an assumption of independent censoring of event times (Tsiatis and
Davidian, 2004). However, in some situations interest lies with more than one possible cause
of event or where the censoring is informative. Such data are termed competing risks data
(Bakoyannis and Touloumi, 2012). For example, the time to treatment failure (here defined as
the withdrawal of a randomized drug or addition of another) has been recommended by the
International League Against Epilepsy to be one of the primary end points for clinical trials of
anti-epileptic drugs (AEDs) (Commission on Antiepileptic Drugs, 1998). Patients may decide
to switch to an alternative AED, or to begin an additional AED, because of inadequate seizure
control (ISC). Alternatively, patients may withdraw from a treatment because of an unacceptable
adverse effect (UAE). Overall analysis of treatment failure may miss differential effects of AEDs
on the reasons for withdrawal, which may differ in terms of their relative importance for patients
(Williamson et al., 2007b).

Research into joint modelling of longitudinal data and competing risks time-to-event data
has grown over the past few years (Elashoff ez al., 2007, 2008; Williamson et al., 2008; Li et al.,
2009, 2010, 2012; Hu et al., 2009, 2012; Huang et al., 2010, 2011; Yu and Ghosh, 2010; Deslan-
des and Chevret, 2010; Rizopoulos, 2012; Gueorguieva et al., 2012; Andrinopoulou et al., 2014,
2017; Ko, 2014; Proust-Lima, 2016, 2017; Blanche et al., 2015). In almost all cases, the stan-
dard linear mixed model for the longitudinal outcome submodel was used. Nonetheless, several
extensions have been proposed, including robust standard errors (Li et al., 2009; Huang et al.,
2010), modelling the random effects heterogeneously (Huang et al., 2010, 2011), modelling of
ordinal longitudinal data (Li et al., 2010, 2012; Andrinopoulou et al., 2014, 2017), modelling
of multivariate longitudinal data (Li et al., 2012; Andrinopoulou et al., 2014, 2017) and non-
parametric modelling of the random effects (Li ez al., 2012). The competing risks submodels
proposed include a two-part mixture model (Elashoff ez al., 2007), the cause-specific hazards
model with either unspecified (Elashoff et al., 2008; Williamson et al., 2008), spline (Rizopou-
los, 2012; Andrinopoulou et al., 2017) or piecewise constant baseline hazards (Andrinopoulou
et al., 2014), the subdistribution hazard model (Deslandes and Chevret, 2010) and a family of
parametric cause-specific hazards models (Gueorguieva et al., 2012) that admits the Weibull,
log-logistic and an approximate log-normal distribution as special cases (Sparling et al., 2006).
The association between submodels has generally been captured through different functions of
shared random effects (e.g. Li et al. (2012)) or correlated random effects and frailty terms (e.g.
Elashoff et al. (2008)).

Radically different approaches have also been proposed for joint modelling of longitudinal
and competing risks outcomes. Yu and Ghosh (2010) proposed a joint model comprised of a
random-change-point submodel with a mixture time-to-event distribution for the competing
risks, which also allowed for interval censoring on one of the event times. Proust-Lima etz al.
(2016, 2017) proposed the use of joint latent class models (JLCMs) instead of the classical shared
random-effects models. Hu et al. (2016) proposed a multiple-imputation technique allowing for
longitudinal and time-to-event data to be jointly imputed, thus permitting valid separate model
inferences, which in principle is computationally simpler.
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Research into joint modelling of longitudinal data and competing risks data has now changed
direction away from modelling towards issues such as misspecification of distributional assump-
tions, model diagnostics and prediction assessment (Li et al., 2012; Ko, 2014; Andrinopoulou
et al., 2017; Blanche et al., 2015). However, penetration of this relatively new modelling frame-
work into practical use is precluded by a lack of awareness and understanding between the
different existing models that are available and the ability to fit the models by using standard
statistical software packages—an issue pertinent to univariate joint modelling as well (Gould
et al., 2015). In this paper, we juxtapose four joint models of longitudinal and competing risks
outcomes that have been published in recent years. In particular, we examine the submodel
specification, latent association structure, model fitting algorithm, parameter uncertainty esti-
mation and software implementation. We focus on these four particular models because each
has available software, which enables them to be readily applied to alternative clinical data sets.
To the best of our knowledge, this is the first time that multiple joint models for competing
risks and longitudinal data have been presented side by side with the objective of enhancing the
practical researcher’s awareness and understanding between the models and their fitting options.
To illustrate each model in turn, we fit them to a data set from one of the largest trials to date
comparing AEDs, which was previously analysed by Williamson ez al. (2008). In keeping with
the analysis that was undertaken by Williamson and colleagues, the data set will be analysed
with the objective of investigating the effect of drug titration on the relative effects of a standard
and new AED on initial treatment failure, with interest lying in the two competing reasons for
failure: a UAE or ISC.

The paper is structured as follows. We describe the data in Section 2. In Section 3 we describe
the separate models. In Section 4 we describe the four joint models from the literature and fit
these to the AED trial data in Section 5. We conclude with a discussion in Section 6.

2. Application: epilepsy drug trial data

The ‘Standard and new anti-epileptic drugs’ (SANAD) study was a non-blinded randomized
controlled trial recruiting patients with epilepsy to test AEDs (Marson et al., 2007). This study
was registered as an international standard randomized controlled trial, number ISRCTN383
54748 (http://www.isrctn.com/; digital object identifier 10.1186/ISRCTN38354748).
Patients were randomized to either the standard treatment (carbamazepine, CBZ) or to lam-
otrigine, LTG, gabapentin, oxcarbazepine or topiramate. Time to treatment failure was a pri-
mary outcome of the trial. For the study here, we consider only patients who were assigned to
either CBZ or LTG. An important secondary objective was the analysis of competing risks for
treatment failure: treatment failure due to either ISC or UAE. The primary analysis of patients
with partial epilepsy concluded that the newer drug LTG was superior in terms of treatment
failure to CBZ, which had been the standard for many years (Williamson et al., 2007a). LTG
was significantly better in terms of withdrawal for a UAE and not significantly worse in terms of
withdrawal for ISC. Following publication of the trial results, it became evident that there was
concern that differential titration rates may have been to the disadvantage of CBZ (Cross et al.,
2007). An AED that is titrated more quickly may bring benefits in terms of seizure control but
be more likely to cause adverse effects.

The data set that is analysed here includes 605 patients, comparing CBZ (n = 292) and LTG
(n = 313). This data set was first analysed by using a joint model framework by Williamson
et al. (2008) and is publicly available in the R package joineR (Philipson et al., 2017). During
a maximum follow-up time of 6.6 years (median = 2.9 years), 94 patients withdrew from the
randomized drug due to a UAE whereas 120 withdrew due to ISC. Withdrawals due to other
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Fig.1. Profile plots for calibrated dose against reverse time stratified by drug type and event time mechanism
(the origin of the time axis is the treatment failure or censoring time; the bold curves are fitted LOESS curves):
(a) CBZ; (b) LTG

reasons were treated as non-informative, and patients were censored at this time. To compare
the two AEDs after adjusting for titration rate, dose calibration was first undertaken by stan-
dardizing the dose of both drugs relative to the midpoint of its maintenance dose range (Faught,
2007). The maintenance dose recommended in the SANAD trial was independently deemed to
be reasonable and the approach to calibration considered sensible. These calibrated doses are
taken to be the longitudinal measurements within the competing risks joint model. Patients had
an average of 4.6 longitudinal measurements recorded, ranging from 1 to 15.

Fig. 1 shows the subject-specific longitudinal profiles for calibrated dose of drugs against
reverse time, stratified by drug type and event time mechanism. A large variation across patients
in the initial calibrated dose was observed. Additionally, treatment failure due to ISC was seen
to occur in patients with increasing calibrated doses, whereas treatment failure due to a UAE
seemed to happen following a dose reduction.

3. Separate submodels

We consider a repeated continuous longitudinal outcome y;(f) measured at time ¢ for subject
i=1,...,m, where m is the total number of subjects in the study, and t =0 denotes the time of
randomization. These measurements are obtained at specific times #;; which can vary between
subjects, yielding data y; ={y;(#;;), j=1,2,...,n;}. We let T; denote the observed failure time
for subject i, taken as T; =min(7};, T5:, ..., TF;, Ci), with Tg”; denoting the true failure time of
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subject i for each event type g=1,2,..., G, and C; the censoring time. In addition to observing
T;, we also observe the event indicator ¢;, which equals 0 if censored, or g indicating that subject
i failed from cause g. We assume that the censoring mechanism is independent of the event time.

3.1. Longitudinal submodel
The standard model for a continuous longitudinal outcome is the Laird and Ware (1982) linear
mixed model

yi(tij) = pi(tij) +&ij, (1
where p; (%) is the linear predictor term (or mean response):
1
wi(ti;) = XE )(tij)Tﬁ(l) +Zi(ti)) b 2

and &;; ~ N(O, 0?) are the measurement errors, which are assumed to be independently and
identically distributed. We let X 1(1) (t;j) and Z;(t; ;) be time varying vectors of covariates for subject
i associated with fixed, 5, and subject-specific random, b;, effects respectively. The standard
model assumes that random effects are distributed as multivariate normal with mean 0 and
covariance matrix Y. Extensions to include a separate Gaussian process have been proposed;
for example, Henderson et al. (2000) proposed a stationary Gaussian process, and Proust-
Lima et al. (2016) proposed including either a Brownian motion or auto-regressive process
Additionally, we assume that b; and ¢;; are independent.

3.2. Competing risks submodel

The standard approach of modelling competing risks data includes cause-specific hazards
(Putter et al., 2007), in which, for subject i, the instantaneous rate for failure of type g at
time ¢ is given by

P{1<Ti<t+61,6=g|T; >1, X (1)}
ot
2
= Aoy (0 exp{ X7 ("B},

Nig(n) = lim,

where X 52) (1) is a (possibly time varying) vector of covariates, and ﬁ(?) is a vector of fixed effect
parameters for the gth event. The baseline hazard function A, (?) is cause specific and can either
be left unspecified or modelled parametrically. In the extension to joint modelling, we consider
a model of the form

Nig =Xy exp{X" B2 1+ Wy}, 3)

where W;, () denotes a mean 0 latent term and XIQ) is a vector of covariates known at baseline.

4. Joint models

The basic premise of joint models is that the separate longitudinal and time-to-event models
that are described in equations (1) and (3) are correlated. The four models that we consider
in this paper are those of Williamson et al. (2008) (model 1), Elashoff et al. (2008) (model 2),
Rizopoulos (2012) (model 3) and Proust-Lima ez al. (2016) (model 4). In all models, except
model 4, we assume the same submodel for the longitudinal data. Therefore, most of the joint
models that are described here can be distinguished in terms of
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(a) the specification of the baseline hazard functions Ao, (1),

(b) specification of the latent processes W; (),

(c) the estimation approach (including parameter uncertainty estimation) and
(d) software implementation.

A summary of the various model properties is given in Table 1.

Table 1. Summary of the models compared+

Model Baseline hazard Latent association

1 Non-parametric (unspecified) Current value of latent process parameterization
Wig (=g Zi()" b;

2 Non-parametric (unspecified) Correlated random-effects parameterization
Wig(t) = ay0;, where

()~{(5)-G )]

For identifiability, we fix a; =1

3a B-spline basis (on log-hazard Current value parameterization
scale) basis for cubic splines Wig(t) = agpui (1)
3b Time-dependent slopes parameterization
Wiy =00+l & uico
3c Lagged effects parameterization

Wig () = agpi(max{r—c,0})
¢ is a known (specified) lag constant

3d Cumulative effects parameterization
t
Wig(t) = ag/ i (s)ds
0
3e Weighted cumulative effects parameterization

t
Wig (1) = aq/ w(t —s)pi(s)ds
“Jo
w(-) is a known (specified) weighting function

3f Special case of the random-effects parameterization (with
fixed component)

Wig() =0, (3" +bin)
/3}1) and b;; denote the fixed and random-effect coefficients

associated with the linear time covariate in a random-intercepts and
random-slopes linear mixed model

4a Weibull Association between submodels accounted entirely for by latent
classes
4b Piecewise constant Each subject i belongs to a single latent class, ¢; € {1,2, ..., R}, with
submodels
s s Tty L 5P T Ty
pitlai=r)=X; (1) I} +X; ) v +Zi(®) by,

ST o 307
Nig(tlai =r) = oy (tla; =nexp(X;” 512 + X, 7).

4c Cubic M -splines where the covariate vector X fl) (1) is decomposed into two
pieces: X?l)(t) and X;l)(t) associated with common 8" and
class-specific v, fixed effects respectively, and similarly for
X;”; the random effects in the longitudinal submodel have
distribution b;. ~ N(0, X,)

tNotation: for models 1-3, g, agl)

cause g.

and af) denote scalar association coefficient parameters corresponding to
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4.1. Baseline hazard functions

Models 1 and 2 leave the baseline hazard functions completely unspecified, opting for a semi-
parametric joint model, which is consistent with the classical Wulfsohn and Tsiatis (1997) joint
model approach. Models 3 and 4 propose spline models for the baseline hazard, namely B-splines
(onlog-hazard) and either M -splines or piecewise constant (on the untransformed hazard scale).
Provided that a sufficient number of knots are specified, each model in principle offers good
flexibility to capture a wide range of hazard shapes (Rutherford et al., 2015). Model 4 also con-
siders a third specification for the hazard: the Weibull distribution. Although less flexible than
the semiparametric and spline models, it can potentially reduce the computational time to fit
the model. See Table 1 for a summary of the model specifications.

4.2. Latent association structure
Different characteristics of the longitudinal profile may influence the cause-specific hazards
submodel. Within the joint model literature, several association structures have been proposed,
but little attention has been given to the challenge of choosing the most appropriate structure for
a given data set (Andrinopoulou and Rizopoulos, 2016). Among the models that are examined
here, various latent association structures have been considered, including several alternatives for
some models (Table 1). Model 1 assumes that W;,(7) is proportional to the latent term in the linear
mixed model, Z;(r)Tb;, which extends the model that was proposed by Henderson et al. (2000)
(Table 1, model 1) This is a form of the current values parameterization, whereby the ‘value’ is
the subject-specific deviation from the average trajectory. Model 2 applies W;,(f) = a,0; where
0; is a zero-mean subject-specific random effect (Table 1, model 2). The correlation between
the submodels is induced by assuming that (GiT, 0T are correlated. Unlike model 1, where
association between submodels is tested on the basis entirely of the hypothesis of oy =0, the null
hypothesis of X9 =0 provides a useful assessment of association between outcomes for model 2.
Model 3 (Rizopoulos, 2012) has been developed with several useful structures, including the
current value parameterization (Table 1, model 3a), the time-dependent slopes parameterization
(Table 1, model 3b), lagged effects parameterization (Table 1, model 3c), cumulative effects
parameterization (Table 1, model 3d), weighted cumulative effects parameterization (Table 1,
model 3e) and a special case of the random-effects parameterization (Table 1, model 3f).
Model 4 is a JLCM (Proust-Lima et al., 2016), which is fundamentally different from models
1-3. This model assumes that each subject i belongs to a single latent class, a; € {1,2,..., R}. It
is assumed that subjects within the same latent class share the same mean longitudinal trajectory
and hazard risk (Proust-Lima ez al., 2012). Hence, the linear mixed model is class specific and
the baseline hazard function is assumed to be class and cause specific. From this model, the
association between the longitudinal and time-to-event submodels is entirely captured by the
latent classes. Each class membership probability is modelled by a multinomial logit:

3 T
eXp(Xz() ©r)
IS @
1+ > exp(X;” «1)
=1

Pla;=r)=

3) . . . . . .
where X ,( ) is a vector of baseline covariates corresponding to class-specific coefficient parame-
ters, ¢y

4.3. Estimation
All models here are fitted by maximum likelihood estimation using different algorithms.
Different approaches to standard error estimation are also taken. Details about the estimation
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algorithms including numerical quadrature approaches are given in the on-line supplementary
data Table S1.

4.4. Software

Models 1 and 2 are available in the form of scripts for the languages R and C respectively (see
Section 8 for details). Models 3 and 4 can be fitted by using R packages. Details on the general
software implementation are given in the on-line Table S1. User instructions are provided with
the source code for models 2-4. We have also integrated the scripts for model 1 into the R
package joineR (Philipson et al., 2017) including a complete manual. It is beyond the scope
of this paper to detail every step of the software implementation including data preprocessing;
however, as a demonstration, we have made software code that was used to fit the models to
SANAD data available on line (see the data sharing details in Section 8).

5. Application of models to epilepsy drug trial data

To allow for comparison, we assumed the same functional form for each model as that in the
original analysis undertaken by Williamson et al. (2008). Namely, the following linear mixed
model for the longitudinal measurements submodel was assumed:

yiltij) =B +bio+ B + b+ 8 X+ 8 Xt + 6, )

with X; denoting a binary time-independent treatment effect (X; =1 if patient i was randomized
to LTG, and O if randomized to CBZ), and ¢;; and (b;9, b; YT are distributed N(O, ‘752) and N>(0, Y)
respectively. Although Williamson et al. (2008) also considered a piecewise linear spline model,
for our comparison, we focused only on the above simple linear model. They further specified
a cause-specific hazard model for the competing risks data by

Aig (1) = Nog (1) exp{ X B + Wiy(1)},

where (ﬁI%)C, ﬁg/)ua) are the cause-specific treatment effects for the AED. For fitting each model,
we used time measured in units of years.

All models were fitted by using the same computing environment with predominantly default
settings, except where reported otherwise. Technical details for implementation of each model
are given in the on-line supplementary data.

5.1. Interpretation of the treatment effects
The direct treatment effect on UAEs, BU Ap> Was statlstlcally significant for all joint models
considered (Table 2). The direct treatment effect on ISC, ﬁISC, was non-significant for all models
except model 3b. Hence, the results from all models (with the single exception of model 3b,
which we discuss below) suggest that, if LTG is titrated at the same rate as CBZ, the beneficial
effect of LTG on a UAE would still be evident, and there remains no evidence of a difference
in seizure control between the two drugs. This conclusion is consistent with the original trial
analysis (Williamson et al., 2007a), which we demonstrate by fitting the separate models for
longitudinal outcome (4) and competing risks ((3), without adjustment for titration) (Table 2,
model: separate).

The estimated treatment effect on calibrated dose, 5(1) , from models 1, 2 and 4a, indicates that
patients who were assigned to LTG were titrated significantly more slowly than those allocated
to CBZ. The estimated effects from model 3 were generally closer to the separate linear mixed
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Table 2. Treatment effect and association parameter estimates for the competing risks submodel

Model Results for ISC Results for UAE Computation
time
Treatment (LTG), Association, Treatment (LTG), Association,
Bise (95% onsc (95% BUAE (95% QUAE (95%
confidence confidence confidence confidence
interval) interval ) interval) interval )
Separate 0.015 Not applicable —0.608 Not applicable <ls
(—0.344,0.374) Not applicable (—=1.102, —0.192)  Not applicable
1 0.028 0.590 —0.660 —0.925 17 s (maximum
(—0.329, 0.366) (0.425, 0.768) (—1.090, —0.221) (—1.378, —0.519) likelihood
estimates)
45 min
(standard
errors)
2 —0.306 —1.502 —0.543 1.000 5h 22 min
(—0.744, 0.131) (—1.941, —1.062) (—0.997, —0.089)  Reference
3a —0.119 0.598 —0.625 —0.926 54
(—0.482, 0.244) (0.448, 0.747) (—1.044, —0.207) (—1.246, —0.607)
3b —0.592 0.120 —-1.212 —1.239 52s
(—1.036, —0.148) (current value) (—1.832, —0.593) (current value)
(—0.138,0.377) (—1.642, —0.836)
2.334 (slope) 2.724 (slope)
(1.360, 3.308) (1.002, 4.447)
3c —0.055 0.591 —0.696 —1.016 52s
(—0.417, 0.306) (0.426, 0.756) (—1.118, —0.274) (—1.347, —0.684)
3d —0.035 0.212 —0.612 —0.156 56's
(—0.395, 0.326) (0.133,0.291) (—1.027, —0.196) (—0.381, 0.070)
3e —0.074 1.495 —0.613 —0.869 51s
(—0.436, 0.288) (1.095, 1.895) (—1.029, —0.196) (—1.848,0.110)
3f —0.090 2.619 —0.868 —8.558 53s
(—0.497, 0.317) (2.027, 3.212) (—1.446, —0.290) (—10.143, —6.972)
4a —0.366 Not applicable —0.876 Not applicable 3 min 34 s§
(—0.866, 0.134) (—1.391, —0.360)
4b —0.142 Not applicable —0.693 Not applicable 2 min 50 s§

(—0.597, 0.314)

(—1.178, —0.207)

tAdditional parameters (where relevant) are reported in the main text.

1The association parameters, although capturing the strength of association between the submodels, have widely
different interpretations between models and so should not be directly contrasted. See the main text for an
explanation of each model. Note also that models 3b and 4 have two association parameters per cause.

§Time does not take into account the grid search algorithm or fitting times of models with other numbers of
classes.

model submodel than those of models 1, 2 and 4 (Table 3). Treatment-and-time interaction
effects Bgl) were broadly similar for models 1 and 3, but attenuated towards 0 for model 2. The
estimated fixed effects for time were also similar, confirming that the average calibrated dose
was increased over the study period with the exception of model 3b, which was larger. Model 4
was fitted to allow for class-specific intercept, time and treatment-and-time interaction terms;
hence, the estimates are not comparable with the average effects of the other models. We note
that the parameter estimates from the longitudinal submodel were not of primary interest in
the SANAD clinical trial; however, this example has highlighted that, among the joint models
fitted, the association structures and method of estimation and software used to fit the joint
models can have different influences on the longitudinal submodel estimates.
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Fig.2. Causal diagrams for models 1 and 3 (¥(t), observed Iong|tud|na| data 1(t), mean trajectory function;
g, error; T, failure time; X, treatment; Z(t)T b, mean 0 latent process; ([5 [3’ ) treatment effects on longitu-
dmal processes; ag, effect of longitudinal process on treatment failure (superscrlpts denote multiple effects);
[j , treatment effect on failure time; —— —, effect via a transformation or operator function; for model 3c, the
Iog hazard of treatment failure is assomated with a lagged value of the mean trajectory function in addition to
the direct treatment effect; for models 3b, 3d and 3e, the log-hazard of treatment failure is associated with a
linear sum of u(f) and the first-order derivate or (weighted) integral of p(f), in addition to the direct treatment
effect; for model 3f, the log-hazard depends on the subject-specific random slope for time in addition to the
direct treatment effect; in models 1 and 3f, the treatment effect is both direct and overall): (a) model 1; (b)
models 3a and 3c; (c) models 3b, 3d and 3e; (d) model 3f

5.2. Interpretation of latent association parameters

A summary of the time-to-event submodel parameter estimates is given in Table 2. We strongly
emphasize that caution is required when contrasting treatment and association parameter effects
between models as each has a different latent association structure, despite the shared common
notation (for example, see Fig. 2 for a contrast of models 1 and 3). We describe the interpretation
for each model in turn below.

5.2.1. Model 1

The parameter estimates that are associated with changes in Wy (#) =b,, + b;1 ¢ were significant
for both events, leading to the inference that calibrated drug dose is associated with time to
treatment failure for both failure reasons. Moreover, the parameters had opposite signs. The
clinical interpretation, as discussed in Williamson et al. (2008), was that patients on higher doses
may be more likely to withdraw from treatment because of ISC since the reason that they are
on higher doses is that they are having continued seizures. Also, patients on higher doses may
be less likely to be withdrawn from treatment because of a UAE since the reason that a required
dose increase is possible is because no such events have occurred.
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5.2.2. Model2

The shared random effect (frailty term) in the competing risks submodel had an estimated vari-
ance Ug =0.791 (95% confidence interval (CI), from 0.571 to 1.010). The two covariance terms
between longitudinal submodel random effects and the frailty term, EZ@» were both negative:
—0.093 (95% CI, from —0.187 to 0.001) and —0.402 (95% CI, from —0.495 to —0.310) respec-
tively, implying that an increase in calibrated dose relative to the population average (which
corresponds to an increase in the components of ;) is associated with a decrease in frailty 6;.
The coefficient agc multiplies the frailty for the event due to ISC relative to a UAE (and ayag
multiplies the frailty for the event due to a UAE, but is constrained to 1 for identifiability).
As Grgc was negative, when interpreted alongside the negative correlation between b; and 6;, it
implies that an increase in calibrated dose is associated with a decrease in risk of a UAE (due to
decreasing frailty), and an increase in risk of ISC. This is consistent with the original analysis
conclusions.

5.2.3. Model 3a

Model 3a assumes that the hazard is associated with the current expected value of the calibrated
drug dose at time ¢, i.e. ﬁ(()l) ~+ bip + (Bfl) +b,-1)t+ﬂ§1)Xi +ﬂ§1)X,»t, whereas model 1 assumed
that the association depended on only the random subject-specific deviation from the current
expected value, i.e. b;o + b;1t. Hence, the overall treatment effect on the event hazard is decom-
posed into the direct effect ﬁ;z) and the indirect effect ag(ﬁél) + ﬁgl)t). Therefore, the direct
treatment effect must be interpreted by also adjusting for treatment-specific intercept and slope
of dose titration in the hazard model.

5.2.4. Model 3b

Rapid changes in titration might be indicative of risk of treatment failure, i.e. any two patients
having the same mean value at a given time ¢ might have very different slopes if their random
intercepts also vary. Therefore, a separate term that captures the changes in slope might be
required. Contrary to the other models and to our clinical understanding, this results in a
statistically significant treatment effect for failure due to ISC. The model assumes that the
instantaneous hazard of dropout is associated with a linear combination of current mean value
and its first-order derivative, namely Wi, (1) = ozf]l) wi(t) + 042,2) wi(1), where p}(r) = ﬂfl) + b1 +
ﬁgl)X i, and (agl), agz)) are a pair of association parameters corresponding to the current value
and first-derivate terms for cause g. Expanding W;,(7), we can decompose the treatment effects
(Fig. 2) in the cause-specific hazards submodel into a direct effect ﬁ;z) and an indirect effect,

1 1 1
a!(}2)ﬂ§ )+a§}1)(5§ )+5§ )t).

Hence, the disparity of direct treatment effect from other models is purely an artefact caused
by indirect treatment effect adjustments.

5.2.5. Model 3¢

The risk of treatment failure might depend, not on the current value of the marker, but on a
historical calibrated dose, e.g. if the AED takes a long period to have a physiological effect on
patients. In this case, we might consider the calibrated dose at a previous time point, t — ¢ (for
some choice of ¢, taken to be ¢ = 6 months in this example for illustration). Inferences remained
consistent with the non-lagged model, model 3a.
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5.2.6. Models 3d and 3e

Expanding on the clinical rationale for models 3a and 3c, similar arguments might lead us to
hypothesize that the complete history of the calibrated dose up to time ¢ affects the risk of
treatment failure, where for example pharmacokinetic-pharmacodynamic properties can lead
to cumulative toxicity effects. Hence, o, captures the association between the risk of event and
the (weighted) cumulative effect up to time . The choice of weight function will be application
specific. Here, we use a Gaussian density function, as in Rizopoulos (2012), which gives less
weight to points the further away from the current time they are. For both models, cumulative
(calibrated) drug dose was significantly associated with ISC, which is consistent with the other
models. However, cumulative (calibrated) drug dose was not significantly associated with a
UAE, although the direction of effects remained consistent.

5.2.7. Model 3f

A simple time-independent association is specified, whereby the risk of treatment failure is
associated with the subject-specific random slope for 7. This is a special case of random-effects
parameterization. Both latent association parameters were significantly different from 0 and in
the same direction as for other models; for example model 3a indicates that patients who are
titrated more quickly are at increased risk of ISC but reduced risk of a UAE. However, the
direct treatment effect for treatment failure also coincides with the overall treatment effect in
this model. It was also observed that the latent association parameters were much larger than
for other models. This is explained because the variances of the random effects are relatively
small, here 0.684 and 0.200 respectively, and hence a unit change in slope is quite extreme.
Rizopoulos (2012), page 114, therefore recommended scaling W, (¢) by this standard deviation
to facilitate interpretation. However, to avoid confusion in the comparison between models, we
report unscaled estimates.

5.2.8. Models 4a—4c

There are no parameter estimates for inference about the degree of association between the
submodels. Instead, the patients are assumed to be members of one of five latent classes. For
example, model 4a comprised five classes with 22.8%, 6.6%, 58.3%, 7.4% and 4.8% of subjects
allocated, with good discrimination (the mean of the posterior probabilities in each class ranged
from 76% (class 1) to 93% (class 2)). The treatment effects were modelled as cause specific only
(i.e. independent of class), which led to consistent inferences with the other models. Figs S1 and
S2 in the on-line supplementary material summarize the fitted submodels for each class. Model
4b also yielded similar effect sizes, albeit smaller in absolute magnitude. However, model 4b
offered increased flexibility in the baseline hazard function compared with model 4a, which
was constrained to follow a Weibull model. We were unable to fit model 4c because of lack of
convergence.

5.3. Model assessment and comparison
Software implementations of models 1 and 2 do not incorporate any features that facilitate
model assessment or comparison. However, we have recently updated the R package joineR
(Philipson et al., 2017) to report the log-likelihood for model 1.

The software implementation of model 3 reports several statistics that are useful for model
comparison, including the log-likelihood at the maximum likelihood estimate, the Akaike infor-
mation criterion (AIC) and the Bayes information criterion (BIC). For models 3a-3f, the AIC
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values were 7099.34, 7061.75, 7106.35, 7163.33, 7139.52 and 7029.09 respectively, thus suggest-
ing that model 3f is the preferred model. The same conclusion is obtained when contrasting
the BIC for each model (7161.25 for model 3f), and the log-likelihood (—3484.55). In addi-
tion, several residual diagnostics for the fitted longitudinal data submodel can be readily viewed
from a fitted model (e.g. Fig. S3 in the on-line supplementary material). Although the residual
plots indicated some systematic trend, the non-random dropout mechanism can mean that such
plots are potentially misleading (Rizopoulos (2012), page 157). However, the solution that was
proposed by Rizopoulos et al. (2010) to overcome this—multiple-imputation residuals—is not
available in the software for competing risks models. Moreover, residuals for the event time
submodel appear to be unavailable for competing risks joint models.

The software implementation of model 4 (Proust-Lima et al., 2017) provides a score test
for the independence assumption (Jacqmin-Gadda et al., 2010) between the submodels (con-
ditional on the latent classes)—both globally and cause specific—which JLCMs depend on.
Model 4a yielded a statistically significant score test statistic (P = 0.012); however, the cause-
specific score tests were non-significant (P =0.23 (UAE); P =0.13 (ISC)). A six-class model
(the results are not shown here) did not reject the hypothg:sw and estimated treatment effects
ﬁUAE =—0.839 (95% CI, from —1.522 to —0.157) and ﬁgs)c =0.018 (95% CI, from —0.563 to
0.599), which yield broadly similar inferences as per the estimates from the five-class model.
Therefore, the rejection of the independence assumption does not appear to have an effect on
the inferences in this instance. Model 4b did not reject the conditional independence assump-
tion (P = 0.12). However, it should be noted that score tests are distribution dependent, which
might explain the different test conclusions between models 4a and 4b. Posterior class mem-
bership tables can also be extracted from fitted models, which enable the user to assess the
goodness of fit of the model and model discrimination (Proust-Lima et al., 2012). As per model
3, the AIC, BIC and log-likelihood statistics are given as output. The five-class Weibull model
had the lowest AIC (6787.68 versus 6805.78) and BIC (6955.08 versus 6990.80), and maximum
log-likelihood (—3355.84 versus —3360.89) relative to the five-class piecewise constant model.
Although model 4a had a lower AIC than did model 3f, caution should be taken in choosing
one over the other, as each offers a fundamentally different structure. Finally, the software for
model 4 offers several residual diagnostics (e.g. Fig. S4 in the on-line supplementary material)
from the fitted longitudinal data submodel, which can be readily viewed from a fitted model.

6. Discussion

Over the past decade, research into joint modelling of longitudinal and competing risks data
has grown. We described four models (Elashoff ez al., 2008; Williamson et al., 2008; Rizopoulos,
2012; Proust-Lima et al., 2017), each of which has provided software to enable model fitting.
The models that were explored here encompassed several association structures. Misspeci-
fication of the association structure might lead to biased effects. Ideally, a pragmatic balance
between biologically plausible associations and a parsimonious model should be used; how-
ever, this might still be challenging. To date, there is limited research on this particular issue
(Andrinopoulou and Rizopoulos, 2016). Although each model can be used for inference, if in-
terest lies in risk prediction for personalized treatments, then model 4 would perhaps be most
appropriate. The reasons for this are twofold: first, no consideration on the correct functional
form of the latent association structure is required; second, the software implementation (Proust-
Lima et al., 2017) can readily produce predictions. Although the JLCM is potentially robust
to misspecification of the latent association structure, which might be exploitable for inference,
it conversely precludes inference on that aspect of the joint model, which might be of interest
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to researchers. At the expense of the flexibility that is offered by model 2, the interpretation of
the latent association is also less intuitive. Models 2, 3f and 4 also assume time-independent
associations, whereas models 1 and 3a-3e consider different time-dependent association
structures.

Among the proposals for the cause-specific hazards competing risks submodel, all models
allowed for the specification of flexible baseline hazard functions, including spline and semi-
parametric models. In principle therefore, if the hazard is void of abrupt changes and a sufficient
number of knots are specified for the spline models (Rutherford ez /., 2015), then the differences
in hazards should only subtly affect the model estimates. Notwithstanding calls for both cause-
specific hazard and cumulative incidence function models to be used in analyses (Latouche ez al.,
2013), the latter have received relatively little attention in the joint model framework. Deslandes
and Chevret (2010) proposed modelling of competing risks data using the subdistribution hazard
model of Fine and Gray (1999), and Proust-Lima et al. (2016) constructed cumulative incidence
graphs from fitted JLCMs.

Estimation approaches and software implementations also varied substantially. A summary
of the merits and limitations of each model implementation is given in Table S1 in the on-line
supplementary material. One very practical limitation is that the software for models 1 and 2
permits only two causes of failure, although the models are presented in full generality. Despite
some variation in the model fits to the SANAD trial data note that we did not ‘validate’ the
software for each model, as this has already been done separately in each of the individual
methodological research papers. Moreover, a grand simulation analysis would be conflated by
the different ‘true’ association structures. Nonetheless, understanding whether there is a gain
in efficiency by using one particular model, or whether any are more robust to misspecification
than others, would be a useful direction of future research. We are also aware that two new soft-
ware applications have recently been published: Andrinopoulou et al. (2014) has recently made
available a WinBUGS script for fitting a joint model of bivariate longitudinal data (including
an ordinal outcome) and competing risks data, and Wang et al. (2017) published an SAS macro
for fitting parametric joint models involving competing risks data.

We illustrated the model fits and differences in interpretation by using a real world data set
from an AED trial. Unlike research in other disease areas, there is very limited use of joint
modellin% in the disease area of epilepsy. The focus of this study was on the direct treatment
effects, ﬁléé and 58};5: following a clinical hypothesis that differential titration between the two
AED drugs, LTG and CBZ, resulted in an unfair comparison in a separate model competing
risks analysis (Williamson ef al., 2008). We note that a fundamental complication in contrasting
models and treatment effects is that some models estimate an overall treatment effect, whereas
others estimate separate direct and indirect treatment effects (Ibrahim ez al., 2010). Titration of
AEDs is a complex issue that has far-ranging implications for the design and interpretation of
drug trials. Joint modelling provides a sensible analytical method to handle this issue. We found
that adjustment for calibrated dose in a joint model framework resulted in similar conclusions
to those found in the original analysis of the SANAD trial data.

To allow for the routine adoption of joint modelling of competing risks and longitudinal data
in the analysis of clinical data sets, further availability of model diagnostics, model comparisons
and statistical tools for study design are necessary. We noted that some diagnostic and goodness-
of-fit assessment methods are available in the JM (Rizopoulos, 2010) and 1cmm (Proust-Lima
et al., 2017) R packages (see models 3 and 4 respectively). Prediction methods and assessment
tools are also emerging. Blanche ez al. (2015) have proposed dynamic area under the receiver
operating characteristic curve and Brier score statistics applicable to these models, and the
lcmm R package can generate dynamic predictions (see model 4). Finally, in our application
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the measurement schedule was fixed by the trial protocol; however, in other cases, particularly
observational studies, the measurement times may be informative. One possible future solution
would be the addition of a third submodel to capture the recurrent events process (Liu et al.,
2008).

7. Conclusion

Although the models that were investigated here represent progress within the field, joint mod-
elling of competing risks and longitudinal data is still very much in its infancy in terms of
methodological development and is particularly restricted in terms of its ease of application to
analyse clinical data sets. There is a real need to increase the availability and accessibility of soft-
ware to allow the routine adoption of the methodologies when designing and analysing clinical
studies. Further work is also required on the development of model diagnostics to aid model
choice. Despite the vastly different association structures, the inference remains consistent across
fitted models when applied to the SANAD data. The association between AED titration and
treatment failure was significant in most models, and the estimated treatment effects implied
a beneficial effect of LTG on UAEs over CBZ, but the two drugs were similar in terms of the
hazard for ISC.

8. Data sharing

The data that are analysed in this paper are freely available from the R package joineR.
The software and code that were used to fit the models are available from https://github.
com/graemeleehickey/comprisk.
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